CN107726990A - The collection of dot matrix grid image and recognition methods in a kind of Sheet metal forming strain measurement - Google Patents

The collection of dot matrix grid image and recognition methods in a kind of Sheet metal forming strain measurement Download PDF

Info

Publication number
CN107726990A
CN107726990A CN201710842903.8A CN201710842903A CN107726990A CN 107726990 A CN107726990 A CN 107726990A CN 201710842903 A CN201710842903 A CN 201710842903A CN 107726990 A CN107726990 A CN 107726990A
Authority
CN
China
Prior art keywords
exposure
image
lattice
lattice grid
grid image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710842903.8A
Other languages
Chinese (zh)
Other versions
CN107726990B (en
Inventor
史宝全
张利坤
姚晨嵩
杜淑幸
叶俊杰
冯晓媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Baochuang Suwei Intelligent Technology Co ltd
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710842903.8A priority Critical patent/CN107726990B/en
Publication of CN107726990A publication Critical patent/CN107726990A/en
Application granted granted Critical
Publication of CN107726990B publication Critical patent/CN107726990B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种金属板料成形应变测量中点阵网格图像采集与识别方法,属于光学三维非接触式测量技术领域,该方法的实现步骤包括1)拍摄多曝光点阵网格图像;2)计算权重图;3)权重图塔形分解;4)多曝光点阵网格图像塔形分解;5)拉普拉斯金字塔赋权;6)拉普拉斯金字塔融合;7)点阵网格图像重构;8)点阵网格图像二值化;9)亚像素边界识别;10)椭圆拟合。通过所述操作步骤,本发明可消除金属板料表面反光的影响,改善点阵网格图像采集质量,提高点阵网格图像的识别率。

The invention discloses a method for collecting and identifying lattice grid images in the strain measurement of sheet metal forming, which belongs to the technical field of optical three-dimensional non-contact measurement. The implementation steps of the method include 1) shooting multi-exposure lattice grid images; 2) Calculation of weight map; 3) Tower decomposition of weight map; 4) Tower decomposition of multi-exposure lattice grid image; 5) Laplacian pyramid weighting; 6) Laplacian pyramid fusion; 7) Lattice Grid image reconstruction; 8) Lattice grid image binarization; 9) Sub-pixel boundary recognition; 10) Ellipse fitting. Through the operation steps, the present invention can eliminate the influence of light reflection on the surface of the metal sheet, improve the quality of dot grid image collection, and increase the recognition rate of the dot grid image.

Description

一种金属板料成形应变测量中点阵网格图像采集与识别方法A Method for Acquisition and Recognition of Lattice Grid Image in Strain Measurement of Sheet Metal Forming

技术领域technical field

本发明属于光学三维非接触式测量技术领域,涉及一种金属板料成形应变测量中点阵网格图像采集与识别方法。更进一步涉及一种基于多曝光图像融合的点阵网格图像采集与识别方法。The invention belongs to the technical field of optical three-dimensional non-contact measurement, and relates to a lattice grid image acquisition and recognition method in metal sheet metal forming strain measurement. It further relates to a dot grid image acquisition and recognition method based on multi-exposure image fusion.

背景技术Background technique

金属板料成形是材料加工技术中的重要分支之一,在航空航天、汽车、装备制造、电器等国民经济的各部门得到了广泛的应用。在金属板料成形过程中,需要通过测量金属板料表面的三维应变来分析其成形情况,从而监测临界变形部位、解决复杂成形、优化冲压工艺等。金属板料表面的三维应变测量手段和方法主要包括机械法、电测法及光学三维非接触式测量法等。其中,光学三维非接触式测量法是目前金属板料成形三维全场应变测量的主要手段。Sheet metal forming is one of the important branches of material processing technology, and has been widely used in various sectors of the national economy such as aerospace, automobiles, equipment manufacturing, and electrical appliances. In the sheet metal forming process, it is necessary to analyze the forming condition by measuring the three-dimensional strain on the surface of the sheet metal, so as to monitor critical deformation parts, solve complex forming, and optimize the stamping process. The means and methods of three-dimensional strain measurement on the surface of metal sheet mainly include mechanical method, electrical measurement method and optical three-dimensional non-contact measurement method. Among them, the optical three-dimensional non-contact measurement method is currently the main means of three-dimensional full-field strain measurement in sheet metal forming.

中国发明专利ZL201110263622.X公开了一种基于光学三维非接触式测量的金属板料成形应变测量方法。该方法采用数码相机或者工业CCD相机对金属板料表面制备的点阵网格图案进行取样拍摄,获得两幅或者两幅以上的网格图像用于网格的三维重建,并根据成形前后三维网格的尺寸变化,计算出金属板料表面的三维全场应变。与机械法及电测法相比,该方法具有非接触式、测量效率高、测量精度高、可获得三维全场应变及可适用于大尺寸金属板料成形制件等优点。然而,由于金属板料表面的强反光特性,通常,采集的点阵网格图像中明暗差异较大,尤其在一些反光严重的区域,网格节点在图像中的成像只保留很少的部分或无法成像,使得网格节点识别率低下,进而影响三维应变的测量。Chinese invention patent ZL201110263622.X discloses a method for measuring strain in sheet metal forming based on optical three-dimensional non-contact measurement. In this method, a digital camera or an industrial CCD camera is used to sample and shoot the dot grid pattern prepared on the surface of the metal sheet, and two or more grid images are obtained for three-dimensional reconstruction of the grid. The three-dimensional full-field strain on the surface of the metal sheet is calculated based on the size change of the lattice. Compared with the mechanical method and the electrical measurement method, this method has the advantages of non-contact, high measurement efficiency, high measurement accuracy, three-dimensional full-field strain can be obtained, and it can be applied to large-sized sheet metal forming parts. However, due to the strong reflective properties of the metal sheet surface, usually, there is a large difference between light and dark in the collected lattice grid image, especially in some areas with serious reflection, the imaging of the grid nodes in the image only retains a small part or It cannot be imaged, which makes the identification rate of grid nodes low, which in turn affects the measurement of three-dimensional strain.

发明内容Contents of the invention

为解决现有技术中存在的上述缺陷,本发明提供了一种基于多曝光图像融合的点阵网格图像采集与识别方法,该方法可消除取样拍摄过程中金属板料表面强反光的影响,改善点阵网格图像拍摄质量,提高点阵网格图像的识别率。In order to solve the above-mentioned defects in the prior art, the present invention provides a dot grid image acquisition and recognition method based on multi-exposure image fusion, which can eliminate the influence of strong reflection on the surface of the metal sheet during the sampling and shooting process, Improve the shooting quality of dot grid images and improve the recognition rate of dot grid images.

为达到以上目的,本发明采取的技术方案是:For achieving above object, the technical scheme that the present invention takes is:

一种金属板料成形应变测量中点阵网格图像采集与识别方法,包括下述步骤:A method for collecting and recognizing dot grid images in sheet metal forming strain measurement, comprising the following steps:

步骤一,拍摄多曝光点阵网格图像Step 1: Take a multi-exposure lattice image

保持相机不动,在黑白拍摄模式下拍摄若干幅曝光量不同的点阵网格图像;Keep the camera still, and shoot several dot matrix images with different exposures in the black and white shooting mode;

步骤二,计算权重图Step 2, calculate the weight map

分别计算出步骤一所拍摄的每一幅多曝光点阵网格图像的对比度及曝光度,并将计算的每一幅多曝光点阵网格图像的对比度与曝光度相乘,得到每一幅多曝光点阵网格图像的权重图;Calculate the contrast and exposure of each multi-exposure dot grid image taken in step 1, and multiply the calculated contrast and exposure of each multi-exposure dot grid image to obtain each A weight map for a multi-exposure lattice grid image;

步骤三,权重图塔形分解Step 3, weight map tower decomposition

对步骤二所计算的每一幅多曝光点阵网格图像的权重图进行高斯金字塔分解;Carry out Gaussian pyramid decomposition to the weight map of each multi-exposure lattice grid image calculated in step 2;

步骤四,多曝光点阵网格图像塔形分解Step 4, multi-exposure lattice grid image pyramid decomposition

对步骤一所拍摄的每一幅多曝光点阵网格图像进行拉普拉斯金字塔分解,分解的层数与步骤三所分解的权重图高斯金字塔的层数相同;Perform Laplacian pyramid decomposition on each multi-exposure lattice grid image taken in step 1, and the number of layers decomposed is the same as the number of layers of the weight map Gaussian pyramid decomposed in step 3;

步骤五,拉普拉斯金字塔赋权Step 5, Laplacian Pyramid Empowerment

将步骤四所分解的每一幅多曝光点阵网格图像的拉普拉斯金字塔各层上的图像与步骤三所分解的该幅多曝光点阵网格图像的权重图高斯金字塔对应层上的图像相乘,获得赋权的拉普拉斯金字塔;The image on each layer of the Laplacian pyramid of each multi-exposure lattice image decomposed in step 4 and the weight map Gaussian pyramid corresponding layer of the multi-exposure lattice image decomposed in step 3 The images of are multiplied to obtain the empowered Laplacian pyramid;

步骤六,拉普拉斯金字塔融合Step 6, Laplacian Pyramid Fusion

将步骤五所获得赋权的若干幅多曝光点阵网格图像的拉普拉斯金字塔相同层上的图像相加;Add the images on the same layer of the Laplacian pyramid of several pieces of multi-exposure lattice grid images that are empowered in step 5;

步骤七,点阵网格图像重构Step 7, lattice grid image reconstruction

对步骤六所融合的拉普拉斯金字塔进行逆塔形变换,重构出一幅新的点阵网格图像;Carry out inverse pyramid transformation to the Laplacian pyramid fused in step 6, and reconstruct a new lattice grid image;

步骤八,点阵网格图像二值化Step 8, binarize the lattice image

对步骤七所重构的点阵网格图像进行局部自适应二值化处理,获得二值图像;Perform local adaptive binarization processing on the lattice grid image reconstructed in step 7 to obtain a binary image;

步骤九,亚像素边界识别Step 9, sub-pixel boundary recognition

采用8连通域规则识别出步骤八所获得的二值图像中点阵网格节点的整像素边界;在此基础上,采用空间矩法识别出点阵网格节点的亚像素边界;Using the 8-connected domain rule to identify the entire pixel boundary of the lattice grid node in the binary image obtained in step 8; on this basis, using the space moment method to identify the sub-pixel boundary of the lattice grid node;

步骤十,椭圆拟合Step ten, ellipse fitting

对步骤九所识别的点阵网格节点的亚像素边界,采用最小二乘法迭代拟合出椭圆中心坐标,从而获得点阵网格节点的坐标。For the sub-pixel boundaries of the lattice grid nodes identified in step 9, the coordinates of the center of the ellipse are iteratively fitted using the least squares method, thereby obtaining the coordinates of the lattice grid nodes.

进一步地,所述金属板料成形应变测量中点阵网格图像采集与识别方法还包括,在进行步骤一拍摄多曝光点阵网格图像之前,先调节焦距,使得金属板料表面的点阵网格可清晰地成像,调节完毕后锁定焦距。Further, the method for collecting and recognizing lattice grid images in sheet metal forming strain measurement also includes, before performing step 1 to take a multi-exposure lattice grid image, first adjusting the focal length so that the lattice on the surface of the metal sheet The grid can be clearly imaged, and the focus is locked after adjustment.

进一步地,所述步骤一拍摄多曝光点阵网格图像时,将相机调至黑白拍摄模式,保持相机稳定,调节曝光量,拍摄3幅或3幅以上从欠曝光、正常曝光至过曝光的点阵网格图像。Further, when taking multi-exposure dot matrix images in the first step, adjust the camera to black and white shooting mode, keep the camera stable, adjust the exposure, and shoot 3 or more images from underexposure, normal exposure to overexposure Bitmap grid image.

进一步地,所述步骤二中权重图计算方法如下:Further, the calculation method of the weight map in the step 2 is as follows:

2.1)对步骤一所拍摄的每一幅多曝光点阵网格图像,采用拉普拉斯算子进行滤波,将滤波结果取绝对值,便得到每一幅多曝光点阵网格图像的对比度因子;2.1) For each multi-exposure lattice image taken in step 1, use the Laplacian operator to filter, and take the absolute value of the filtering result to obtain the contrast of each multi-exposure lattice image factor;

2.2)对步骤一所拍摄的每一幅多曝光点阵网格图像,其曝光度因子采用如下公式计算:2.2) For each multi-exposure lattice grid image taken in step 1, the exposure factor is calculated using the following formula:

其中,e表示自然常数,k表示第k幅多曝光点阵网格图像,(i,j)表示像素点位置,Ik(i,j) 表示第k幅多曝光点阵网格图像在(i,j)位置处的像素点的灰度值,Ek(i,j)表示第k幅多曝光点阵网格图像在(i,j)位置处的曝光度因子,σ表示核函数宽度;Wherein, e represents a natural constant, k represents the kth multi-exposure lattice image, (i, j) represents the pixel point position, and I k (i, j) represents the kth multi-exposure lattice image in ( The gray value of the pixel at position i, j), E k (i, j) represents the exposure factor of the k-th multi-exposure lattice grid image at position (i, j), and σ represents the width of the kernel function ;

2.3)在步骤2.1)所计算的对比度因子及第2.2)所计算的曝光度因子的基础上,采用如下公式计算每一幅多曝光点阵网格图像的权重因子:2.3) On the basis of the contrast factor calculated in step 2.1) and the exposure factor calculated in 2.2), the weight factor of each multi-exposure lattice grid image is calculated by the following formula:

其中,表示第k幅多曝光点阵网格图像在(i,j)位置处的权重因子,Ck(i,j)表示步骤2.1)所计算的第k幅多曝光点阵网格图像在(i,j)位置处的比对度因子;in, Represents the weight factor of the kth multi-exposure lattice image at the position (i, j), C k (i, j) represents the kth multi-exposure lattice image calculated in step 2.1) at (i , j) the contrast factor at the position;

2.4)对步骤2.3)所计算的每一幅多曝光点阵网格图像的权重因子进行归一化处理,获得每一幅多曝光点阵网格图像的权重图,归一化方法如下:2.4) normalize the weight factor of each multi-exposure lattice image calculated in step 2.3), obtain the weight map of each multi-exposure lattice image, and the normalization method is as follows:

其中,Wk(i,j)表示第k幅多曝光点阵网格图像的权重图在(i,j)位置处的像素点的灰度值,N表示步骤一所拍摄的多曝光点阵网格图像的幅数,s表示第s幅多曝光点阵网格图像,表示步骤2.3)所计算的第s幅多曝光点阵网格图像在(i,j)位置处的权重因子。Among them, W k (i, j) represents the gray value of the pixel at the position (i, j) of the weight map of the kth multi-exposure lattice grid image, and N represents the multi-exposure lattice captured in step 1 The number of grid images, s represents the sth multi-exposure lattice grid image, Indicates the weight factor of the s-th multi-exposure lattice grid image at position (i, j) calculated in step 2.3).

进一步地,所述步骤2.2)中采用的拉普拉斯算子h为:Further, the Laplacian h used in the step 2.2) is:

进一步地,所述步骤三中塔形分解层数L的计算方法如下:Further, the calculation method of the tower-shaped decomposition layer number L in the step 3 is as follows:

其中,r和c分别表示多曝光点阵网格图像的行数和列数,ln()表示以自然常数e为底的自然对数函数,min(r,c)表示多曝光点阵网格图像的行数和列数取最小值函数。Among them, r and c represent the number of rows and columns of the multi-exposure lattice grid image respectively, ln() represents the natural logarithmic function with the natural constant e as the base, min(r,c) represents the multi-exposure lattice grid The number of rows and columns of the image takes the minimum value function.

进一步地,所述步骤八中点阵网格图像局部自适应二值化方法如下:Further, the local adaptive binarization method of the lattice grid image in the eighth step is as follows:

8.1)采用逐窗口二值化法对步骤七所重构的点阵网格图像进行快速二值化,获得二值图像;8.1) Use the window-by-window binarization method to quickly binarize the lattice grid image reconstructed in step 7 to obtain a binary image;

8.2)对步骤8.1)所获得的二值图像进行连通区域标记,对于像素点数目大于给定阈值τ的连通区域,进一步采用逐像素二值化法对连通区域内的所有像素点重新二值化:8.2) Mark the connected region on the binary image obtained in step 8.1), and further use the pixel-by-pixel binarization method to re-binarize all pixels in the connected region for the connected region whose number of pixels is greater than a given threshold τ :

a)为大于给定阈值τ的连通区域内的任一像素点计算一个二值化阈值:a) Calculate a binarization threshold for any pixel in the connected region greater than a given threshold τ:

其中,(i,j)表示像素点位置,T(i,j)表示连通区域内(i,j)位置处的像素点的二值化阈值,表示步骤七所重构的点阵网格图像中以(i,j) 为中心的u×v局部窗口内的像素点的平均灰度值,u与v分别表示窗口的长度尺寸和高度尺寸,m和n表示两个整数变量,I′0(m,n)表示步骤七所重构的点阵网格图像在(m,n)位置处的像素点的灰度值,表示步骤七所重构的点阵网格图像中以(i,j)为中心的u×v局部窗口内的像素点的灰度值分布的标准偏差值,γ与offset为两常数;Among them, (i, j) represents the position of the pixel point, T(i, j) represents the binarization threshold of the pixel point at the position (i, j) in the connected area, Indicates the average gray value of the pixels in the u×v local window centered on (i, j) in the lattice grid image reconstructed in step 7, where u and v represent the length and height of the window, respectively, m and n represent two integer variables, and I′ 0 (m, n) represents the gray value of the pixel at the (m, n) position of the lattice grid image reconstructed in step 7, Represent the standard deviation value of the gray value distribution of the pixels in the u×v local window centered on (i, j) in the lattice grid image reconstructed in step 7, and γ and offset are two constants;

b)根据步骤a)所计算的二值化阈值对像素点重新二值化:b) re-binarize the pixels according to the binarization threshold calculated in step a):

其中,I′(i,j)表示重新二值化后步骤8.1)所获得的二值图像在(i,j)位置处的像素点的灰度值,I′0(i,j)表示步骤七所重构的点阵网格图像在(i,j)位置处的像素点的灰度值。Among them, I'(i, j) represents the gray value of the pixel at the position (i, j) of the binary image obtained in step 8.1) after re-binarization, and I' 0 (i, j) represents the step The gray value of the pixel at the (i, j) position of the reconstructed lattice grid image.

进一步地,所述步骤8.2)中阈值τ的取值为τ=10000。Further, the value of the threshold τ in the step 8.2) is τ=10000.

进一步地,所述步骤十中每次迭代过程中,计算出每个边界点至所拟合的椭圆的间距以及标准偏差值sigma,对间距大于3sigma的边界点,不参与下一次的迭代运算。Further, during each iteration in step ten, the distance from each boundary point to the fitted ellipse and the standard deviation value sigma are calculated, and boundary points with a distance greater than 3 sigma are not involved in the next iterative calculation.

与现有技术相比,本发明方法具有以下优点:Compared with the prior art, the inventive method has the following advantages:

(1)本发明方法可消除金属板料表面强反光的影响,采集到高质量的点阵网格图像;(1) The method of the present invention can eliminate the influence of strong reflection on the surface of the sheet metal, and collect high-quality lattice grid images;

(2)本发明方法采集的点阵网格图像质量高,因此点阵网格图像的识别率也相应提高;(2) the dot grid image quality that the inventive method collects is high, so the recognition rate of dot grid image also improves accordingly;

(3)本发明方法采集的点阵网格图像质量高,因此点阵网格图像的识别精度也相应提高;(3) the quality of the dot grid image collected by the inventive method is high, so the recognition accuracy of the dot grid image is also improved accordingly;

(4)本发明方法提高了点阵网格图像的识别率及识别精度,因此也间接地提高了三维网格的重建精度及三维应变的测量精度。(4) The method of the present invention improves the recognition rate and recognition accuracy of the lattice grid image, thus indirectly improving the reconstruction accuracy of the three-dimensional grid and the measurement accuracy of the three-dimensional strain.

附图说明Description of drawings

图1本发明具体操作步骤的流程图。Fig. 1 is a flowchart of specific operation steps of the present invention.

图2a拍摄的某杯突试件欠曝光点阵网格图像。Figure 2a is an underexposed lattice grid image of a cupping specimen.

图2b拍摄的某杯突试件正常曝光点阵网格图像。Figure 2b shows the normal exposure dot grid image of a cupping specimen.

图2c拍摄的某杯突试件过曝光点阵网格图像。Figure 2c is an overexposed dot grid image of a cupping specimen.

图3重构的某杯突试件点阵网格图像。Fig. 3 Reconstructed dot grid image of a cupping specimen.

图4某杯突试件欠曝光点阵网格图像检测结果。Fig. 4 Detection results of underexposed lattice grid image of a cupping specimen.

图5某杯突试件正常曝光点阵网格图像检测结果。Fig. 5 Detection results of dot matrix image of a cupping specimen under normal exposure.

图6某杯突试件过曝光点阵网格图像检测结果。Fig. 6 Detection results of over-exposed dot matrix image of a cupping specimen.

图7重构的某杯突试件点阵网格图像检测结果。Figure 7. Reconstructed dot matrix image detection results of a cupping specimen.

具体实施方式Detailed ways

下面结合附图和实施例对发明作进一步的详细说明,但并不作为对发明做任何限制的依据。The invention will be further described in detail below in conjunction with the accompanying drawings and embodiments, but it is not used as a basis for any limitation on the invention.

本发明提出一种金属板料成形应变测量中点阵网格图像采集与识别方法,如图1所示。采集与识别某一视角金属板料表面的点阵网格图像时,第一步,拍摄多曝光点阵网格图像。拍摄前,先调节焦距,使得金属板料表面的点阵网格可清晰地成像,调节完毕后锁定焦距。拍摄时,为了减少杂色,将相机调至黑白拍摄模式,保持相机稳定,调节曝光量,拍摄3幅或3幅以上从欠曝光、正常曝光至过曝光的点阵网格图像。The present invention proposes a dot matrix image acquisition and recognition method in sheet metal forming strain measurement, as shown in FIG. 1 . When collecting and recognizing a dot matrix image on the surface of a metal sheet from a certain viewing angle, the first step is to shoot a multi-exposure dot grid image. Before shooting, adjust the focal length first, so that the dot grid on the surface of the metal sheet can be clearly imaged, and lock the focal length after the adjustment is completed. When shooting, in order to reduce noise, adjust the camera to black and white shooting mode, keep the camera steady, adjust the exposure, and shoot 3 or more dot matrix images from underexposure, normal exposure to overexposure.

第二步,计算权重图。计算第一步所拍摄的每一幅多曝光点阵网格图像的权重图。权重图计算流程包括如下步骤:The second step is to calculate the weight map. Calculate the weight map of each multi-exposure lattice grid image taken in the first step. The weight map calculation process includes the following steps:

1)计算对比度因子。对第一步所拍摄的每一幅多曝光点阵网格图像,采用拉普拉斯算子 h进行滤波,将滤波结果取绝对值,便得到每一幅多曝光点阵网格图像的对比度因子。所采用的拉普拉斯算子h为:1) Calculate the contrast factor. For each multi-exposure lattice image taken in the first step, the Laplacian operator h is used to filter, and the absolute value of the filtering result is obtained to obtain the contrast of each multi-exposure lattice image factor. The Laplacian operator h used is:

2)计算曝光度因子。对第一步所拍摄的每一幅多曝光点阵网格图像,采用如下公式计算其曝光度因子:2) Calculate the exposure factor. For each multi-exposure lattice image taken in the first step, the exposure factor is calculated using the following formula:

其中,e表示自然常数,k表示第k幅多曝光点阵网格图像,(i,j)表示像素点位置,Ek(i,j) 表示第k幅多曝光点阵网格图像在(i,j)位置处的曝光度因子,Ik(i,j)表示第k幅多曝光点阵网格图像在(i,j)位置处的像素点的灰度值,σ表示核函数宽度,其取值范围为0<σ≤0.5,一般选σ=0.2。Among them, e represents a natural constant, k represents the kth multi-exposure lattice image, (i, j) represents the pixel position, E k (i, j) represents the kth multi-exposure lattice image in ( Exposure factor at position i, j), I k (i, j) represents the gray value of the pixel at position (i, j) of the k-th multi-exposure lattice grid image, σ represents the width of the kernel function , its value range is 0<σ≤0.5, generally choose σ=0.2.

3)计算权重因子。在第1)步所计算的对比度因子及第2)步所计算的曝光度因子的基础上,采用如下公式计算每一幅多曝光点阵网格图像的权重因子:3) Calculate the weight factor. On the basis of the contrast factor calculated in step 1) and the exposure factor calculated in step 2), the weight factor of each multi-exposure lattice grid image is calculated using the following formula:

其中,表示第k幅多曝光点阵网格图像在(i,j)位置处的权重因子,Ck(i,j)表示第1)步所计算的第k幅多曝光点阵网格图像在(i,j)位置处的比对度因子。in, Indicates the weight factor of the k-th multi-exposure lattice image at position (i, j), C k (i, j) represents the k-th multi-exposure lattice image calculated in step 1) at ( i, contrast factor at position j).

4)权重因子归一化。对第3)步所计算的每一幅多曝光点阵网格图像的权重因子进行归一化处理,得到每一幅多曝光点阵网格图像的权重图,采用的归一化公式如下:4) Normalization of weight factors. The weight factor of each multi-exposure lattice grid image calculated in step 3) is normalized to obtain the weight map of each multi-exposure lattice grid image, and the normalization formula adopted is as follows:

其中,Wk(i,j)表示第k幅多曝光点阵网格图像的权重图在(i,j)位置处的像素点的灰度值,N表示第一步所拍摄的多曝光点阵网格图像的幅数,s表示第s幅多曝光点阵网格图像,表示第3)步所计算的第s幅多曝光点阵网格图像在(i,j)位置处的权重因子。Among them, W k (i, j) represents the gray value of the pixel at the position (i, j) of the weight map of the kth multi-exposure lattice grid image, and N represents the multi-exposure point taken in the first step The number of array grid images, s represents the sth multi-exposure lattice grid image, Indicates the weight factor of the sth multi-exposure lattice grid image at the position (i, j) calculated in step 3).

第三步,权重图塔形分解。对第二步所计算的每一幅多曝光点阵网格图像的权重图进行高斯金字塔分解。分解流程包含如下步骤:The third step is the tower decomposition of the weight map. Gaussian pyramid decomposition is performed on the weight map of each multi-exposure lattice grid image calculated in the second step. The decomposition process includes the following steps:

1)计算塔形分解层数。塔形分解层数L的计算方法如下:1) Calculate the number of tower decomposition layers. The calculation method of tower-shaped decomposition layer number L is as follows:

其中,r与c分别表示多曝光点阵网格图像的行数和列数,ln()表示以自然常数e为底的自然对数函数,min(r,c)表示多曝光点阵网格图像的行数和列数取最小值函数。Among them, r and c represent the number of rows and columns of the multi-exposure lattice grid image respectively, ln() represents the natural logarithmic function with the natural constant e as the base, min(r,c) represents the multi-exposure lattice grid The number of rows and columns of the image takes the minimum value function.

2)构造权重图高斯金字塔第0层。将第二步所计算的每一幅多曝光点阵网格图像的权重图作为权重图高斯金字塔第0层上的图像:2) Construct the 0th layer of the weight map Gaussian pyramid. The weight map of each multi-exposure lattice grid image calculated in the second step is used as the image on the 0th layer of the weight map Gaussian pyramid:

Gk,0(i,j)=Wk(i,j),G k,0 (i,j)=W k (i,j),

其中,k表示第k幅多曝光点阵网格图像,(i,j)表示像素点位置,Gk,0(i,j)表示第k幅多曝光点阵网格图像的权重图高斯金子塔第0层上的图像在(i,j)位置处的像素点的灰度值,Wk(i,j)表示第二步所计算的第k幅多曝光点阵网格图像的权重图在(i,j)位置处的像素点的灰度值。Among them, k represents the k-th multi-exposure lattice image, (i, j) represents the pixel position, G k,0 (i, j) represents the weight map Gaussian gold of the k-th multi-exposure lattice image The gray value of the pixel of the image on the 0th layer of the tower at the position (i, j), W k (i, j) represents the weight map of the kth multi-exposure lattice grid image calculated in the second step The gray value of the pixel at position (i, j).

3)构造权重图高斯金字塔第t层。将权重图高斯金字塔第t-1层上的图像与一个5×5窗口函数进行卷积,再把卷积结果作隔行隔列的降采样便得到权重图高斯金字塔第t层上的图像:3) Construct the tth layer of the weight map Gaussian pyramid. Convolve the image on the t-1 layer of the weight map Gaussian pyramid with a 5×5 window function, and then down-sample the convolution result every row and column to get the image on the t-th layer of the weight map Gaussian pyramid:

其中,t表示金字塔的第t层,Gk,t(i,j)表示第k幅多曝光点阵网格图像的权重图高斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值,m和n表示两个整数变量, Gk,t-1(2i+m,2j+n)表示第k幅多曝光点阵网格图像的权重图高斯金字塔第t-1层上的图像在 (2i+m,2j+n)位置处的像素点的灰度值,λ(m,n)表示5×5窗口函数:Among them, t represents the tth layer of the pyramid, and G k, t (i, j) represents the weight map of the kth multi-exposure lattice grid image of the image on the tth layer of the Gaussian pyramid at the (i, j) position The gray value of the pixel, m and n represent two integer variables, G k, t-1 (2i+m, 2j+n) represents the weight map of the kth multi-exposure lattice grid image Gaussian pyramid t- The gray value of the pixel at the position (2i+m,2j+n) of the image on layer 1, λ(m,n) represents the 5×5 window function:

在第2)步所构造的第k幅多曝光点阵网格图像的权重图高斯金字塔第0层的基础上,根据所述权重图高斯金字塔第t层构造方法,可构造出第k幅多曝光点阵网格图像的权重图高斯金字塔第1层,以此类推,可构造出第k幅多曝光点阵网格图像的权重图高斯金字塔第 L层。On the basis of the 0th layer of the weight map Gaussian pyramid of the kth multi-exposure lattice grid image constructed in step 2), according to the t-layer construction method of the weight map Gaussian pyramid, the kth multi-exposure lattice image can be constructed The first layer of the Gaussian pyramid of the weight map of the exposure lattice image, and so on, can construct the L layer of the weight map of the k-th multi-exposure lattice image of the Gaussian pyramid.

第四步,多曝光点阵网格图像塔形分解。对第一步所拍摄的每一幅多曝光点阵网格图像进行拉普拉斯金字塔分解。分解流程包含如下步骤:The fourth step is to decompose the multi-exposure lattice grid image into pyramids. Laplacian pyramid decomposition is performed on each multi-exposure lattice image captured in the first step. The decomposition process includes the following steps:

1)多曝光点阵网格图像高斯金字塔分解。按照第三步所述的权重图塔形分解方法,对第一步所拍摄的每一幅多曝光点阵网格图像进行高斯金字塔分解,并将所分解的高斯金字塔第 t层上的图像记为G′k,t,其中,k表示第k幅多曝光点阵网格图像;1) Multi-exposure lattice image Gaussian pyramid decomposition. According to the weight map pyramid decomposition method described in the third step, each multi-exposure lattice grid image taken in the first step is decomposed into a Gaussian pyramid, and the image on the tth layer of the decomposed Gaussian pyramid is recorded Be G′ k,t , wherein, k represents the kth multi-exposure lattice grid image;

2)构造拉普拉斯金字塔第L层。将第1)步所分解的高斯金字塔第L层上的图像作为拉普拉斯金字塔第L层上的图像:2) Construct the Lth layer of the Laplacian pyramid. The image on the L layer of the Gaussian pyramid decomposed in step 1) is used as the image on the L layer of the Laplacian pyramid:

LPk,L(i,j)=G′k,L(i,j),LP k,L (i,j)=G′ k,L (i,j),

其中,(i,j)表示像素点位置,L表示第三步所计算的塔形分解层数,LPk,L(i,j)表示第 k幅多曝光点阵网格图像拉普拉斯金字塔第L层上的图像在(i,j)位置处的像素点的灰度值, G′k,L(i,j)表示第1)步所分解的第k幅多曝光点阵网格图像高斯金字塔第L层上的图像在(i, j)位置处的像素点的灰度值;Among them, (i, j) represents the pixel position, L represents the number of tower decomposition layers calculated in the third step, LP k,L (i, j) represents the k-th multi-exposure lattice grid image Laplacian The gray value of the pixel at the position (i, j) of the image on the L layer of the pyramid, G′ k,L (i, j) represents the kth multi-exposure lattice grid decomposed in step 1) The gray value of the pixel point of the image on the L layer of the image Gaussian pyramid at (i, j) position;

3)构造拉普拉斯金字塔第t层。拉普拉斯金字塔第t层构造方法如下:3) Construct the tth layer of the Laplacian pyramid. The construction method of the tth layer of the Laplacian pyramid is as follows:

a)将第1)步所分解的高斯金字塔第t+1层上的图像内插放大:a) Interpolate and enlarge the image on the t+1th layer of the Gaussian pyramid decomposed in step 1):

其中,t+1表示金字塔第t+1层,表示内插放大后的图像在(i,j)位置处的像素点的灰度值,m和n表示两个整数变量,表示第1)步所分解的第k幅多曝光点阵网格图像高斯金字塔第t+1层上的图像在位置处的像素点的灰度值,表示一过渡变量,λ(m,n)表示第三步所述的5×5窗口函数;Among them, t+1 represents the t+1th layer of the pyramid, Indicates the gray value of the pixel at the (i, j) position of the interpolated enlarged image, m and n represent two integer variables, Indicates that the image on the t+1th layer of the Gaussian pyramid of the kth multi-exposure lattice grid image decomposed in step 1) is in The gray value of the pixel at the position, Represents a transition variable, λ(m,n) represents the 5×5 window function described in the third step;

b)将第1)步所分解的高斯金字塔第t层上的图像与第a)步内插放大后的图像做减法运算:b) Subtract the image on the tth layer of the Gaussian pyramid decomposed in step 1) and the interpolated and enlarged image in step a):

其中,LPk,t(i,j)表示第k幅多曝光点阵网格图像拉普拉斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值,G′k,t(i,j)表示第1)步所分解的第k幅多曝光点阵网格图像高斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值;Among them, LP k, t (i, j) represents the gray value of the pixel at the (i, j) position of the image on the tth layer of the Laplacian pyramid of the kth multi-exposure lattice grid image, G ' k,t (i,j) represents the gray value of the pixel at (i,j) position of the image on the tth layer of the Gaussian pyramid of the kth multi-exposure lattice image decomposed in step 1) ;

根据所述拉普拉斯金字塔第t层构造方法,可依次构造出拉普拉斯金字塔第L-1层至第0 层。According to the construction method of the t-th layer of the Laplacian Pyramid, the L-1 to 0-th layers of the Laplacian Pyramid can be sequentially constructed.

第五步,拉普拉斯金字塔赋权。对第四步所分解的每一幅多曝光点阵网格图像的拉普拉斯金字塔,采用如下方法进行赋权:The fifth step is the empowerment of Laplace Pyramid. For the Laplacian pyramid of each multi-exposure lattice image decomposed in the fourth step, the following method is used for weighting:

LP′k,t(i,j)=Gk,t(i,j)×LPk,t(i,j),LP′ k,t (i,j)=G k,t (i,j)×LP k,t (i,j),

其中,k表示第k幅多曝光点阵网格图像,t表示金字塔第t层,(i,j)表示像素点位置, LP′k,t(i,j)表示赋权后的第k幅多曝光点阵网格图像拉普拉斯金字塔第t层上的图像在(i,j) 位置处的像素点的灰度值,Gk,t(i,j)表示第三步所分解的第k幅多曝光点阵网格图像的权重图高斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值,LPk,t(i,j)表示第四步所分解的第k幅多曝光点阵网格图像拉普拉斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值,符号×表示两个像素点的灰度值相乘。Among them, k represents the k-th multi-exposure lattice grid image, t represents the t-th layer of the pyramid, (i, j) represents the pixel position, LP′ k,t (i, j) represents the weighted k-th Multi-exposure lattice grid image The gray value of the pixel at the (i, j) position of the image on the tth layer of the Laplacian pyramid, G k,t (i, j) represents the decomposition in the third step The weight map of the k-th multi-exposure lattice grid image The gray value of the pixel at the (i, j) position of the image on the t-th layer of the Gaussian pyramid, LP k,t (i, j) represents the fourth step The decomposed k-th multi-exposure lattice grid image is the gray value of the pixel at the (i, j) position of the image on the t-th layer of the Laplacian pyramid, and the symbol × represents the gray value of two pixels values are multiplied.

第六步,拉普拉斯金字塔融合。拉普拉斯金字塔融合方法如下:The sixth step, Laplacian pyramid fusion. The Laplacian pyramid fusion method is as follows:

其中,k表示第k幅多曝光点阵网格图像,t表示金字塔第t层,(i,j)表示像素点位置, N表示第一步所拍摄的多曝光点阵网格图像的幅数,表示融合后的拉普拉斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值,LP′k,t(i,j)表示第五步所赋权的第k幅多曝光点阵网格图像拉普拉斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值。Wherein, k represents the kth multi-exposure lattice image, t represents the tth layer of the pyramid, (i, j) represents the pixel position, and N represents the number of multi-exposure lattice images taken in the first step , Indicates the gray value of the pixel at the (i, j) position of the image on the tth layer of the fused Laplacian pyramid, and LP′ k,t (i, j) represents the weighted value of the fifth step The gray value of the pixel at the position (i, j) of the image on the tth layer of the Laplacian pyramid of k multi-exposure lattice images.

第七步,点阵网格图像重构。对第六步所融合的拉普拉斯金字塔进行逆塔形变换,构造出一幅新的点阵网格图像。逆塔形变换包括如下步骤:The seventh step is to reconstruct the lattice grid image. Perform inverse pyramid transformation on the Laplacian pyramid fused in the sixth step to construct a new lattice image. The inverse tower transformation includes the following steps:

1)恢复高斯金字塔第L层。将第六步所融合的拉普拉斯金字塔第L层上的图像作为待恢复的高斯金字塔第L层上的图像:1) Restore the Lth layer of the Gaussian pyramid. The image on the L layer of the Laplacian pyramid fused in the sixth step is used as the image on the L layer of the Gaussian pyramid to be restored:

其中,(i,j)表示像素点位置,L表示第三步所计算的塔形分解层数,I′L(i,j)表示所恢复的高斯金字塔第L层上的图像在(i,j)位置处的像素点的灰度值,表示第六步所融合的拉普拉斯金字塔第L层上的图像在(i,j)位置处的像素点的灰度值;Among them, (i, j) represents the pixel position, L represents the number of tower decomposition layers calculated in the third step, I′ L (i, j) represents the image on the Lth layer of the restored Gaussian pyramid in (i, j) the gray value of the pixel at the position, Represent the gray value of the pixel at the (i, j) position of the image on the L layer of the Laplacian pyramid that is fused in the sixth step;

2)恢复高斯金字塔第t层。高斯金字塔第t层恢复方法如下:2) Restore the tth layer of the Gaussian pyramid. The recovery method of the tth layer of the Gaussian pyramid is as follows:

a)将第六步所融合的拉普拉斯金字塔第t+1层上的图像内插放大:a) The image on the t+1th layer of the Laplacian pyramid fused in the sixth step is interpolated and enlarged:

其中,t+1表示金字塔第t+1层,表示内插放大后的图像在(i,j)位置处的像素点的灰度值,m和n表示两个整数变量,λ(m,n)表示第三步所述的5×5窗口函数,表示第六步所融合的拉普拉斯金字塔第t+1层上的图像在位置处的像素点的灰度值,表示一过渡变量;Among them, t+1 represents the t+1th layer of the pyramid, Indicates the gray value of the pixel at the (i, j) position of the interpolated enlarged image, m and n represent two integer variables, and λ(m, n) represents the 5×5 window function described in the third step , Indicates that the image on the t+1th layer of the Laplacian pyramid fused in the sixth step is at The gray value of the pixel at the position, represents a transition variable;

b)将第a)步内插放大后的图像与第六步所融合的拉普拉斯金字塔第t层上的图像做加法运算:b) Add the interpolated and enlarged image in step a) to the image on the tth layer of the Laplacian pyramid fused in the sixth step:

其中,I′t(i,j)表示所恢复的高斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值,表示第六步所融合的拉普拉斯金字塔第t层上的图像在(i,j)位置处的像素点的灰度值;Among them, I′ t (i, j) represents the gray value of the pixel at the (i, j) position of the restored image on the tth layer of the Gaussian pyramid, Represent the gray value of the pixel at the (i, j) position of the image on the t-th layer of the Laplacian pyramid that is fused in the sixth step;

根据所述高斯金字塔第t层恢复方法,可依次恢复高斯金字塔第L-1层至第0层,所恢复的高斯金字塔第0层上的图像I′0就是待重构的点阵网格图像。According to the recovery method for the t layer of the Gaussian pyramid, the Gaussian pyramid layer L-1 to the 0th layer can be restored successively, and the image I'0 on the 0th layer of the Gaussian pyramid restored is the lattice grid image to be reconstructed .

第八步,点阵网格图像自适应二值化。自适应二值化流程包含如下步骤:The eighth step is adaptive binarization of the lattice grid image. The adaptive binarization process includes the following steps:

1)采用文献“Circular grid pattern based surface strain measurementsystem for sheet metal forming”(Shi B and Liang J,OPT LASER ENG,2012,50(9):1186-1195)中所描述的逐窗口二值化法对步骤七所重构的点阵网格图像进行快速二值化,获得二值图像。1) Use the window-by-window binarization method described in the literature "Circular grid pattern based surface strain measurement system for sheet metal forming" (Shi B and Liang J, OPT LASER ENG, 2012, 50(9): 1186-1195) to Fast binarization is performed on the lattice grid image reconstructed in step 7 to obtain a binary image.

2)对第1)步所获得的二值图像进行连通区域标记,对于像素点数目大于给定阈值τ的区域,进一步采用逐像素二值化法对连通区域内的所有像素点重新二值化:2) Mark the connected region on the binary image obtained in step 1), and for the region where the number of pixels is greater than a given threshold τ, further use the pixel-by-pixel binarization method to re-binarize all pixels in the connected region :

a)为大于给定阈值τ的连通区域内的任一像素点计算一个二值化阈值:a) Calculate a binarization threshold for any pixel in the connected region greater than a given threshold τ:

其中,(i,j)表示像素点位置,T(i,j)表示连通区域内(i,j)位置处的像素点的二值化阈值,表示第七步所重构的点阵网格图像中以(i,j) 为中心的u×v局部窗口内的像素点的平均灰度值,m和n表示两个整数变量,u与v分别表示窗口的长度尺寸和高度尺寸,通常取u=v=23,I′0(m,n)表示步骤七所重构的点阵网格图像在(m,n)位置处的像素点的灰度值,表示第七步所重构的点阵网格图像中以(i,j)为中心的u×v局部窗口内的像素点的灰度值分布的标准偏差值,γ与offset为两常数,一般选γ=0.1,offset=5.0,阈值τ为正整数,一般取τ=10000;Among them, (i, j) represents the position of the pixel point, T(i, j) represents the binarization threshold of the pixel point at the position (i, j) in the connected area, Represents the average gray value of pixels in the u×v local window centered on (i, j) in the lattice grid image reconstructed in the seventh step, m and n represent two integer variables, u and v Denote the length dimension and the height dimension of the window respectively, usually take u=v=23, and I' 0 (m, n) represents the pixels of the lattice grid image reconstructed in step 7 at the (m, n) position grayscale value, Indicates the standard deviation value of the gray value distribution of pixels in the u×v local window centered on (i, j) in the lattice grid image reconstructed in the seventh step, γ and offset are two constants, generally Choose γ=0.1, offset=5.0, threshold τ is a positive integer, generally take τ=10000;

b)根据步骤a)所计算的二值化阈值对像素点重新二值化:b) re-binarize the pixels according to the binarization threshold calculated in step a):

其中,I′(i,j)表示重新二值化后步骤8.1)所获得的二值图像在(i,j)位置处的像素点的灰度值,I′0(i,j)表示步骤七所重构的点阵网格图像在(i,j)位置处的像素点的灰度值,。Among them, I'(i, j) represents the gray value of the pixel at the position (i, j) of the binary image obtained in step 8.1) after re-binarization, and I' 0 (i, j) represents the step The gray value of the pixel at the (i, j) position of the reconstructed lattice grid image, .

第九步,亚像素边界识别。亚像素边界识别方法如下:The ninth step is sub-pixel boundary recognition. The sub-pixel boundary recognition method is as follows:

1)采用8连通域规则识别出第八步所获得的二值图像中点阵网格节点的整像素边界;1) Using the 8-connected domain rule to identify the integer pixel boundaries of the lattice grid nodes in the binary image obtained in the eighth step;

2)在第1)步所识别的点阵网格节点的整像素边界的基础上,采用空间矩法进一步识别出点阵网格节点的亚像素边界。2) On the basis of the whole-pixel boundary of the lattice grid node identified in step 1), the space moment method is used to further identify the sub-pixel boundary of the lattice grid node.

第十步,椭圆拟合。对第九步所识别的二值图像中的点阵网格节点的亚像素边界,采用文献“Least squares fitting of circles and ellipses”(W.Gander,G.H.Goluband R.Strebel,BIT Numerical Mathematics,1994,34:558-578)所描述的最小二乘迭代法拟合出椭圆中心坐标。为了减少噪声干扰,在每次迭代过程中,计算出每个边界点至所拟合的椭圆的间距以及标准偏差值sigma,对间距大于3sigma的边界点,不参与下一次的迭代运算。最终拟合的椭圆中心坐标即为点阵网格节点的坐标。The tenth step, ellipse fitting. For the sub-pixel boundaries of the lattice grid nodes in the binary image identified in the ninth step, the document "Least squares fitting of circles and ellipses" (W.Gander, G.H. Goluband R. Strebel, BIT Numerical Mathematics, 1994, 34:558-578) to fit the coordinates of the center of the ellipse using the iterative method of least squares. In order to reduce noise interference, the distance from each boundary point to the fitted ellipse and the standard deviation value sigma are calculated during each iteration, and the boundary points with a distance greater than 3 sigma will not participate in the next iteration. The final fitted ellipse center coordinates are the coordinates of the lattice grid nodes.

以下结合具体模拟实验对本发明进行说明,其中本发明方法在VS2010及opengl平台上实现相应的算法并在Intel i7-4770CPU 3.4GHz、16GB内存的PC机上运行。Below in conjunction with concrete simulation experiment, the present invention is described, and wherein the present invention method realizes corresponding algorithm on VS2010 and opengl platform and runs on the PC of Intel i7-4770CPU 3.4GHz, 16GB internal memory.

拍摄的3幅某杯突试件多曝光点阵网格图像如图2a-图2c所示,其中,图2a所示为拍摄的某杯突试件欠曝光点阵网格图像,图2b所示为拍摄的某杯突试件正常曝光点阵网格图像,图2c所示为拍摄的某杯突试件过曝光点阵网格图像。图3所示为依据所拍摄的3幅某杯突试件多曝光点阵网格图像采用本发明方法所重构的一幅新的点阵网格图像。通过对比图2a-图 2c与图3可以看出,所重构的点阵网格图像中点阵网格更加清晰。图4至图7所示为某杯突试件欠曝光点阵网格图像、正常曝光点阵网格图像、过曝光点阵网格图像及所重构点阵网格图像中点阵网格节点检测结果,点阵网格节点识别率依次为49.6%、77.78%、72.3%、86.87%。其中,白色的十字线表示所检测的点阵网格节点的坐标。通过对比图4-图7可以看出,在所重构的点阵网格图像中点阵网格节点检测的数目最多,点阵网格节点识别率最高,为86.87%。通过本实施例也可以说明,本发明方法可消除金属板料表面强反光的影响,改善点阵网格图像采集质量,提高点阵网格图像的识别率。The three multi-exposure lattice grid images of a certain cupping specimen taken are shown in Figure 2a-2c, among which, Figure 2a shows the underexposure lattice grid image of a certain cupping specimen, and Figure 2b shows Figure 2c shows the overexposure dot grid image of a cupping test piece taken under normal exposure. Fig. 3 shows a new dot grid image reconstructed by the method of the present invention based on 3 multi-exposure dot grid images of a certain cupping test piece. By comparing Figure 2a-Figure 2c with Figure 3, it can be seen that the lattice grid in the reconstructed lattice image is clearer. Figures 4 to 7 show the underexposed lattice grid image, the normal exposure lattice grid image, the overexposed lattice grid image and the lattice grid in the reconstructed lattice grid image of a cupping specimen According to the node detection results, the recognition rate of lattice grid nodes is 49.6%, 77.78%, 72.3%, and 86.87%. Wherein, the white cross lines represent the coordinates of the detected lattice grid nodes. By comparing Fig. 4-Fig. 7, it can be seen that in the reconstructed lattice image, the detected number of lattice lattice nodes is the largest, and the recognition rate of lattice lattice nodes is the highest, which is 86.87%. It can also be shown through this embodiment that the method of the present invention can eliminate the influence of strong reflection on the surface of the metal sheet, improve the quality of the dot grid image collection, and increase the recognition rate of the dot grid image.

上面结合附图和实施例对本发明的实施方式作了说明,但本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described above in conjunction with the accompanying drawings and Examples, but the present invention is not limited to the above embodiments, within the knowledge of those of ordinary skill in the art, it is also possible to Make various changes below.

Claims (9)

1.一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,包括下述步骤:1. a dot grid image acquisition and recognition method in sheet metal forming strain measurement, is characterized in that, comprises the following steps: 步骤一,拍摄多曝光点阵网格图像Step 1: Take a multi-exposure lattice image 保持相机不动,在黑白拍摄模式下拍摄若干幅曝光量不同的点阵网格图像;Keep the camera still, and shoot several dot matrix images with different exposures in the black and white shooting mode; 步骤二,计算权重图Step 2, calculate the weight map 分别计算出步骤一所拍摄的每一幅多曝光点阵网格图像的对比度及曝光度,并将计算的每一幅多曝光点阵网格图像的对比度与曝光度相乘,得到每一幅多曝光点阵网格图像的权重图;Calculate the contrast and exposure of each multi-exposure dot grid image taken in step 1, and multiply the calculated contrast and exposure of each multi-exposure dot grid image to obtain each A weight map for a multi-exposure lattice grid image; 步骤三,权重图塔形分解Step 3, weight map tower decomposition 对步骤二所计算的每一幅多曝光点阵网格图像的权重图进行高斯金字塔分解;Carry out Gaussian pyramid decomposition to the weight map of each multi-exposure lattice grid image calculated in step 2; 步骤四,多曝光点阵网格图像塔形分解Step 4, multi-exposure lattice grid image pyramid decomposition 对步骤一所拍摄的每一幅多曝光点阵网格图像进行拉普拉斯金字塔分解,分解的层数与步骤三所分解的权重图高斯金字塔的层数相同;Perform Laplacian pyramid decomposition on each multi-exposure lattice grid image taken in step 1, and the number of layers decomposed is the same as the number of layers of the weight map Gaussian pyramid decomposed in step 3; 步骤五,拉普拉斯金字塔赋权Step 5, Laplacian Pyramid Empowerment 将步骤四所分解的每一幅多曝光点阵网格图像的拉普拉斯金字塔各层上的图像与步骤三所分解的该幅多曝光点阵网格图像的权重图高斯金字塔对应层上的图像相乘,获得赋权的拉普拉斯金字塔;The image on each layer of the Laplacian pyramid of each multi-exposure lattice image decomposed in step 4 and the weight map Gaussian pyramid corresponding layer of the multi-exposure lattice image decomposed in step 3 The images of are multiplied to obtain the empowered Laplacian pyramid; 步骤六,拉普拉斯金字塔融合Step 6, Laplacian Pyramid Fusion 将步骤五所获得赋权的若干幅多曝光点阵网格图像的拉普拉斯金字塔相同层上的图像相加;Add the images on the same layer of the Laplacian pyramid of several pieces of multi-exposure lattice grid images that are empowered in step 5; 步骤七,点阵网格图像重构Step 7, lattice grid image reconstruction 对步骤六所融合的拉普拉斯金字塔进行逆塔形变换,重构出一幅新的点阵网格图像;Carry out inverse pyramid transformation to the Laplacian pyramid fused in step 6, and reconstruct a new lattice grid image; 步骤八,点阵网格图像二值化Step 8, binarize the lattice image 对步骤七所重构的点阵网格图像进行局部自适应二值化处理,获得二值图像;Perform local adaptive binarization processing on the lattice grid image reconstructed in step 7 to obtain a binary image; 步骤九,亚像素边界识别Step 9, sub-pixel boundary recognition 采用8连通域规则识别出步骤八所获得的二值图像中点阵网格节点的整像素边界;在此基础上,采用空间矩法识别出点阵网格节点的亚像素边界;Using the 8-connected domain rule to identify the entire pixel boundary of the lattice grid node in the binary image obtained in step 8; on this basis, using the space moment method to identify the sub-pixel boundary of the lattice grid node; 步骤十,椭圆拟合Step ten, ellipse fitting 对步骤九所识别的点阵网格节点的亚像素边界,采用最小二乘法迭代拟合出椭圆中心坐标,从而获得点阵网格节点的坐标。For the sub-pixel boundaries of the lattice grid nodes identified in step 9, the coordinates of the center of the ellipse are iteratively fitted using the least squares method, thereby obtaining the coordinates of the lattice grid nodes. 2.根据权利要求1所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于还包括,在进行步骤一拍摄多曝光点阵网格图像之前,先调节焦距,使得金属板料表面的点阵网格可清晰地成像,调节完毕后锁定焦距。2. The method for collecting and identifying lattice grid images in sheet metal forming strain measurement according to claim 1, further comprising: before performing step 1 to take a multi-exposure lattice grid image, first adjust The focal length enables the dot grid on the surface of the metal sheet to be clearly imaged, and the focal length is locked after adjustment. 3.根据权利要求1所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,所述步骤一中拍摄多曝光点阵网格图像时,将相机调至黑白拍摄模式,保持相机稳定,调节曝光量,拍摄3幅或3幅以上从欠曝光、正常曝光至过曝光的点阵网格图像。3. The method for collecting and identifying lattice grid images in a metal sheet forming strain measurement according to claim 1, wherein in said step 1, when the multi-exposure lattice grid images are taken, the camera is adjusted to Go to the black and white shooting mode, keep the camera steady, adjust the exposure, and shoot 3 or more dot matrix images from underexposure, normal exposure to overexposure. 4.根据权利要求1所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,所述步骤二中权重图计算方法如下:4. a kind of lattice grid image acquisition and recognition method in the sheet metal forming strain measurement according to claim 1, it is characterized in that, in described step 2, weight map calculation method is as follows: 2.1)对步骤一所拍摄的每一幅多曝光点阵网格图像,采用拉普拉斯算子进行滤波,将滤波结果取绝对值,得到每一幅多曝光点阵网格图像的对比度因子;2.1) For each multi-exposure lattice image taken in step 1, use the Laplacian operator to filter, and take the absolute value of the filtering result to obtain the contrast factor of each multi-exposure lattice image ; 2.2)对步骤一所拍摄的每一幅多曝光点阵网格图像,其曝光度因子采用如下公式计算:2.2) For each multi-exposure lattice grid image taken in step 1, the exposure factor is calculated using the following formula: 其中,e表示自然常数,k表示第k幅多曝光点阵网格图像,(i,j)表示像素点位置,Ik(i,j)表示第k幅多曝光点阵网格图像在(i,j)位置处的像素点的灰度值,Ek(i,j)表示第k幅多曝光点阵网格图像在(i,j)位置处的曝光度因子,σ表示核函数宽度;Wherein, e represents a natural constant, k represents the kth multi-exposure lattice grid image, (i, j) represents the pixel point position, and I k (i, j) represents the k-th multi-exposure lattice grid image in ( The gray value of the pixel at position i, j), E k (i, j) represents the exposure factor of the k-th multi-exposure lattice grid image at position (i, j), and σ represents the width of the kernel function ; 2.3)在步骤2.1)所计算的对比度因子及步骤2.2)所计算的曝光度因子的基础上,采用如下公式计算每一幅多曝光点阵网格图像的权重因子:2.3) On the basis of the contrast factor calculated in step 2.1) and the exposure factor calculated in step 2.2), the weight factor of each multi-exposure lattice grid image is calculated by the following formula: 其中,表示第k幅多曝光点阵网格图像在(i,j)位置处的权重因子,Ck(i,j)表示步骤2.1)所计算的第k幅多曝光点阵网格图像在(i,j)位置处的比对度因子;in, Represents the weight factor of the kth multi-exposure lattice image at the position (i, j), C k (i, j) represents the kth multi-exposure lattice image calculated in step 2.1) at (i , j) the contrast factor at the position; 2.4)对步骤2.3)所计算的每一幅多曝光点阵网格图像的权重因子进行归一化处理,获得每一幅多曝光点阵网格图像的权重图,归一化方法如下:2.4) normalize the weight factor of each multi-exposure lattice image calculated in step 2.3), obtain the weight map of each multi-exposure lattice image, and the normalization method is as follows: 其中,Wk(i,j)表示第k幅多曝光点阵网格图像的权重图在(i,j)位置处的像素点的灰度值,N表示步骤一所拍摄的多曝光点阵网格图像的幅数,s表示第s幅多曝光点阵网格图像,表示步骤2.3)所计算的第s幅多曝光点阵网格图像在(i,j)位置处的权重因子。Among them, W k (i, j) represents the gray value of the pixel at the position (i, j) of the weight map of the kth multi-exposure lattice grid image, and N represents the multi-exposure lattice captured in step 1 The number of grid images, s represents the sth multi-exposure lattice grid image, Indicates the weight factor of the s-th multi-exposure lattice grid image at position (i, j) calculated in step 2.3). 5.根据权利要求4所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,所述步骤2.2)中采用的拉普拉斯算子h为:5. a kind of lattice grid image acquisition and recognition method in sheet metal forming strain measurement according to claim 4, is characterized in that, the Laplacian operator h that adopts in described step 2.2) is: 6.根据权利要求1所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,所述步骤三中塔形分解层数L的计算方法如下:6. a kind of lattice grid image acquisition and recognition method in sheet metal forming strain measurement according to claim 1, it is characterized in that, the calculation method of tower shape decomposition layer number L in the described step 3 is as follows: 其中,r和c分别表示多曝光点阵网格图像的行数和列数,ln()表示以自然常数e为底的自然对数函数,min(r,c)表示多曝光点阵网格图像的行数和列数取最小值函数。Among them, r and c represent the number of rows and columns of the multi-exposure lattice grid image respectively, ln() represents the natural logarithmic function with the natural constant e as the base, min(r,c) represents the multi-exposure lattice grid The number of rows and columns of the image takes the minimum function. 7.根据权利要求1所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,所述步骤八中点阵网格图像局部自适应二值化方法如下:7. A kind of lattice grid image acquisition and recognition method in a kind of sheet metal forming strain measurement according to claim 1, it is characterized in that, in described step 8, local self-adaptive binarization method of lattice grid image is as follows : 8.1)采用逐窗口二值化法对步骤七所重构的点阵网格图像进行快速二值化,获得二值图像;8.1) Use the window-by-window binarization method to quickly binarize the lattice grid image reconstructed in step 7 to obtain a binary image; 8.2)对步骤8.1)所获得的二值图像进行连通区域标记,对于像素点数目大于给定阈值τ的连通区域,进一步采用逐像素二值化法对连通区域内的所有像素点重新二值化:8.2) Mark the connected region on the binary image obtained in step 8.1), and further use the pixel-by-pixel binarization method to re-binarize all pixels in the connected region for the connected region whose number of pixels is greater than a given threshold τ : a)为大于给定阈值τ的连通区域内的任一像素点计算一个二值化阈值:a) Calculate a binarization threshold for any pixel in the connected region greater than a given threshold τ: 其中,(i,j)表示像素点位置,T(i,j)表示连通区域内(i,j)位置处的像素点的二值化阈值,表示步骤七所重构的点阵网格图像中以(i,j)为中心的u×v局部窗口内的像素点的平均灰度值,u与v分别表示窗口的长度尺寸和高度尺寸,m和n表示两个整数变量,I′0(m,n)表示步骤七所重构的点阵网格图像在(m,n)位置处的像素点的灰度值,表示步骤七所重构的点阵网格图像中以(i,j)为中心的u×v局部窗口内的像素点的灰度值分布的标准偏差值,γ与offset为两常数;Among them, (i, j) represents the position of the pixel point, T(i, j) represents the binarization threshold of the pixel point at the position (i, j) in the connected area, Represents the average gray value of the pixels in the u×v local window centered on (i, j) in the lattice grid image reconstructed in step 7, u and v represent the length and height dimensions of the window respectively, m and n represent two integer variables, and I′ 0 (m, n) represents the gray value of the pixel at the (m, n) position of the lattice grid image reconstructed in step 7, Represent the standard deviation value of the gray value distribution of the pixels in the u×v local window centered on (i, j) in the lattice grid image reconstructed in step 7, and γ and offset are two constants; b)根据步骤a)所计算的二值化阈值对像素点重新二值化:b) re-binarize the pixels according to the binarization threshold calculated in step a): 其中,I′(i,j)表示重新二值化后步骤8.1)所获得的二值图像在(i,j)位置处的像素点的灰度值,I′0(i,j)表示步骤七所重构的点阵网格图像在(i,j)位置处的像素点的灰度值。Among them, I'(i, j) represents the gray value of the pixel at the position (i, j) of the binary image obtained in step 8.1) after re-binarization, and I' 0 (i, j) represents the step The gray value of the pixel at the (i, j) position of the reconstructed lattice grid image. 8.根据权利要求7所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,所述步骤8.2)中阈值τ的取值为τ=10000。8 . The method for collecting and identifying images of lattice grids in sheet metal forming strain measurement according to claim 7 , wherein the value of the threshold τ in the step 8.2) is τ=10000. 9.根据权利要求1所述的一种金属板料成形应变测量中点阵网格图像采集与识别方法,其特征在于,所述步骤十中每次迭代过程中,计算出每个边界点至所拟合的椭圆的间距以及标准偏差值sigma,对间距大于3sigma的边界点,不参与下一次的迭代运算。9. A kind of lattice grid image acquisition and recognition method in sheet metal forming strain measurement according to claim 1, it is characterized in that, in each iteration process in described step ten, calculate each boundary point to The distance between the fitted ellipse and the standard deviation value sigma, for the boundary points whose distance is greater than 3sigma, do not participate in the next iterative operation.
CN201710842903.8A 2017-09-18 2017-09-18 A method for collecting and identifying lattice images in sheet metal forming strain measurement Active CN107726990B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710842903.8A CN107726990B (en) 2017-09-18 2017-09-18 A method for collecting and identifying lattice images in sheet metal forming strain measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710842903.8A CN107726990B (en) 2017-09-18 2017-09-18 A method for collecting and identifying lattice images in sheet metal forming strain measurement

Publications (2)

Publication Number Publication Date
CN107726990A true CN107726990A (en) 2018-02-23
CN107726990B CN107726990B (en) 2019-06-21

Family

ID=61207482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710842903.8A Active CN107726990B (en) 2017-09-18 2017-09-18 A method for collecting and identifying lattice images in sheet metal forming strain measurement

Country Status (1)

Country Link
CN (1) CN107726990B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507476A (en) * 2018-04-27 2018-09-07 中国石油大学(北京) Displacement field measurement method, device, equipment and storage medium for material surface
CN109753766A (en) * 2018-12-29 2019-05-14 中链科技有限公司 Image artifacts verification information processing method and verification method based on block chain
CN111832433A (en) * 2020-06-24 2020-10-27 科络克电子科技(上海)有限公司 Device for extracting object characteristics from image and working method thereof
CN112935013A (en) * 2021-02-10 2021-06-11 哈尔滨工业大学 Method for measuring shear strain of viscous medium on plate blank
CN113112470A (en) * 2021-04-08 2021-07-13 西安道法数器信息科技有限公司 Cold rolling process steel bending detection and analysis method based on artificial intelligence
CN113155648A (en) * 2021-05-18 2021-07-23 苏州大学 Material microscopic deformation measuring method and system based on impact test
CN116297336A (en) * 2023-03-27 2023-06-23 佛山市顺德区豪锐五金制品有限公司 Method for detecting defect points on surface of metal sheet for outer layer protection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000040421A (en) * 1998-12-18 2000-07-05 Inst Of Ind Science Pohang System for measuring camber of slab using pyramid image
CN101226635A (en) * 2007-12-18 2008-07-23 西安电子科技大学 Multi-source Image Fusion Method Based on Comb Wave and Laplacian Decomposition
CN101447072A (en) * 2009-01-06 2009-06-03 覃征 pyramidal empirical modal analyze image merge method
CN104050639A (en) * 2014-06-16 2014-09-17 西安电子科技大学 Multi-view dense point cloud data fusion method based on two-sided filter
CN104202538A (en) * 2014-09-10 2014-12-10 浙江广播电视集团 Double-registration method for different-exposure images in wide dynamic camera
CN104835130A (en) * 2015-04-17 2015-08-12 北京联合大学 Multi-exposure image fusion method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000040421A (en) * 1998-12-18 2000-07-05 Inst Of Ind Science Pohang System for measuring camber of slab using pyramid image
CN101226635A (en) * 2007-12-18 2008-07-23 西安电子科技大学 Multi-source Image Fusion Method Based on Comb Wave and Laplacian Decomposition
CN101447072A (en) * 2009-01-06 2009-06-03 覃征 pyramidal empirical modal analyze image merge method
CN104050639A (en) * 2014-06-16 2014-09-17 西安电子科技大学 Multi-view dense point cloud data fusion method based on two-sided filter
CN104202538A (en) * 2014-09-10 2014-12-10 浙江广播电视集团 Double-registration method for different-exposure images in wide dynamic camera
CN104835130A (en) * 2015-04-17 2015-08-12 北京联合大学 Multi-exposure image fusion method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507476A (en) * 2018-04-27 2018-09-07 中国石油大学(北京) Displacement field measurement method, device, equipment and storage medium for material surface
CN108507476B (en) * 2018-04-27 2020-08-07 中国石油大学(北京) Displacement field measurement method, device, equipment and storage medium for material surface
CN109753766A (en) * 2018-12-29 2019-05-14 中链科技有限公司 Image artifacts verification information processing method and verification method based on block chain
CN111832433A (en) * 2020-06-24 2020-10-27 科络克电子科技(上海)有限公司 Device for extracting object characteristics from image and working method thereof
CN111832433B (en) * 2020-06-24 2023-12-29 奇点微(上海)光电科技有限公司 Device for extracting object characteristics from image and working method thereof
CN112935013A (en) * 2021-02-10 2021-06-11 哈尔滨工业大学 Method for measuring shear strain of viscous medium on plate blank
CN112935013B (en) * 2021-02-10 2022-01-07 哈尔滨工业大学 A method for measuring shear strain of viscous medium on slab blanks
CN113112470A (en) * 2021-04-08 2021-07-13 西安道法数器信息科技有限公司 Cold rolling process steel bending detection and analysis method based on artificial intelligence
CN113112470B (en) * 2021-04-08 2023-12-15 揭阳市柏亿不锈钢有限公司 Cold rolling process steel bending detection analysis method based on artificial intelligence
CN113155648A (en) * 2021-05-18 2021-07-23 苏州大学 Material microscopic deformation measuring method and system based on impact test
CN116297336A (en) * 2023-03-27 2023-06-23 佛山市顺德区豪锐五金制品有限公司 Method for detecting defect points on surface of metal sheet for outer layer protection

Also Published As

Publication number Publication date
CN107726990B (en) 2019-06-21

Similar Documents

Publication Publication Date Title
CN107726990B (en) A method for collecting and identifying lattice images in sheet metal forming strain measurement
CN111046880B (en) Infrared target image segmentation method, system, electronic equipment and storage medium
Batchuluun et al. Deep learning-based thermal image reconstruction and object detection
Mandanici et al. A multi-image super-resolution algorithm applied to thermal imagery
CN108510451B (en) Method for reconstructing license plate based on double-layer convolutional neural network
CN104134211B (en) A Strip Defect Detection Method Based on Gaussian Filter Multi-resolution Filtering
Chen et al. Scene segmentation of remotely sensed images with data augmentation using U-net++
Cheng et al. Fast and lightweight network for single frame structured illumination microscopy super-resolution
US20240303783A1 (en) A method of training a neural network, apparatus and computer program for carrying out the method
CN105405138A (en) Water surface target tracking method based on saliency detection
Li et al. ConvFormerSR: Fusing transformers and convolutional neural networks for cross-sensor remote sensing imagery super-resolution
CN116071268B (en) Image Deillumination Model Based on Contrastive Learning and Its Training Method
CN118747751A (en) Wafer surface image processing method, device, equipment and medium
Chen et al. Attention-based broad self-guided network for low-light image enhancement
CN111428753B (en) Training set acquisition method, electric power facility detection method and device
Sustika et al. Generative adversarial network with residual dense generator for remote sensing image super resolution
Li et al. Low-light hyperspectral image enhancement
Min et al. Out-of-focus image deblurring for mobile display vision inspection
Shi et al. WDTSNet: Wavelet decomposition two-stage network for infrared thermal radiation effect correction
Ji et al. Physics-Guided Optical Simulation and PSF Analysis for Remote Sensing Images Deblurring
CN118505572B (en) Multi-scale double-branch image exposure correction method from thick to thin
CN119540553A (en) A MRI image segmentation method based on WKA-Unet
CN114862883B (en) A target edge extraction method, image segmentation method and system
Cengiz et al. The Effect of Super Resolution Method on Classification Performance of Satellite Images
CN106296688B (en) Image blur detection method and system based on overall situation estimation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221026

Address after: 710086 Room 006, F1901, 19/F, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an, Shaanxi

Patentee after: Xi'an Baochuang Suwei Intelligent Technology Co.,Ltd.

Address before: 710065 No. 2 Taibai South Road, Yanta District, Xi'an, Shaanxi

Patentee before: XIDIAN University

TR01 Transfer of patent right