CN107725276A - A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing regenerative resource - Google Patents

A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing regenerative resource Download PDF

Info

Publication number
CN107725276A
CN107725276A CN201710811566.6A CN201710811566A CN107725276A CN 107725276 A CN107725276 A CN 107725276A CN 201710811566 A CN201710811566 A CN 201710811566A CN 107725276 A CN107725276 A CN 107725276A
Authority
CN
China
Prior art keywords
mrow
msub
heat
mfrac
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710811566.6A
Other languages
Chinese (zh)
Other versions
CN107725276B (en
Inventor
贾善杰
安勇
梁荣
赵凌汉
杨中源
邹斌
吴奎华
郑志杰
李勃
冯亮
杨波
杨慎全
庞怡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
University of Shanghai for Science and Technology
Original Assignee
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd, University of Shanghai for Science and Technology filed Critical State Grid Corp of China SGCC
Priority to CN201710811566.6A priority Critical patent/CN107725276B/en
Publication of CN107725276A publication Critical patent/CN107725276A/en
Application granted granted Critical
Publication of CN107725276B publication Critical patent/CN107725276B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The invention discloses a kind of day operation method of the heat-storing device of cogeneration cooling heating system containing regenerative resource, the each period that can obtain being advantageous to improve efficiency of energy utilization by obtaining hour economy maximum to fill heat/heat release heat fills heat/heat release state decision-making, under conditions of heat/heat release heat is filled using hour economy maximum and further makes full use of heat storage capacity, heat/heat release heat is filled using the heat-storing device that each period is obtained in the way of once by the daily heat storage capacity of heat-storing device.The strategy is advantageous to receive regenerative resource and improves efficiency of energy utilization.

Description

A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing regenerative resource
Technical field
The invention belongs to the operation control technology in comprehensive utilization of energy field, more particularly to cogeneration cooling heating system.
Background technology
Distributed energy resource system (Distributed Energy System) has the potentiality of consumption regenerative resource, real The important means for now improving consumption regenerative resource potentiality is the utilization of heat-storing device.Distributed energy resource system has diversified forms, Cold, heat and electricity triple supply (Combined Cooling heating and power, abbreviation CCHP) is that one of which is highly important Mode, realize that the digestion capability of regenerative resource is significant comprising heat-storing device in CCHP systems.
As shown in figure 1, be a kind of existing common cold, heat and power triple supply system, including generating set, supplied by generating set Electricity Absorption Refrigerator, reclaim generating set generating waste-heat heat reclamation device, by heat reclamation device reclaim heat to building Carry out the heat exchanger of heat supply;Also include electrical chillers, the donkey boiler of connection external electrical network in the cold and hot electric system simultaneously. Wherein cooling load is supplied by Absorption Refrigerator or electric refrigerator.The electricity needs of deficiency is complete by power network power purchase Into insufficient heat is supplied by donkey boiler.
Cogeneration cooling heating system shown in Fig. 1 further comprises renewable energy power generation device, and renewable energy power generation can be with It is that wind-power electricity generation can also be photovoltaic generation.In order to promote the consumption of regenerative resource, cogeneration cooling heating system contains hot water Tank heat-storing device.How efficiency of energy utilization improved by the reasonable operation of heat-storing device, it is cold to promote regenerative resource consumption The key issue of co-generation unit.
The content of the invention
The purpose of the present invention is by the operation of heat accumulation equipment in rational management cogeneration cooling heating system, is meeting that system is cold Efficiency of energy utilization and regenerative resource digestion capability are improved while thermoelectricity load.
To achieve the above object, the present invention adopts the following technical scheme that:
A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing regenerative resource, the CCHP systems that it is applied are extremely Powered less including generating set, renewable energy power generation device, by generating set and renewable energy power generation device absorption Refrigeration machine, heat reclamation device, the heat-storing device for reclaiming generating set generating waste-heat, generate electricity and generate electricity in period t, CCHP systems The relation of waste heat recovery is:
Wherein:PCHP(t) it is the electric energy of CCHP system productions, unit kWh;QCHP(t) it is the heat of CCHP system productions, Unit is kWh;FCHP(t) it is the gas consumption of CCHP systems, unit kWh;ηCHP,H:CCHP system heat recovery efficiencies; ηCHP,E:CCHP system generating efficiencies;PCHP,MAX, PCHP,MINIt is the maximum of CHP systems respectively, minimum generated energy, unit kWh; A, b, c are the coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
Cool and thermal power balancing the load is in CCHP systems:
Wherein:LC(t) it is CCHP cooling load of the air-conditioning system demands, unit kWh;LH(t) it is CCHP system heat load demands, it is single Position is kWh;LE(t) it is CCHP system electrical load requirements, unit kWh;PWT(t) it is wind-power electricity generation production electricity in CCHP systems Can, unit kWh;PPV(t) it is that photovoltaic generation produces electric energy, unit kWh in CCHP systems;PGRID(t) when being CCHP systems The electricity of section t purchase power networks, unit kWh;QEC(t) refrigerating capacity, unit kWh are produced for CCHP systems electric refrigerator; COPECFor the Performance Coefficient of electric refrigerator;QABC(t) refrigerating capacity, unit kWh are produced for CCHP systems Absorption Refrigerator; COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is CCHP system supplymentary boiler for producing heats, unit kWh;QCH (t) heat, unit kWh are filled for CCHP system heat-storing devices;QDCH(t):It is single for CCHP system heat-storing device heat release heats Position is kWh;β is integer variable, and 1 represents to fill Warm status, and 0 represents heat release state;
Heat-storing device fills heat/exothermic process and can promote the raising of efficiency of energy utilization, and heat-storing device operation has Following limitation:1) heat accumulation maximum capacity ESH,MAX, can not continue to fill when the heat accumulation heat of heat-storing device reaches its maximum capacity Heat;2) heat-storing device fills heat limitation Q in period t maximumCH,MAX, period t fill heat no more than maximum fill heat limit System;3) heat-storing device limits Q in period t exothermic maximum heatDCH,MAX, period t heat release heat is no more than exothermic maximum heat Limitation;
The LC(t), LH(t), LE(t)、PWTAnd P (t)PV(t) it is given value, wherein t=1,2 ..., T, T are future one The maximum number of period day;
Hour, economic maximum filled heat/thermal dischargeCalculated according to following formula
Condition 1:
Condition 2:
Condition 3:
Wherein, k 'CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) waste heat recovery heat Calculation Coefficient, it is calculated according to the following formula:
k″CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t) waste heat recovery heat Calculation coefficient), is counted according to the following formula Obtain:
It is (L for generated energyE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) generating efficiency;To generate electricity Measure as (LE(t)-PWT(t)-PPV(t) generating efficiency);
When the specified heat level that fills isIt is with heat release levelWhen, it is Q that the hot heat-storing devices of period t, which fill heat,CH(t), Heat release heat is QDCH(t) it is E, to fill heat dayCH, day heat release heat is EDCH, wherein
If fill heat E daysCHLess than heat accumulation maximum capacity ESH,MAX, improve and fill heat levelIf day fills heat ECHMore than heat accumulation maximum capacity ESH,MAX, reduce and fill heat levelIf fill heat E daysCHEqual to heat accumulation maximum capacity ESHMAX, This fills heat levelHeat level was filled for the same day;
If day heat release heat EDCHLess than filling heat ECHIt is multiplied by heat accumulation efficiency etaSH, it is horizontal to reduce heat releaseIf day Heat release heat EDCHMore than filling heat ECHIt is multiplied by heat accumulation efficiency etaSH, it is horizontal to improve heat releaseIf day heat release heat EDCHIt is equal to Fill heat ECHIt is multiplied by heat accumulation efficiency etaSH, heat release levelIt is horizontal for same day heat release, now there is following formula establishment
ECH·ηSH=EDCH
Beneficial effect:
The hot heat-storing device day operation method of cogeneration cooling heating system containing regenerative resource that the present invention provides, is improved Heat/heat release of filling of CCHP efficiency of energy utilization judges so that heat accumulation improves efficiency of energy utilization.Day operation method then maximum limit It make use of the heat storage capacity of heat-storing device degree, and give and specifically fill heat/heat release heat.
Brief description of the drawings
Fig. 1 is the system schematic of cogeneration cooling heating system in the prior art;
Fig. 2 is the flow chart of the day operation method of the heat-storing device of cogeneration cooling heating system containing regenerative resource of the invention.
Embodiment
Below in conjunction with the accompanying drawings 2 and the invention will be further described by embodiment, following examples be it is descriptive, It is not limited, it is impossible to which protection scope of the present invention is limited with this.
The present invention's practices in the central controller of CCHP systems, and the purpose of the central controller is to set to generate electricity The generated energy P of machineCHP(t), electric refrigerator production refrigerating capacity QEC(t), Absorption Refrigerator production refrigerating capacity QABC(t), outsourcing Power grid electric PGRID(t), donkey boiler production heat QBL(t).Implement the specific steps of heat-storing device day operation method of the present invention It is as follows.
Step 1:The parameter of equipment is obtained ahead of time:1) efficiency calculation the coefficient a, b, c of generating set;2) electric refrigerator Energy efficiency coefficient COPEC;3) the energy efficiency coefficient COP of Absorption RefrigeratorABC;4) CCHP system generators group maximum generating watt PCHP,MAX, unit kWh;5) heat-storing device heat accumulation maximum capacity ESH,MAX, unit kWh, heat-storing device period t maximums fill heat Heat QCH,MAX, unit kWh;Heat-storing device period t exothermic maximums heat QDCH,MAX, unit kWh.
The relation such as formula (1) to be generated electricity in period t, CCHP systems with generating waste-heat recovery;
Wherein:PCHP(t) it is the production electric energy of CCHP systems, kWh;QCHP(t) it is the production heat of CCHP systems, kWh; FCHP(t) it is the gas consumption of CCHP systems, kWh;ηCHP,HFor CCHP system heat recovery efficiencies;ηCHP,ESent out for CCHP systems Electrical efficiency;PCHP,MAX, PCHP,MINIt is the maximum of CHP systems respectively, minimum generated energy, kWh;A, b, c are for CCHP generating efficiencies Number;F is generating set PGU output ratio.
In period t, cool and thermal power balancing the load such as formula (2).
Wherein:LC(t) it is CCHP cooling load of the air-conditioning system demands, unit kWh;LH(t) it is CCHP system heat load demands, it is single Position is kWh;LE(t) it is CCHP system electrical load requirements, unit kWh;PWT(t) it is wind-power electricity generation production electricity in CCHP systems Can, unit kWh;PPV(t) it is that photovoltaic generation produces electric energy, unit kWh in CCHP systems;PGRID(t) when being CCHP systems The electricity of section t purchase power networks, unit kWh;QEC(t) refrigerating capacity, unit kWh are produced for CCHP systems electric refrigerator; COPECFor the Performance Coefficient of electric refrigerator;QABC(t) refrigerating capacity, unit kWh are produced for CCHP systems Absorption Refrigerator; COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is CCHP system supplymentary boiler for producing heats, unit kWh;QCH (t) heat, unit kWh are filled for CCHP system heat-storing devices;QDCH(t):It is single for CCHP system heat-storing device heat release heats Position is kWh;β is integer variable, and 1 represents to fill Warm status, and 0 represents heat release state;
Step 2:Known period t cold and hot electrical load requirement LC(t), LH(t), LE(t);Wind-power electricity generation PWTAnd photovoltaic generation (t) Electricity PPV(t), t=1,2 ..., T, calculate hour economy maximum according to formula (3) and fill heat/thermal discharge Wherein, T is the maximum number of following period on the one, if according to hour time segment, it is 24 to take T.
Wherein:k′CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) waste heat recovery heat Calculation Coefficient, it is calculated according to (7);k″CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t) waste heat recovery heat Calculation system) Number, is calculated according to (8);It is (L for generated energyE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) generating efficiency;It is (L for generated energyE(t)-PWT(t)-PPV(t) generating efficiency).
Step 3:Heat level is filled in setting
Step 4:Heat is filled according to what formula (9) tried to achieve period t.
Step 5:Day, which is tried to achieve, according to formula (10) fills heat.
Step 6:If fill heat E daysCHLess than heat accumulation maximum capacity ESH,MAX, improve and fill heat levelThen turn to do Step 5;If fill heat E daysCHMore than heat accumulation maximum capacity ESH,MAX, reduce and fill heat levelGo to step 5;If day fills heat Heat ECHEqual to heat accumulation maximum capacity ESH,MAX, this fills heat levelHeat level was filled for the same day, goes to step 8;
Step 7:Set heat release horizontal
Step 8:Period t heat release heat is tried to achieve according to formula (11).
Step 9:A day heat release heat is tried to achieve according to formula (12).
Step 10:If day heat release heat EDCHLess than filling heat E daysCHIt is multiplied by heat accumulation efficiency etaSH, it is horizontal to improve heat releaseGo to step 8;If day heat release heat EDCHMore than filling heat E daysCHIt is multiplied by heat accumulation efficiency etaSH, it is horizontal to reduce heat releaseTurn Step 8;If day heat release heat EDCHEqual to filling heat ECHIt is multiplied by heat accumulation efficiency etaSH, heat release levelPut hot water for the same day It is flat, now there is formula (13) establishment
ECH·ηSH=EDCH (13)
Go to step 12;
Step 11:Determine heat-storing device fill heat and heat release heat after, and instruction is sent by communicator Perform.
Step 12:Deng until next period arrive, go to step 2.

Claims (5)

1. a kind of day operation method of the heat-storing device of cogeneration cooling heating system containing regenerative resource, the CCHP systems that it is applied are at least Including generating set, renewable energy power generation device, the absorption system powered by generating set and renewable energy power generation device Cold, reclaim generating set generating waste-heat heat reclamation device, heat-storing device, in period t, CCHP systems generate electricity with generate electricity more than The relation of recuperation of heat is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mi>f</mi> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>I</mi> <mi>N</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:PCHP(t) it is the electric energy of CCHP system productions, unit kWh;QCHP(t) it is the heat of CCHP system productions, unit For kWh;FCHP(t) it is the gas consumption of CCHP systems, unit kWh;ηCHP,H:CCHP system heat recovery efficiencies;ηCHP,E: CCHP system generating efficiencies;PCHP,MAX, PCHP,MINIt is the maximum of CHP systems respectively, minimum generated energy, unit kWh;A, b, c are The coefficient of CCHP generating efficiencies;F is generating set PGU output ratio;
Cool and thermal power balancing the load is in period t, CCHP systems:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>R</mi> <mi>I</mi> <mi>D</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>H</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>/</mo> <mi>C</mi> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>B</mi> <mi>L</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;beta;</mi> <mo>)</mo> <msub> <mi>Q</mi> <mrow> <mi>D</mi> <mi>C</mi> <mi>H</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced>
Wherein:LC(t) it is CCHP cooling load of the air-conditioning system demands, unit kWh;LH(t) it is the thermal load demands of CCHP systems, unit For kWh;LE(t) it is the electrical load requirement of CCHP systems, unit kWh;PWT(t) it is wind-power electricity generation production electricity in CCHP systems Can, unit kWh;PPV(t) it is that photovoltaic generation produces electric energy, unit kWh in CCHP systems;PGRID(t) when being CCHP systems The electricity of section t purchase power networks, unit kWh;QEC(t) refrigerating capacity, unit kWh are produced for CCHP systems electric refrigerator; COPECFor the Performance Coefficient of electric refrigerator;QABC(t) refrigerating capacity, unit kWh are produced for CCHP systems Absorption Refrigerator; COPABCFor the Performance Coefficient of Absorption Refrigerator;QBL(t) it is CCHP system supplymentary boiler for producing heats, unit kWh;QCH (t) heat, unit kWh are filled for CCHP system heat-storing devices;QDCH(t):It is single for CCHP system heat-storing device heat release heats Position is kWh;β is integer variable, and 1 represents to fill Warm status, and 0 represents heat release state;It is characterized in that:
Heat-storing device fills heat/exothermic process and can promote the raising of efficiency of energy utilization, and heat-storing device operation have it is as follows Limitation:1) heat accumulation maximum capacity ESH,MAX, can not continue to fill heat when the heat accumulation heat of heat-storing device reaches its maximum capacity; 2) heat-storing device fills heat limitation Q in period t maximumCH,MAX, period t fill heat no more than maximum fill heat limitation; 3) heat-storing device limits Q in period t exothermic maximum heatDCH,MAX, period t heat release heat is no more than exothermic maximum heat limit System;
The LC(t), LH(t), LE(t)、PWTAnd P (t)PV(t) it is given value, wherein t=1,2 ..., T, T are the following period on the one Maximum number;
Hour, economic maximum filled heat/thermal discharge" calculated according to following formula
Condition 1:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&gt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> <mo>&lt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
Condition 2:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&gt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> <mo>&lt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
Condition 3:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&gt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>L</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>COP</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> <mo>&lt;</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> <mn>2</mn> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:k′CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) when waste heat recovery heat Calculation system Number, is calculated according to the following formula:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <msup> <mi>k</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>COP</mi> <mrow> <mi>E</mi> <mi>C</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
k″CHP,QPIt is that generated energy is (LE(t)-PWT(t)-PPV(t) waste heat recovery heat Calculation coefficient when), is calculated according to the following formula Obtain:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <msup> <mi>k</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>H</mi> </mrow> </msub> </mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mi>P</mi> </mrow> <mn>2</mn> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>E</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>W</mi> <mi>T</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>P</mi> <mrow> <mi>C</mi> <mi>H</mi> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
It is (L for generated energyE(t)-PWT(t)-PPV(t)+LC(t)/COPEC) when generating efficiency;It is for generated energy (LE(t)-PWT(t)-PPV(t) generating efficiency when);
When the specified heat level that fills isIt is with heat release levelWhen, the heat that fills of period t heat-storing device is QCH(t), heat release Heat is QDCH(t) it is E, to fill heat dayCH, day heat release heat is EDCH, wherein
<mrow> <msub> <mi>E</mi> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>E</mi> <mrow> <mi>D</mi> <mi>C</mi> <mi>H</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msub> <mi>Q</mi> <mrow> <mi>D</mi> <mi>C</mi> <mi>H</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
If fill heat E daysCHLess than heat accumulation maximum capacity ESH,MAX, improve and fill heat levelIf fill heat E daysCHIt is more than Heat accumulation maximum capacity ESH,MAX, reduce and fill heat levelIf fill heat E daysCHEqual to heat accumulation maximum capacity ESH,MAX, this fills heat It is horizontalHeat level was filled for the same day;
If day heat release heat EDCHLess than filling heat ECHIt is multiplied by heat accumulation efficiency etaSH, it is horizontal to improve heat releaseIf day heat release heat Measure EDCHMore than filling heat ECHIt is multiplied by heat accumulation efficiency etaSH, it is horizontal to reduce heat releaseIf day heat release heat EDCHIt is hot equal to filling Measure ECHIt is multiplied by heat accumulation efficiency etaSH, heat release levelIt is horizontal for same day heat release, now there is following formula establishment
ECH·ηSH=EDCH
2. day operation method as claimed in claim 1, it is characterised in that:Applied to the central controller of CCHP systems, in this The purpose of centre controller is to set the generated energy P of generatorCHP(t), the production refrigerating capacity Q of electric refrigeratorEC(t), absorption system The production refrigerating capacity Q of coldABC(t), outsourcing power grid electric PGRID(t), donkey boiler production heat QBL(t)。
3. day operation method as claimed in claim 1, it is characterised in that:Heat-storing device is determined fills heat and heat release heat After amount, instruction is sent by execution by communicator.
4. day operation method as claimed in claim 1, it is characterised in that:T is the maximum number of following period on the one, if pressed According to hour time segment, then it is 24 to take T.
5. the day operation method as any one of Claims 1-4, it is characterised in that:The CCHP systems of application also include Electrical chillers and donkey boiler.
CN201710811566.6A 2017-09-11 2017-09-11 A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing renewable energy Active CN107725276B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710811566.6A CN107725276B (en) 2017-09-11 2017-09-11 A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing renewable energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710811566.6A CN107725276B (en) 2017-09-11 2017-09-11 A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing renewable energy

Publications (2)

Publication Number Publication Date
CN107725276A true CN107725276A (en) 2018-02-23
CN107725276B CN107725276B (en) 2019-09-24

Family

ID=61204989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710811566.6A Active CN107725276B (en) 2017-09-11 2017-09-11 A kind of day operation method of the heat-storing device of cogeneration cooling heating system containing renewable energy

Country Status (1)

Country Link
CN (1) CN107725276B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954429A1 (en) * 1999-11-11 2001-05-31 Gerhard Ellerbeck Wind turbine for generating electrical output has rotors mounted on carriers that are in sections
CN106091475A (en) * 2016-06-18 2016-11-09 中国建筑科学研究院 A kind of renewable building energy composite supply system
WO2017066669A1 (en) * 2015-10-14 2017-04-20 Ansari Reza Transportable hybrid power system
CN106753631A (en) * 2016-11-13 2017-05-31 北京化工大学 The process of reinforcing desorption type methane purification and recovery carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954429A1 (en) * 1999-11-11 2001-05-31 Gerhard Ellerbeck Wind turbine for generating electrical output has rotors mounted on carriers that are in sections
WO2017066669A1 (en) * 2015-10-14 2017-04-20 Ansari Reza Transportable hybrid power system
CN106091475A (en) * 2016-06-18 2016-11-09 中国建筑科学研究院 A kind of renewable building energy composite supply system
CN106753631A (en) * 2016-11-13 2017-05-31 北京化工大学 The process of reinforcing desorption type methane purification and recovery carbon dioxide

Also Published As

Publication number Publication date
CN107725276B (en) 2019-09-24

Similar Documents

Publication Publication Date Title
CN205356219U (en) Scene gas stores up complemental combined heat and power generation system
EP3001111B1 (en) Electric power peak-shaving and combined heat and power waste heat recovery device and operation method thereof
CN106058942B (en) Energy hub optimization model considering wind power uncertainty and comprising electricity-to-gas conversion and CCHP
WO2019205561A1 (en) Cchp micro-grid structure including compressed air energy storage and operation method therefor
CN104806454A (en) Wind power, photo-thermal and medium heat storage combined energy supply system
CN108491992A (en) A kind of cooling heating and power generation system peak regulation containing photovoltaic and accumulation of energy is regulated and stored Optimal Operation Model
CN106444562A (en) Wind light-electric heat gas conversion module based multi-energy storage device coordination system and method
CN106786793A (en) A kind of supply of cooling, heating and electrical powers type microgrid operation method based on robust optimization
CN106089338A (en) A kind of back pressure machine association system regulating heat supply and generating and method
CN103953966A (en) High-capacity heat storage system and high-capacity heat storage method for increasing wind energy absorption
CN107749645B (en) A method of control high-voltage large-capacity thermal storage heating device
JP3230102U (en) Comprehensive energy system based on reversible expander
CN105305472B (en) A kind of substation capacity optimization method based on multiple-energy-source collaboration energy supply
CN109184916A (en) The method of comprehensive energy router device and energy conversion
CN204458210U (en) Wind-powered electricity generation, photo-thermal and medium heat accumulation associating energy supplying system
CN106712033A (en) Wind curtailment absorption method in thermal power plant
CN110285700A (en) A kind of the regional complex energy resource system and method for the energy storage of air containing adiabatic compression
CN203772087U (en) Independent fused salt heat storage power plant
CN113806952B (en) Cold-hot electricity comprehensive energy system considering source-charge-storage and optimal operation method thereof
CN103352746B (en) Based on the rock gas cool and thermal power energy supplying device of fused salt accumulation of heat
CN205178621U (en) Power generation system provides multiple forms of energy to complement each other
CN109376406B (en) Energy supply system superstructure model, modeling method, computer device and storage medium
CN107642772B (en) Cogeneration cooling heating system meets workload demand progress control method simultaneously
CN203261110U (en) Thermoelectricity co-generation system based on wind energy
Mao et al. Study on Multi-energy Flow Management for Multi-energy Network Systems.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant