CN107709778B - 定子 - Google Patents

定子 Download PDF

Info

Publication number
CN107709778B
CN107709778B CN201580080924.XA CN201580080924A CN107709778B CN 107709778 B CN107709778 B CN 107709778B CN 201580080924 A CN201580080924 A CN 201580080924A CN 107709778 B CN107709778 B CN 107709778B
Authority
CN
China
Prior art keywords
main body
stator
outer tunnel
group
stator module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580080924.XA
Other languages
English (en)
Other versions
CN107709778A (zh
Inventor
J·B·罗斯柴尔德
D·P·琼斯
M·P·诺厄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penn United Technologies Inc
Original Assignee
Penn United Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penn United Technologies Inc filed Critical Penn United Technologies Inc
Priority claimed from PCT/US2015/058921 external-priority patent/WO2016178710A1/en
Publication of CN107709778A publication Critical patent/CN107709778A/zh
Application granted granted Critical
Publication of CN107709778B publication Critical patent/CN107709778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/70Use of multiplicity of similar components; Modular construction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

提供了一种用于渐进式空腔泵的定子组件。所述定子组件包括多个定子叠片,所述多个定子叠片具有平面主体,所述平面主体限定主要的内通道和多个外通道,所述外通道被设置成有效地邻近所述内通道,由此所述内通道至少部分地由环带限定,其中所述环带是向外柔性的。所述定子叠片以堆叠的方式彼此耦接,其中所述定子叠片主体内通道限定了螺旋通道。所述螺旋通道是柔性的螺旋通道。

Description

定子
相关申请的交叉引用
本申请是要求于2015年11月4日提交的美国专利申请号14/931,885的优先权并且要求于2015年5月4日提交的美国临时专利申请号62/156,512的优先权的PCT国际申请。
技术领域
所公开和要求保护的概念涉及用于渐进式空腔泵(progressive cavity pump)的定子组件,并且更具体地涉及其中螺旋通道是柔性螺旋通道的定子组件。
背景技术
为了表彰渐进式空腔泵的发明人Rene Moineau(其获得美国专利号1,892,217),渐进式空腔泵经常称为“Moineau”泵。在各行业中使用渐进式空腔泵来泵送材料,诸如但不限于粘性流体、半固体、具有悬浮固体的流体以及固体。由渐进式空腔泵输送的示例性材料包括但不限于油、污水、压裂流体等。通常,渐进式空腔泵(也称为斜齿齿轮泵)包括具有一个或多个外螺纹螺旋叶瓣(lobe)或“花键(spline)”的伸长的转子,所述转子可旋转地设置在限定螺旋通道的定子组件或定子主体中。在一个实施方案中,螺旋通道包括比螺旋转子多一个的叶瓣。伸长的螺旋通道包括与定子形成多个空腔的多个螺旋凹槽。当转子在定子内转动时,空腔从泵的吸入端前进到排出端。在其它实施方案中,存在相同数量的转子花键和定子叶瓣,但是转子花键的大小和形状被设计成使得限定定子叶瓣内的空腔。在示例性实施方案中,在理论上,转子的每个叶瓣在任何横截面处总是与定子大体上接触;这具有在定子与转子之间产生多个空的空间的效果。需注意,在其中转子花键没有完全坐落在定子叶瓣中的位置处的间隙或干涉可以是可变的,即,小于实质性接合。也就是说,例如,在其中定子通道具有弧形端表面和线性侧表面的实施方案中,期望确保转子抵靠定子的弧形端表面密封;这确保了空腔,并且因此确保了其中的流体向前移动。转子抵靠定子的线性侧表面密封是期望的但是是不太重要的。
当转子旋转时,空的空间从螺旋通道的吸入端前进到螺旋通道的排出端。此外,通过转子与定子之间的经常称为“密封线”的接触点来将空的空间彼此隔离。当转子在定子内旋转时,空的空间沿着螺旋通道的长度以螺旋运动“移动”或前进。在渐进式空腔泵的操作中,空的空间填充有待移动的材料。因此,随着空的空间前进,当转子相对于定子旋转时,材料从定子的一端移动到定子的另一端。由于定子和转子的形状和几何结构,当转子在定子内旋转时,转子将相对于定子横向移动或进动。换句话说,除了在定子内旋转之外,转子相对于定子偏心地移动。
在图1所示的示例性实施方案中,渐进式空腔泵1包括伸长的螺旋转子2和限定了伸长的螺旋通道4的定子组件3。在所示的示例性实施方案中,转子具有单个叶瓣,并且因此具有大体上圆形的横截面形状。螺旋通道(以横截面示出)具有长圆形形状。如本文所用,“长圆形”形状包括相对的大体弧形表面以及相对的大体平行、大体线性的表面;其可以通俗地识别为“药丸”形状。在操作中,转子2在螺旋通道的两端之间往复运动。
为了确保转子“在任何横截面处总是与定子实质上接触”,定子螺旋通道通常衬有弹性材料,诸如但不限于弹性体材料。也就是说,在示例性实施方案中,定子组件包括限定螺旋通道的刚性支撑组件,并且内衬设置在其上。在图1所示的示例性实施方案中,当转子旋转并且在螺旋通道的两端之间往复运动时,弹性材料在转子与支撑结构之间被压缩。此外,如果被移动的材料是具有悬浮固体的流体,那么固体可以在弹性材料与转子之间经过。
这种结构具有若干缺点,包括弹性材料内衬的可劣化性。也就是说,弹性材料内衬的压缩导致内衬上的快速磨损和撕裂,从而导致需要更换。如本文所用,“快速”劣化是相对术语;弹性材料比耐用材料劣化得更快。此外,经过弹性材料与转子之间的固体也会损坏弹性材料内衬。另外,弹性材料内衬可以与被移动的材料反应或者由其劣化。另一个缺点是刚性定子组件难以构造并且/或者构造昂贵。也就是说,这类定子组件通常通过液压成形、轧制金属管、冷拔金属管、热挤压金属管、使用诸如但不限于放电机加工的方法对金属管进行钻孔、以及利用金属沉积的电铸而形成。
在另一个未示出的实施方案中,定子组件实质上由弹性材料制成。尽管弹性材料可以具有刚性外壳,但是螺旋结构和支撑件由弹性材料形成。此实施方案还允许转子与定子组件之间的实质上恒定的接触,并且允许固体在转子与定子之间经过。然而,这个实施方案也会经受快速劣化。此外,由于定子螺旋通道是大体上弹性的,所以本实施方案的渐进式空腔泵被限制为较低的压力和较低的传递速度。也就是说,在较高的压力下,定子将变形,从而允许材料在转子上回流。
在另一个未示出的实施方案中,定子组件由不具有内衬的刚性材料制成。通常,转子和定子两者都由耐用材料(即,非弹性材料)制成。虽然耐用材料不容易磨损和撕裂,但是两个耐用材料元件之间的摩擦将导致转子和定子两者的磨损和撕裂。此外,在刚性材料形成转子和定子两者的情况下,颗粒无法在其间经过。也就是说,捕获在刚性转子与定子之间的固体将被压碎,从而导致部件的另外磨损和撕裂。可替代地,在更大或更耐用的颗粒的情况下,转子将弯曲,从而可能永久地使转子弯曲。同样地,并且如本文所用,其中耐用的转子接合耐用的定子或者在耐用的定子上移动的渐进式空腔泵是“自我损坏”的渐进式空腔泵。解决自我损坏的渐进式空腔泵中的颗粒问题的一种解决方案是允许转子与定子之间的小间隙;也就是说,转子和定子不是“总是接触”的。然而,这种构造允许相邻的空腔之间的材料的回流。也就是说,这种构造效率较低。此外,在此实施方案中,定子通常由上述昂贵方法中的一种方法制成。
此外,如美国专利号8,905,733所指出的,存在的优点是在渐进式空腔泵内具有邻近定子表面的流体的湍流。在所述专利中,湍流由在例如定子螺旋通道的表面中的凹槽产生或增强。然而,这些凹槽必须在形成螺旋通道期间或有时之后机加工到定子螺旋通道表面中。同样地,所述凹槽对于结合到定子中是昂贵的。
应当理解,渐进式空腔泵包括具有驱动轴的驱动组件,所述驱动轴使得转子在定子内旋转从而产生泵送作用。也就是说,旋转运动被转换成流体动作,即,泵送。然而,如已知的那样,具有较小几何差异的转子/定子组件可以具有泵送通过其中从而导致转子旋转的流体。该动作随后被传送到驱动轴和驱动组件。也就是说,流体运动被转换成机械运动。因此,应当理解,尽管以下讨论将转子/定子组件称为泵,但是可以使用相同的转子/定子组件来产生旋转运动,即,其可以用作驱动装置,例如用于钻孔。
因此,需要一种改进的渐进式空腔泵,其中各部件不会经受快速劣化、不会自我损坏、并且不允许被运输的材料回流。
发明内容
这些需求和其它需求通过所公开和要求保护的概念得以实现,所述概念提供了一种用于渐进式空腔泵的定子组件,所述定子组件包括多个定子叠片,所述多个定子叠片具有平面主体,所述平面主体限定主要的内通道和多个外通道,所述外通道被设置成有效地邻近所述内通道,由此内通道至少部分地由环带限定,其中所述环带是向外柔性的。定子叠片以堆叠的方式彼此耦接,其中定子叠片主体内通道限定了螺旋通道。螺旋通道是柔性的螺旋通道。
需注意,以下提出的构造,包括材料的选择,解决了所述问题。
附图说明
在结合附图阅读时从以下对优选实施方案的描述可以获得对本发明的完全理解,在附图中:
图1是现有技术的渐进式空腔泵的局部剖视侧视图。
图2是渐进式空腔泵的示意性侧视图。
图3是转子组件和定子组件的等距局部视图。
图4是渐进式空腔泵的转子组件和包括滑动体的定子组件的局部正视图。
图5是定子组件定子叠片主体的正视图。
图6是定子组件定子叠片堆叠的分解等距局部视图。
具体实施方式
应当理解,本文附图中示出的以及在以下说明书中描述的具体元件仅仅是所公开的概念的示例性实施方案,其仅作为非限制性实例提供而用于说明目的。因此,与本文公开的实施方案有关的特定尺寸、取向、组件、所使用的部件数量、实施方案构造以及其它物理特性不应被视为限制所公开的概念的范围。
本文使用的方向短语(诸如,例如顺时针、逆时针、左、右、顶部、底部、向上、向下和其派生词)涉及附图中示出的元件的取向,并且除非本文明确地记载,否则不限制权利要求。
如本文所用,除非上下文另外明确指出,单数形式“一”、“一个”以及“该”包括复数参考。
如本文所用,两个或更多个部分或部件“耦接”的陈述应意味着所述部分直接或间接地(即,通过一个或多个中间部分或部件)接合在一起或者一起操作,只要发生连接即可。如本文所用,“直接耦接”是指两个元件直接彼此接触。应注意,移动部分(诸如但不限于断路器触点)在处于一个位置(例如关闭的第二位置)时是“直接耦接”的,但是当处于打开的第一位置时不是“直接耦接”的。如本文所用,“固定地耦接”或“固定”是指两个部件被耦接以便一体地移动,同时维持相对于彼此的恒定取向。因此,当两个元件耦接时,这些元件的所有部分都被耦接。然而,第一元件的特定部分耦接到第二元件的描述(例如,第一轴端耦接到第一轮)意味着第一元件的所述特定部分比其它部分更靠近第二元件设置。
如本文所用,短语“可移除地耦接”是指一个部件以基本上临时的方式与另一部件耦接。也就是说,两个部件耦接的方式使得部件的接合或分离是容易的并且将不会损坏部件。例如,利用有限数量的容易接近的紧固件彼此固定的两个部件是“可移除地耦接”的,而焊接在一起或通过难以接近的紧固件接合的两个部件不是“可移除地耦接”的。“难以接近的紧固件”是在接近紧固件之前需要移除一个或多个其它部件的紧固件,其中“其它部件”不是接近装置,诸如但不限于门。
如本文所用,“可操作地耦接”是指各自可在第一位置与第二位置或者第一构造与第二构造之间移动的多个元件或组件被耦接成使得当第一元件从一个位置/构造移动到另一个位置/构造时,第二元件也在位置/构造之间移动。需注意,第一元件可以与另一元件“可操作地耦接”而同时相反则不然。
如本文所用,“耦接组件”包括两个或更多个耦接件或耦接部件。耦接件或耦接组件的部件通常不是同一元件或其它部件的一部分。同样地,在以下描述中,可以不同时描述“耦接组件”的部件。
如本文所用,“耦接件”或“耦接部件”是耦接组件的一个或多个部件。也就是说,耦接组件包括被构造成耦接在一起的至少两个部件。应当理解,耦接组件的部件彼此相容。例如,在耦接组件中,如果一个耦接部件是卡扣插孔,那么另一个耦接部件就是卡扣插头,或者如果一个耦接部件是螺栓,那么另一个耦接部件就是螺母。
如本文所用,“对应”表示两个结构部件的大小和形状被设计成彼此类似并且可以以最小的摩擦量耦接。因此,“对应”于构件的开口的大小略大于构件,使得构件可以以最小的摩擦量穿过开口。如果这两个部件将要“紧密地”配合在一起,那么这个定义会被修改。在这种情况下,部件的大小之间的差异甚至更小,从而摩擦量增加。如果限定开口的元件和/或插入到开口中的部件由可变形或可压缩材料制成,那么所述开口甚至可以比插入到开口中的部件略小。就表面、形状和线而言,两个或更多“对应的”表面、形状或线具有大体上相同的大小、形状和轮廓。
如本文所用,在短语“[x]在其第一位置与第二位置之间移动”或者“[y]被构造成在其第一位置与第二位置之间移动[x]”中,“[x]”是元件或组件的名称。此外,当[x]是在多个位置之间移动的元件或组件时,代词“它的”的意味着“[x]”,即,在代词“它的”之前的命名的元件或组件。
如本文所用,在短语“[x(第一元件)]在对应于[y(第二元件)]的第一位置和第二位置的第一位置与第二位置之间移动”中,其中“[x]”和“[y]”是元件或组件,单词“对应”意味着当元件[x]处于第一位置时,元件[y]处于第一位置,并且当元件[x]处于第二位置时,元件[y]处于第二位置。需注意,“对应”与最终位置有关,并且并不意味着元件必须以相同的速度或同时移动。也就是说,例如,轮毂盖和其所附接的轮以对应的方式旋转。相反地,弹簧偏压闩锁构件和闩锁释放件以不同的速率移动。因此,如上所述,“对应的”位置意味着元件同时在所识别的第一位置中,并且同时在所识别的第二位置中。
如本文所用,两个或更多个部分或部件彼此“接合”的陈述应意味着所述元件直接地或通过一个或多个中间元件或部件抵靠彼此施加力或者偏压。此外,如本文关于移动部分所使用的,移动部分可以在运动期间从一个位置到另一个位置“接合”另一个元件,并且/或者可以一旦在所描述的位置中就“接合”另一个元件。因此,应当理解,“当元件A移动到元件A的第一位置时,元件A接合元件B”以及“当元件A在元件A的第一位置时,元件A接合元件B”的陈述是等同的陈述,并且意味着元件A在移动到元件A的第一位置时接合元件B并且/或者元件A在处于元件A的第一位置时接合元件B。
此外,如本文所用,移动元件或移动元件上的表面可以在行进路径上“大体上(generally)接合”另一元件,或者可以在行进路径上“实质上(substantially)接合”另一元件。如本文所用,“大体上接合”是指在行进路径上,移动元件或移动元件上的表面大体上抵靠另一元件施加力或偏压,但是存在不抵靠另一元件施加力或偏压的行进路径上的点或沿着表面的点。如本文所用,“实质上接合”是指在行进路径上,移动元件或移动元件上的表面实质上抵靠另一元件施加力或偏压,而不存在不抵靠另一元件施加力或偏压的行进路径上的任何显著点或沿着表面的任何显著点。
如本文所用,“可操作地接合”是指“接合并移动”。也就是说,当关于被构造成移动可移动或可旋转的第二部件的第一部件使用时,“可操作地接合”意味着第一部件施加足以使第二部件移动的力。例如,可以将螺丝刀放置成与螺钉接触。当螺丝刀不受力时,螺丝刀仅仅“耦接”到螺钉。如果对螺丝刀施加轴向力,那么将螺丝刀压靠在螺钉上并且“接合”螺钉。然而,当旋转力施加到螺丝刀时,螺丝刀“可操作地接合”螺钉并且导致螺钉旋转。
如本文所用,词语“单体的”是指作为单个构件或单个单元形成的部件。也就是说,包括单独形成并且随后作为单元耦接在一起的构件的部件不是“单体的”部件或主体。
如本文所用,“被构造成[动词]”是指所标识的元件或组件具有被成形、确定大小、设置、耦接和/或配置成执行所标识的动词的结构。例如,“被构造成移动”的构件可移动地耦接到另一个元件,并且包括引起构件移动的元件,或者所述构件另外被配置成响应于其它元件或组件移动。同样地,如本文所用,“被构造成[动词]”陈述结构而非功能。此外,如本文所用,“被构造成[动词]”是指所标识的元件或组件旨在且被设计成执行所标识的动词。因此,仅能够执行所标识的动词但不旨在且不被设计成执行所标识的动词的元件不是“被构造成[动词]”。
如本文所用,“相关联”是指元件是同一组件的一部分和/或一起操作,或者以某种方式作用于彼此/彼此作用。例如,一辆汽车有四个轮胎和四个轮毂盖。虽然所有的元件都作为汽车的一部分相耦接,但是应当理解,每个轮毂盖都与特定的轮胎“相关联”。
如本文所用,“平面主体”或“平面构件”是大体上薄的元件,其包括相对的、宽的、大体上平行的表面以及在宽的平行表面之间延伸的较薄的边缘表面。周边以及因此边缘表面可以包括大体上笔直的部分(例如像在矩形平面构件上),或者可以是弯曲的(如在圆盘上)或者具有任何其它形状。此外,“单体的平面构件”包括大体上设置在类似平面中的构造的所有部分。也就是说,例如,平坦的单张纸是单个“单体的平面构件”,而不是彼此邻近设置的两个或更多个平面构件。换句话说,“单体的平面构件”在大体上平面的构造的边缘之间延伸,而不是其一部分。因此,如本文所用,在分层构造中,包括单体主体的分层构造,每个分层是“平面构件”,其中平面构件由大体上平行于平面构件的平坦表面延伸的平面进行划分。也就是说,每个“平面构件”是所述构造的在分层的边缘之间的部分。
如本文所用,在“围绕[元件或轴线]设置”或“围绕[元件或轴线]延伸”的情况下使用的“围绕”是指环绕或围绕其延伸。
如本文所用,“弹性”意味着柔性且可变形,并且不意味着强健。
如本文所用,两个表面之间的界面、转子组件外表面、滑动体主体边缘表面、定子组件/主体螺旋通道或定子叠片主体内通道可以由一个或两个形容词来标识;即,[第一形容词]、[第二形容词]定子组件/主体内部螺旋通道,或者[第一形容词]、[第二形容词]定子叠片主体内通道。所述形容词描述所述界面处的至少一个表面、定子组件/主体内部螺旋通道表面或者定子叠片主体内通道表面的特性。第一形容词是可选的,并且描述了材料的耐久性,即,材料特性。第一形容词选自由“耐用的”、“强健的”和“可劣化的”组成的组。第二形容词描述了定子组件的构造,即,构造特征。第二形容词选自由“刚性”、“柔性”、“可变形”和“弹性”组成的组。
如本文所用,“耐用的”材料是硬金属、合金或具有与硬金属类似的特性的其它组合物,所述材料诸如但不限于:钢、碳钢、工具钢、由E.I.duPont de Nemours and Company销售的氟化烃以及聚合物、A2工具钢、17-4PH不锈钢、坩埚钢、4150钢、4140钢或1018钢、抛光不锈钢或者几乎任何不锈钢、碳钢或合金钢。“耐用的”材料不容易损坏。
如本文所用,“强健的”材料是比硬质金属或“耐用的”材料的硬度更小的刚性材料,并且包括但不限于硬质塑料和复合材料。
如本文所用,“可劣化的”材料是软的或容易受损的材料,诸如但不限于弹性体材料。应当理解,“容易损坏”是与耐用材料相比使用的相对术语。
如本文所用,当经受偏压或力时,“刚性”构造实质上维持其形状;例如由硬金属制成的定子是具有“刚性”构造的定子,其中定子主体足够厚以防止金属弯曲。
如本文所用,“柔性”构造允许表面的一部分在经受偏压或力时偏转,并且在实质上没有使表面的局部部分变形的情况下如此。例如,由弹簧支撑的硬质材料提供了“柔性”构造,其中硬质材料的表面在对其施加偏压时实质上不变形,但是弹簧允许表面移动/偏转。在其中单体主体限定表面和弹簧的构造中,“柔性”构造允许在施加偏压的位置处的偏转和在远离施加偏压的位置的位置处的变形,即,弹簧元件在施加偏压的点处变形而不是表面变形。
如本文所用,“可变形”构造实质上维持其形状,同时允许表面变形。例如,设置在刚性金属支撑件上的弹性体内衬提供“可变形”表面,因为刚性金属支撑件维持内衬的形状,但是内衬允许在施加偏压时局部压缩,即,在施加偏压的位置处变形。
如本文所用,“弹性”构造是柔性且可变形的。实质上由弹性体材料制成的定子组件/主体提供了“弹性”表面,因为主体是广泛柔性的,同时当施加偏压时还允许表面处的局部变形。
此外,如本文所用,每个组的特定形容词,即,[第一形容词](材料特性)和[第二形容词](构造特性)是不同的。也就是说,如本文所用,单体材料无法既“耐用”又“强健”。此外,如本文所用,可由一个形容词识别的材料或构造不能由另一形容词“识别”。例如,如本文所用,“可变形”构造不能够是“柔性”构造;它只是“可变形”构造。需注意,诸如但不限于弹性体材料的“可劣化”材料可以被构造成既是如上所述的“柔性”又是“可变形的”。然而,如本段中所述的,构造无法既“柔性”又“可变形”,这就是为什么“柔性”和“可变形”构造已经由单独的形容词“弹性”来定义。也就是说,例如,如本文所用,由弹性体材料制成的主体在本文中被识别为“弹性”构造,并且不被识别为“柔性”和“可变形”构造。此外,为了清楚起见提供以下实例。设置在金属支撑件上的弹性体内衬提供可劣化的可变形表面。也就是说,所述表面容易损坏,但是由于金属支撑件而无法弯曲。实心钢板上的表面提供了耐用、刚性的表面。也就是说,钢是耐用材料,其由于所述板不是柔性或可变形的而实质上维持其形状。
流体传输组件6使流体移动。在示例性实施方案中,流体传输组件6利用驱动组件18来移动流体并且被识别为渐进式空腔泵10。然而,如上所述,移动的流体可以用于使通常耦接到钻头(未示出)并被识别为液压马达(未示出)的从动组件(未示出)旋转。以下使用渐进式空腔泵10作为实例;然而,应当理解,以下讨论的转子组件20和定子组件100也可以与液压马达一起使用。
图2示意性地示出渐进式空腔泵10。如已知的那样,渐进式空腔泵10包括限定入口14和出口16的外壳组件12。渐进式空腔泵10还包括驱动组件18(其可以是远程的)、转子组件20以及限定了伸长的螺旋通道104的定子组件100。也就是说,定子组件螺旋通道104沿着定子组件100的纵向轴线是伸长的并且围绕定子组件的纵向轴线呈螺旋状。螺旋通道104包括表面105。通常,如已知的那样,入口14和出口16都与定子组件螺旋通道104流体连通。驱动组件18可操作地耦接到转子组件20并且被构造成使转子组件旋转。转子组件20可旋转地设置在定子组件螺旋通道104中。在示例性实施方案中,转子组件20包括具有外表面23的伸长的螺旋主体22。转子组件螺旋主体22的大小被设定成沿着密封线(未示出)接触定子组件螺旋通道104。密封线将定子组件螺旋通道104分成单独的空腔。转子组件螺旋主体22的旋转导致空腔从入口14前进到出口16,即,如本文所用的从“上游”位置前进到“下游”位置。也就是说,“上游”到“下游”的流动方向在从入口14到出口16的方向上。
在示例性实施方案中,以下讨论的转子组件外表面23和定子组件螺旋通道表面105由耐用材料制成。此外,转子组件20或定子组件100中的至少一个包括柔性组件11。如本文所用,柔性组件11被构造成在转子组件主体22或定子组件螺旋通道104的接合表面中的至少一个上提供柔性表面。如本文所用的“接合表面”是相接(meet)的表面,凭借所述表面定子组件螺旋通道104被分成多个空腔。如图所示,“接合表面”是转子组件外表面23或定子组件螺旋通道表面105的一部分。
在示例性实施方案中,转子组件20包括伸长的螺旋主体22。在此示例性实施方案中,转子组件主体22由耐用材料制成并且是单体的主体。此外,在所示的实施方案中,转子组件主体22包括单个叶瓣,并且因此具有大体上圆形的横截面形状。应当理解,转子组件主体22可以包括任何数量的叶瓣,其中每个叶瓣限定转子组件主体22的伸长的螺旋部分。也就是说,每个叶瓣限定围绕共同的纵向轴线26设置的螺旋元件。如下所述,在示例性实施方案中,定子组件螺旋通道104具有比转子组件主体22多一个的叶瓣。然而,如上所述,其它实施方案(未示出)包括转子组件主体22,其中转子叶瓣的尺寸和形状被设定成限定定子叶瓣内的空腔。在所示的示例性实施方案中,转子组件主体22包括单个叶瓣;定子组件螺旋通道104具有两个叶瓣。也就是说,双叶瓣定子组件螺旋通道104具有长圆形横截面形状。此外,在示例性实施方案中,转子组件主体22具有从上游端到下游端的大体上恒定的横向(即,垂直于旋转轴线)横截面面积。也就是说,在沿着转子组件主体22的任何选定的纵向位置处,转子组件主体22具有与沿着转子组件主体22的另一个选定的纵向位置大体上相同的横截面面积。在示例性实施方案中,转子组件主体22实质上接合螺旋通道104的弧形部分,而转子组件主体22大体上接合螺旋通道104的线性(或非弧形)部分。也就是说,螺旋通道104的线性(或非弧形)部分中的密封不如螺旋通道104的弧形部分中的密封重要。
在另一个示例性实施方案中,转子组件主体22具有从上游端到下游端的变窄的锥度(taper),即,减小的横截面面积。在另一个示例性实施方案中,转子组件主体22具有从上游端到下游端的变宽的锥度,即,增大的横截面面积。应当理解,定子组件螺旋通道104的横截面面积与转子组件主体22的横截面面积匹配,即,无论是恒定的、变窄的或变宽的。转子组件主体22被耦接、直接耦接或固定到驱动组件18,并且驱动组件18被构造成使转子组件主体22旋转。
在另一个示例性实施方案中,如图3所示,转子组件20包括“堆叠”主体30。也就是说,转子组件堆叠主体30包括叠片主体32的“堆叠”,在下文为“转子叠片主体32”。如本文所用,“叠片主体”或“叠片”是大体上平面的主体,并且在示例性实施方案中,是具有在大约0.010英寸与0.100英寸之间或约0.025英寸的厚度的单体的平面主体。如本文所用,“堆叠”或“堆叠主体”包括多个叠片主体,所述多个叠片主体被设置成一个叠片主体平面表面抵靠相邻的叠片主体平面表面。因此,除了“堆叠”中的第一和最后一个叠片主体之外,每个叠片主体设置在两个邻近叠片主体之间。转子叠片主体32通过任何已知的方法耦接,包括但不限于铆固转子叠片主体32、焊接转子叠片主体32的外表面、将每个转子叠片主体32焊接到相邻的转子叠片主体32、或者机械地压缩转子叠片主体32。在此构造中,每个转子叠片主体32具有大体上平行于转子组件堆叠主体30的旋转轴线延伸的边缘34,即,转子叠片主体边缘34的平面大体上平行于转子组件堆叠主体30的旋转轴线延伸。如本文所用,并且关于叠片主体,“边缘”包括在两个大体上平行的平面表面之间延伸的表面。此外,正如单体的转子组件主体22的实施方案,转子组件堆叠主体30的横截面面积可以如上所述那样是恒定的、变窄的或变宽的。
如下所述,在一个示例性实施方案中,定子组件100也是堆叠的叠片组件。在如下所述的其中转子组件20包括堆叠主体30并且定子组件100包括定子叠片主体110的实施方案中,每个转子叠片主体32具有与相关联的定子叠片主体110实质上相同的厚度。
在示例性实施方案中,每个转子叠片主体32具有第一厚度。也就是说,每个转子叠片主体32具有实质上相似的厚度。在未示出的替代实施方案中,转子叠片主体32的厚度可以与另一转子叠片主体32的厚度不同。例如,在未示出的示例性实施方案中,第一组转子叠片主体32中的每个转子叠片主体32具有第一厚度,并且第二组转子叠片主体32中的每个转子叠片主体32具有第二厚度。所述组的转子叠片主体32可以被设置成使得第一组转子叠片主体32位于第二组转子叠片主体32的上游。可替代地,第一组转子叠片主体32可以与第二组转子叠片主体32交错。需注意,可以存在具有不同厚度的附加组的转子叠片主体32,并且每组可以包括任何数量的转子叠片主体32。在另一个实施方案中,选定组的叠片可以是如下定义的“厚叠片”。
此外,在另一个未示出的实施方案中,转子叠片主体32可以逐渐变厚或变薄。在此实施方案中,转子叠片主体32可以包括“厚叠片”,如本文所用,其包括大体上平面的主体,并且在示例性实施方案中,为具有大于约0.010英寸的厚度的单体的平面主体。在此实施方案中,转子叠片主体32(其具有与相关联的定子叠片主体110实质上相同的厚度)的厚度在转子组件主体22的下游端处较厚,其中定子组件螺旋通道104内的较大空腔由特定数量的转子叠片主体32限定。也就是说,例如由在转子组件主体22的下游端处的十个转子叠片主体32所限定的空腔的尺寸大于由在转子组件主体22的上游端处的十个转子叠片主体32所限定的空腔。在此构造中,被泵送的流体在转子组件主体22的下游端处的压力相对于在转子组件主体22的上游端处的压力是不同的。
在另一个示例性实施方案中,如图4所示,转子组件20包括多个滑动体40,所述滑动体包括柔性组件11。滑动体40包括平面主体42,所述平面主体是如上定义的叠片,从而限定伸长的转子主体通道44,并且所述平面主体具有周边46和边缘表面48。在示例性实施方案中,滑动体主体42是单体的主体。此外,在示例性实施方案中,每个滑动体主体42具有与相关联的转子叠片主体32和定子叠片主体110实质上相同的厚度。在此实施方案中,滑动体主体边缘表面48限定转子组件主体外表面23。如下所述,转子主体通道44的表面限定凸起(cam)表面45。在其中定子组件螺旋通道104具有长圆形横截面形状的示例性实施方案中,每个滑动体主体42具有对应于定子组件螺旋通道104长圆形形状但具有较小纵向长度的长圆形形状。在示例性实施方案中,转子主体通道44的纵向轴线大体上垂直于滑动体主体42的大体上平行、大体上线性的表面。
需注意,在示例性实施方案中,滑动体主体42的相对的线性表面与长圆形定子组件螺旋通道104的相对的线性表面的接合虽然是期望的,但是与滑动体主体42的相对的弧形表面与长圆形定子组件螺旋通道104的相对的弧形表面的接合相比没那么重要。也就是说,滑动体主体42的相对的线性表面大体上接合长圆形定子组件螺旋通道104的相对的线性表面,而滑动体主体42的相对的弧形表面实质上接合长圆形定子组件螺旋通道104的相对的弧形表面。
在示例性实施方案中,每个滑动体主体42包括多个外通道50,所述多个外通道被设置成“有效地邻近”滑动体主体周边46和滑动体主体边缘表面48的至少一部分。在示例性实施方案中,滑动体主体外通道50围绕滑动体主体周边46和滑动体主体边缘表面48延伸。如下所述,滑动体主体外通道50被构造成允许滑动体主体边缘表面48是柔性的。因此,如本文所用,“有效地邻近”的设置意味着开口足够靠近滑动体主体周边46,以使得允许邻近滑动体主体外通道50的滑动体主体边缘表面48是柔性的。应当理解,“有效地邻近”的距离取决于所选择的变量,包括但不限于滑动体主体42的材料特性、滑动体主体外通道50的尺寸和形状以及滑动体主体42的厚度。
在示例性实施方案中,滑动体主体42由耐用的材料或强健的材料制成。因此,作为非限制性实例,第一滑动体主体(未示出)由耐用的材料制成并且具有厚度X,并且第二滑动体主体(未示出)由强健的材料制成并且具有厚度X/2。此外,在第一滑动体主体和第二滑动体主体中的每一个上,滑动体主体外通道(未示出)具有相同的尺寸和形状。在此实例中,并且为了如本文所用的“有效地邻近”,与第二滑动体主体上的滑动体主体外通道相比,第一滑动体主体上的滑动体主体外通道将需要更靠近第一滑动体主体周边(未示出)以便使第一滑动体主体边缘表面(未示出)具有柔性。也就是说,应当理解,耐用材料比强健材料更刚性,并且因此,为了沿着第一滑动体主体周边的耐用材料变得柔性,第一滑动体主体外通道必须更靠近第一滑动体主体周边,使得如下定义的“环带”更薄。众所周知,相同材料的较薄构造比较厚构造更具柔性。
在示例性实施方案中,滑动体主体外通道50是以同心构造设置的伸长的槽52。也就是说,存在第一组滑动体主体外通道60(即,“第一组”由附图标记60共同标识)以及第二组滑动体主体外通道62(即,“第二组”由附图标记62共同标识)。每个滑动体主体槽52是具有第一端部54、中间部分56、第二端部58和纵向中心线59的伸长的开口。在示例性实施方案中,如图所示,滑动体主体槽52的尺寸(即,沿着滑动体主体槽纵向中心线59的长度)大体相似。滑动体主体槽52大体上对应于邻近特定滑动体主体槽52的滑动体主体周边46的形状。也就是说,在具有长圆形滑动体主体42的示例性实施方案中,邻近长圆形滑动体主体周边46的平行部分的滑动体主体槽52是大体上直的槽52A。此外,出于上述原因,邻近长圆形滑槽主体周边46的平行部分的滑动体主体槽52可以允许相对于以下讨论的大体上弧形的槽52B具有更大的柔性。相反地,邻近长圆形滑动体主体周边46的弧形部分的滑动体主体槽52是大体上弧形的槽52B。在长圆形滑动体主体周边46的平行部分与长圆形滑动体主体周边46的弧形部分之间的过渡部分上延伸的滑动体主体槽52将具有部分直的和部分弧形的槽52C。
此外,在示例性实施方案中,滑动体主体槽52彼此“周向地邻近”。也就是说,如本文所用,“周向地邻近”意味着槽52间隔的距离小于沿着滑动体主体槽纵向中心线59的长度。在此构造中,槽在相邻的槽52之间限定滑动体支撑元件70。换句话说,滑动体主体42的在槽52之间的部分被限定为滑动体支撑元件70。为了清楚起见,将第一组滑动体主体外通道60中的槽52之间的滑动体支撑元件70识别为滑动体第一支撑部72,并且将第二组滑动体主体外通道62中的槽52之间的滑动体支撑元件70识别为滑动体第二支撑部74。
第一组滑动体主体外通道60被设置成“有效地邻近”滑动体主体周边46。在此构造中,第一组滑动体主体外通道60限定了外环带80。也就是说,如本文所用,“环带”是主体的在形成多个邻近通道之后余下的材料。“环带”是设置在通道与邻近表面之间的材料,或者设置在同心的成组通道之间的材料。因此,在此构造中,外环带80包括滑动体主体边缘表面49。
如上所述,在此构造中,每个槽52被构造成允许滑动体主体边缘表面49是柔性的。也就是说,当足够的偏压被施加到邻近槽52的滑动体主体边缘表面49时,限定滑动体主体边缘表面49的该部分的外环带80偏移到槽52中。需注意,外环带80的邻近槽中间部分56的部分能够比外环带80的邻近槽的第一端部54或第二端部58的部分弯曲得更远。此外,外环带80的邻近滑动体支撑元件70的部分将仅弯曲可忽略的距离。
相应地,第二组滑动体主体外通道62被设置成有效地邻近第一组滑动体主体外通道60。也就是说,第二组滑动体主体外通道62围绕第一组滑动体主体外通道60设置,并且在其间限定内环带82。此外,滑动体第二支撑部74的位置偏离滑动体第一支撑部72的位置。也就是说,滑动体第一支撑部72设置在第二组滑动体主体外通道62中的槽52的槽中间部分56处。在此构造中,当足够的偏压被施加到邻近滑动体第一支撑部72的滑动体主体边缘表面49时,邻近滑动体第一支撑部72的内环带82将弯曲到邻近滑动体第一支撑部72的槽52中。因此,在其中滑动体主体外通道50围绕滑动体主体周边46延伸的实施方案中,滑动体主体边缘表面49不存在不具柔性的部分。
因此,在上述构造中,滑动体主体外通道50和滑动体主体环带80、82是柔性组件11。因此,当滑动体主体42由耐用材料制成时,转子组件主体外表面23是耐用的、柔性的转子组件主体外表面23。可替代地,当滑动体主体42由强健材料制成时,转子组件主体外表面23是强健的、柔性的转子组件主体外表面23。
需注意,槽52并且特别是所示出的槽52的结构仅仅是实例。滑动体主体外通道50可以具有任何形状,包括但不限于大体上圆形的开口、大体上正方形的开口、大体上菱形的开口、大体上椭圆形的开口、大体上三角形的开口、大体上六角形的开口、大体上八角形的开口、部分径向槽以及螺旋槽。此外,一组外通道60、62不必具有统一的尺寸或形状。也就是说,一组外通道60、62可以包括上述任何或所有形状。例如,在上述构造中,滑动体支撑元件70可以包括圆形开口。此外,虽然如图所示的滑动体主体外通道50包括大体上光滑的表面,但是滑动体主体外通道50可以具有包括除了光滑表面以外的形状的任何形状。此外,在未示出的示例性实施方案中,外通道50包括内部支撑件68。例如,内部支撑件68可以是设置在外通道50内的大体上伸长的杆或圆环。内部支撑件68可以由与滑动体主体42相同的材料制成,即,外通道50可以以其中在切出外通道50时形成内部支撑件68的方式来形成。可替代地,内部支撑件68可以由另一种材料制成,并且随后耦接、直接耦接或固定到滑动体主体42。在另一个示例性实施方案中,内部支撑件68是弹簧(未示出)。
在另一个实施方案中,如图3所示,多个通道31中的柔性组件11是转子叠片主体32。也就是说,关于滑动体主体42的以上描述也可应用于转子叠片主体32。应当理解,前面的七段可以被重写,并且大体上通过将术语“滑动体主体”改变成“转子叠片主体”将描述转子叠片主体32上的柔性组件11。这种公开内容通过引用并入本文。在示例性实施方案中,每个转子叠片主体32是单体的主体。
在另一个未示出的实施方案中,包括外通道的柔性组件11被结合到单体的转子组件主体22中。也就是说,单体的转子组件主体22包括被设置成邻近转子组件主体外表面23的多个通道(未示出)。在示例性实施方案中,所述通道以与上述构造相似的构造设置,即,同心槽。在此实施方案中,所述通道通过3D打印、电火花加工、熔模铸造或任何其它合适的方法形成在单体的转子组件主体22中。
如图5所示,定子组件100包括限定螺旋通道104的主体102。在示例性实施方案中,定子组件主体102是定子叠片101的“堆叠”,即,定子叠片主体110的堆叠。在未示出但在以下讨论的其它示例性实施方案中,定子组件主体102通过如上所述的传统方法来形成。在其中定子组件主体102是定子叠片101的堆叠的示例性实施方案中,每个定子叠片101包括主体110,并且在示例性实施方案中是单体的主体。定子组件叠片主体110如下构造。
如前所述,“叠片主体”或“叠片”是具有介于约0.010英寸与0.100英寸之间或者约0.025英寸的厚度的大体上平面的主体。在示例性实施方案中,定子组件叠片主体110由耐用或强健的材料制成。此外,定子组件叠片主体110包括大体上圆形的外周边112并且限定了主要的内通道114和多个外通道116。如下所述,定子组件叠片主体内通道114限定了定子组件螺旋通道104或“螺旋通道104”。如上所述,在如图所示的示例性实施方案中,螺旋通道104具有比转子组件主体22多一个叶瓣;因此,在图3所示并且可与单叶瓣转子组件主体22一起操作的实施方案中,定子组件叠片主体的内通道114是长圆形通道。定子组件叠片主体内通道114具有周边117并且限定了内表面118,所述内表面是平面主体边缘表面。
在示例性实施方案中,定子组件叠片主体外通道116被设置成“有效地邻近”定子组件叠片主体内通道周边117和定子组件叠片主体内通道内表面118的至少一部分。在示例性实施方案中,定子组件叠片主体外通道116围绕定子组件叠片主体内通道周边117和定子组件叠片主体内通道内表面118延伸。如下所述,定子组件叠片主体外通道116被构造成允许定子组件叠片主体内通道内表面118是柔性的。
在示例性实施方案中,定子组件叠片主体外通道116是以同心构造设置的伸长的槽120。也就是说,存在第一组定子组件叠片主体外通道140(即,“第一组”由附图标记140共同标识)以及第二组定子组件叠片主体外通道142(即,“第二组”由附图标记142共同标识)。每个定子组件叠片主体外通道槽120是具有第一端部124、中间部分126、第二端部128和纵向中心线129的伸长的开口。在示例性实施方案中,如图所示,定子组件叠片主体外通道槽120的尺寸(即,沿着定子组件叠片主体槽纵向中心线129的长度)大体相似。定子组件叠片主体外通道槽120大体上对应于邻近特定定子组件叠片主体外通道槽120的定子组件叠片主体内通道周边117的形状。也就是说,在具有定子组件叠片主体内通道114的示例性实施方案中,邻近长圆形定子组件叠片主体内通道周边117的平行部分的定子组件叠片主体外通道槽120是大体上直的槽120A。相反地,邻近长圆形定子组件叠片主体内通道周边117的弧形部分的定子组件叠片主体外通道槽120是大体上弧形的槽120B。在长圆形定子组件叠片主体内通道周边117的平行部分与长圆形定子组件叠片主体内通道周边117的弧形部分之间的过渡部分上延伸的定子组件叠片主体外通道槽120将具有部分直的和部分弧形的槽120C。
此外,在示例性实施方案中,定子组件叠片主体外通道槽120彼此“周向地邻近”。在此构造中,定子组件叠片主体槽120在相邻的定子组件叠片主体槽120之间限定了定子组件叠片主体支撑元件160。换句话说,定子组件叠片主体110的在定子组件叠片主体外通道槽120之间的部分被限定为定子组件叠片主体支撑元件160。为清楚起见,第一组定子组件叠片主体外通道140中的定子组件叠片主体外通道槽120之间的定子组件叠片主体支撑元件160被识别为定子组件叠片主体第一支撑部162,并且第二组定子组件叠片主体外通道142中的定子组件叠片主体外通道槽120之间的定子组件叠片主体支撑元件160被识别为定子组件叠片主体第二支撑部164。
第一组定子组件叠片主体外通道140被设置成“有效地邻近”定子组件叠片主体内通道周边117。在此构造中,第一组定子组件叠片主体外通道140限定了定子组件叠片主体内环带180。因此,在此构造中,定子组件叠片主体内环带180包括定子组件叠片主体内通道内表面118。
如上所述,在此构造中,每个定子组件叠片主体槽120被构造成允许定子组件叠片主体内通道内表面118是柔性的。也就是说,当将足够的偏压施加到邻近定子组件叠片主体外通道槽120的定子组件叠片主体内通道内表面118时,限定了定子组件叠片主体内通道内表面118的该部分的定子组件叠片主体内环带180偏移到定子组件叠片主体外通道槽120中。需注意,定子组件叠片主体内环带180的邻近槽中间部分56的部分能够比定子组件叠片主体内环带180的邻近槽的第一端部124或第二端部128的部分弯曲得更远。此外,定子组件叠片主体内环带180的邻近滑动体支撑元件70的部分将仅弯曲可忽略的距离。
相应地,第二组定子组件叠片主体外通道142被设置成有效地邻近第一组定子组件叠片主体外通道140。也就是说,第二组定子组件叠片主体外通道142围绕第一组定子组件叠片主体外通道140设置,并且在其间限定外环带182。此外,定子组件叠片主体第二支撑部164的位置偏离定子组件叠片主体第一支撑部162的位置。也就是说,定子组件叠片主体第一支撑部162设置在第二组定子组件叠片主体外通道142中的定子组件叠片主体外通道槽120的槽中间部分126处。在此构造中,当将足够的偏压施加到邻近定子组件叠片主体第一支撑部162的定子组件叠片主体内通道内表面118时,邻近所述定子组件叠片主体第一支撑部162的外环带182将弯曲到邻近所述定子组件叠片主体第一支撑部162的定子组件叠片主体外通道槽120中。因此,在其中定子组件叠片主体外通道116围绕定子组件叠片主体内通道周边117延伸的实施方案中,定子组件叠片主体内通道内表面118不存在不具柔性的部分。因此,在上述构造中,定子组件叠片主体外通道116和定子组件叠片主体环带180、182构成柔性组件11。换句话说,螺旋通道104包括柔性组件11。因此,当定子叠片主体110由耐用材料制成时,定子组件螺旋通道表面105是耐用的、柔性的定子组件螺旋通道表面105,并且定子组件叠片主体内通道114是耐用的、柔性的定子组件叠片主体内通道114。可替代地,当定子叠片主体110由强健材料制成时,定子组件螺旋通道表面105是强健的、柔性的定子组件螺旋通道表面105,并且定子组件叠片主体内通道114是强健的、柔性的定子组件叠片主体内通道114。
需注意,定子组件叠片主体外通道槽120,并且特别是所示的定子组件叠片主体外通道槽120的构造仅仅是实例。定子组件叠片主体外通道116可以具有任何形状,包括但不限于大体上圆形的开口、大体上正方形的开口、大体上菱形的开口、大体上椭圆形的开口、大体上三角形的开口、大体上六角形的开口、大体上八角形的开口、部分径向槽以及螺旋槽。此外,一组外通道不必具有统一的尺寸或形状。也就是说,一组外通道可以包括上述任何或所有形状。例如,在上述构造中,定子组件叠片主体支撑元件160可以包括圆形开口。此外,虽然如图所示的定子组件叠片主体外通道116包括大体上光滑的表面,但是定子组件叠片主体外通道116可以具有包括除了光滑表面以外的形状的任何形状。如上所述,定子组件叠片主体外通道116还可以包括内部支撑件(未示出)。
在另一个未示出的实施方案中,包括外通道的柔性组件11被结合到单体的定子组件主体(未示出)中。也就是说,单体的定子组件主体包括被设置成邻近定子组件主要的内通道(未示出)的多个通道(未示出)。在示例性实施方案中,所述通道以与上述构造相似的构造设置,即,同心槽。在此实施方案中,所述通道通过3D打印、电火花加工、熔模铸造或任何其它合适的方法形成在单体的定子组件主体中。
定子组件叠片主体110被组装成定子组件主体102。通常,定子组件叠片主体110被组装成堆叠主体并且如上所述地耦接。然而,为了形成螺旋通道104,如图6所示,每个定子组件叠片主体110成角度地偏移,即,相对于相邻的定子组件叠片主体110略微旋转。也就是说,每个定子组件叠片主体110包括第一基准位置200;如图所示,定子组件叠片主体第一基准位置200沿着定子组件叠片主体内通道114的纵向轴线202设置。因此,如果第一定子组件叠片主体110'被定向为定子组件叠片主体第一基准位置200'处于竖直位置,那么第二定子组件叠片主体110"被定向为定子组件叠片主体第一基准位置200'在从竖直位置径向偏移的位置处。类似地,第三定子组件叠片主体110'"被定向为定子组件叠片主体第一基准位置200'在从第二定子组件叠片主体第一基准位置200"径向偏移的位置处。应当理解,定子组件叠片主体110之间的径向偏移是实质上均匀的。以举例的方式,如果螺旋通道104延伸超过九十度的弧度并且定子组件主体102由九十个定子组件叠片主体110制成,那么每个定子组件叠片主体110将从每个邻近定子组件叠片主体110径向偏移大约一度。
此外,在此构造中,定子组件叠片主体外通道116还形成伸长的螺旋通道,在下文中称为“外螺旋通道”190。在一个示例性实施方案中,外螺旋通道190填充有未示出的弹性材料。在此实施方案中,弹性材料粘附到定子组件叠片主体110。因此,如果在渐进式空腔泵10的操作期间定子组件叠片主体内环带180的一部分从定子组件叠片主体110脱离,那么弹性材料可以防止碎片移动通过定子组件100。在另一替代实施方案中,堆叠的上游端和下游端处的多个定子组件叠片主体110填充有弹性材料(未示出),而其余定子组件叠片主体填充有染料(未示出)或类似材料。在此构造中,外螺旋通道190在上游端和下游端处由弹性材料密封。此外,如果定子组件叠片主体内环带180的一部分从定子组件叠片主体110脱离,那么染料将逸出并与被移动的材料(或驱动流体)混合,并且可以由在下游位置处的传感器(未示出)或用户检测到。因此,染料和传感器(如果使用的话)充当损坏警告系统。
在示例性实施方案中,单体的转子组件主体22被设置在螺旋通道104中,并且单体的转子组件主体22沿着至少一条密封线抵靠螺旋通道104密封。也就是说,沿着单体的转子组件主体22的周边的至少一个位置实质上接触螺旋通道104。这种关系可以在单体的转子组件主体22和螺旋通道104的一个横截面平面处可视化。此外,这种可视化方便地对应于单体的转子组件主体22与定子叠片主体110之间的相互作用。如上所述,在示例性实施方案中,转子组件主体22抵靠螺旋通道104的弧形部分实质上密封。转子组件主体22抵靠螺旋通道104的线性部分大体上密封,但是该区域中的密封与螺旋通道104的弧形部分中的密封相比没那么重要。
因此,在所示的实施方案中,单体的转子组件主体22具有大体上圆形的横截面区域。在一个示例性实施方案中,单体的转子组件主体22的直径与长圆形螺旋通道104的平行侧之间的距离大体上相同。在此构造中,单体的转子组件主体22的直径大体上对应于长圆形螺旋通道104的横向宽度(即,所述长圆形的两个大体上平行的侧部之间的宽度)。此外,单体的转子组件主体22的曲率实质上对应于长圆形螺旋通道104的弧形部分。因此,单体的转子组件主体22在设置在长圆形螺旋通道104的中间部分中时在两个相对的位置处大体上接合长圆形螺旋通道104,并且在设置在长圆形螺旋通道104的任一端部处时实质上接合长圆形螺旋通道104的弧形部分。如图所示,当单体的转子组件主体22旋转时,在特定横向平面处的单体的转子组件主体22在长圆形螺旋通道104内往复运动。因此,大体上,长圆形螺旋通道104被分成两个空腔;在单体的转子组件主体22的任一侧上具有一个。应当理解,当单体的转子组件主体22达到最大横向偏移时,单体的转子组件主体22实质上接合长圆形螺旋通道104的一个弧形部分。
在另一个实施方案中,长圆形螺旋通道104或者换句话说每个长圆形定子组件叠片主体内通道114略微小于单体的转子组件主体22的横截面面积。由于定子组件叠片主体110上的柔性组件11,这是可能的。也就是说,每个定子组件叠片主体内通道内表面118紧密地对应于单体的转子组件主体22。在此构造中,并且当单体的转子组件主体22如上所述地往复运动时,定子组件叠片主体110上的柔性组件11允许每个定子组件叠片主体内通道114扩张(即,弯曲)成足以容纳单体的转子组件主体22的略微更大的横截面面积。
在上述实施方案中,单体的转子组件主体22沿着至少一条密封线抵靠螺旋通道104接合并密封。几乎从字面上讲,密封线是一条线,即,非常薄的几乎线性的界面。应当理解,在物理世界中,没有直接沿着二维线存在的界面。如果例如在定子组件螺旋通道表面105上存在划痕,那么密封线不能接合划痕的表面,并且因此将不会如上所述地密封空腔。在其中转子组件20包括转子组件堆叠主体30的实施方案中,转子叠片主体32的边缘表面在大体上平行于转子组件20的旋转轴线的方向上延伸。类似地,每个定子组件叠片主体内通道内表面118在大体上平行于转子组件20的旋转轴线的方向上延伸。在具有转子组件堆叠主体30的实施方案中,每个转子叠片主体32被设置在单个定子组件叠片主体内通道114内,即,在单个定子组件叠片主体110的平面内。因此,每个转子叠片主体32都与它设置于其中的定子组件叠片主体110相关联。如上所述,每个转子叠片主体32的厚度与相关联的定子叠片主体110的厚度实质上相同。在此构造中,邻接的转子叠片主体32的边缘表面和定子组件叠片主体的内通道内表面118提供比上述实施方案的密封线更完全的密封。也就是说,如本文所用,“更完全的密封”是与密封线相对的平面密封区域。
因此,如上所述,在上述构造中,渐进式空腔泵10包括耐用的、柔性的定子组件螺旋通道表面105。也就是说,渐进式空腔泵10被构造成在转子组件主体22或定子组件螺旋通道104的接合表面中的至少一个上提供柔性表面。
在另一个实施方案中,转子组件20包括如上所述的多个滑动体40。也就是说,转子组件20包括如上所述的单体的转子组件主体22,除了单体的转子组件主体22的尺寸被设计成配合在转子主体通道44内并且尺寸被设计成不对应于长圆形螺旋通道104的宽度。正如转子叠片主体32,每个滑动体主体42与单个定子组件叠片主体110相关联,并且设置在单个定子组件叠片主体内通道114内,即,在单个定子组件叠片主体110的平面内。每个滑动体主体42进一步设置在单体的转子组件主体22上。也就是说,如图4所示,对于每个滑动体主体42,单体的转子组件主体22设置在转子主体通道44中,并且每个滑动体主体42可移动地设置在相关联的定子组件叠片主体内通道114中。在此构造中,当单体的转子组件主体22旋转时,单体的转子组件主体22可操作地接合转子主体通道凸起表面45,从而引起滑动体主体42在相关联的定子组件叠片主体内通道114中往复运动。
因此,在上述构造中,渐进式空腔泵10包括耐用的、柔性的转子组件外表面23。也就是说,渐进式空腔泵10被构造成在转子组件主体22或定子组件螺旋通道104的接合表面中的至少一个上提供柔性表面。此外,如图4所示,定子组件螺旋通道表面105还包括柔性组件11。因此,转子组件外表面23和定子组件螺旋通道表面105都包括柔性组件11。换句话说,转子组件外表面23和定子组件螺旋通道表面105的界面300是柔性界面。也就是说,如本文所用,“柔性界面”是其中构成界面的两个元件都具有柔性构造的界面。此外,当形成界面的两个元件都由耐用材料制成时,界面300是耐用的、柔性的界面300。可替代地,如果形成界面的两个元件都由强健材料制成,那么界面300是强健的、柔性的界面300。
需注意,在此构造中,成角度地偏移的定子叠片主体110在定子组件螺旋通道104内形成一系列台阶(step)或层。这些台阶影响材料通过定子组件螺旋通道104的流动;也就是说,台阶会在材料流动中形成湍流。因此,台阶充当湍流器170。此外,湍流器170不是被加工到定子叠片主体110中或者通过另一制造工艺形成的。因此,湍流器170是“固有湍流器”170。也就是说,如本文所用,“固有湍流器”是由叠片主体或类似构造的组件形成的湍流器,而不是通过切割或以其它方式在主体中形成凹槽或通道而形成的湍流器。需注意,上述转子组件堆叠主体30也形成固有湍流器。
相应地,制造转子组件20的方法包括以下步骤。提供多个转子叠片主体32,每个转子叠片主体32包括柔性组件11,并且将转子叠片主体32组装成堆叠。提供多个转子叠片主体32包括提供叠片材料、形成转子叠片主体32,所述转子叠片主体具有多个外通道,所述多个外通道被设置成有效地邻近转子叠片主体边缘34。提供叠片材料、形成转子叠片主体32包括从叠片材料切割转子叠片主体32,以及切割多个外通道,所述多个外通道被设置成有效地邻近转子叠片主体边缘34。在示例性实施方案中,切割多个外通道包括切割第一组(未示出)外通道,所述第一组外通道被设置成有效地邻近转子叠片主体边缘34,以及切割第二组(未示出)外通道,所述第二组外通道被设置成有效地邻近所述第一组外通道。组装转子叠片主体32包括耦接转子叠片主体32以及以下中的至少一者:铆固转子叠片主体32、焊接转子叠片主体32的外表面、将每个转子叠片主体32焊接到相邻的转子叠片主体32、或者机械地压缩转子叠片主体32。
在替代实施方案中,提供多个转子叠片主体32包括提供叠片材料、形成转子叠片主体32、以及形成滑动体主体42,所述滑动体主体具有多个外通道和转子主体通道44,所述多个外通道被设置成有效地邻近滑动体主体边缘表面49。由叠片材料形成转子叠片主体32包括从叠片材料切割转子叠片主体32。形成滑动体主体42包括从叠片材料切割滑动体主体42、切割被设置成有效地邻近滑动体主体边缘表面48的多个外通道50、以及切割转子主体通道44。在示例性实施方案中,切割多个外通道包括切割被设置成有效地邻近滑动体主体边缘表面49的第一组60外通道、以及切割被设置成有效地邻近第一组60外通道62的第二组62外通道。在此实施方案中,组装转子叠片主体32包括铆固转子叠片主体32、焊接转子叠片主体32的外表面、将每个转子叠片主体32焊接到相邻的转子叠片主体32、或者机械地压缩转子叠片主体32。在此实施方案中,还存在将滑动体主体42设置在相关联的转子叠片主体32上的步骤。
类似地,制造定子组件100的方法包括以下步骤。提供多个定子叠片主体102,每个定子叠片主体102包括柔性组件11,并且将定子叠片主体102组装成堆叠。提供多个定子叠片主体102包括提供叠片材料、形成定子叠片主体110,所述定子叠片主体具有内通道114以及被设置成有效地邻近定子内通道114的多个外通道116。提供叠片材料、形成转子叠片主体32包括从叠片材料切割定子叠片主体110、切割内通道114以及切割被设置成有效地邻近定子内通道114的多个外通道116。在示例性实施方案中,切割多个外通道116包括切割被设置成有效地邻近定子内通道114的第一组140外通道、以及切割被设置成有效地邻近第一组140外通道116的第二组142外通道116。组装定子叠片主体110包括耦接定子叠片主体110,其中每个定子叠片主体110与相邻的定子叠片主体110成角度地偏移。耦接定子叠片主体110包括铆固定子叠片主体110、焊接1164定子叠片主体110的外表面、将每个定子叠片主体110焊接到相邻的定子叠片主体110、或者机械地压缩定子叠片主体110中的至少一者。如上所述,此方法形成至少部分地由环带180限定的内通道114,其中环带180是柔性的。
尽管已详细描述本公开的特定实施方案,但所属领域的技术人员将了解,可鉴于本公开的总体教导而开发那些细节的各种修改和替代方案。因此,关于将被赋予所附权利要求的全部广度以及其任何及所有等效形式的本发明的范围,所公开的特定布置意味仅为说明性而非限制性。

Claims (17)

1.一种用于渐进式空腔泵定子组件(1)的定子叠片(101),包括:
单体的平面主体(102),所述平面主体限定了主要的内通道(114)和多个外通道(116);
所述外通道(116)被设置成有效地邻近所述内通道(114),由此所述内通道(114)至少部分地由环带(180)限定;并且
其中所述环带(180)和所述外通道(116)构成柔性组件(11)。
2.如权利要求1所述的定子叠片(101),其中所述多个外通道(116)包括周向地邻近的通道(116)。
3.如权利要求2所述的定子叠片(101),其中:
所述多个外通道(116)包括多个槽(120);
每个槽(120)包括第一端部(124)、中间部分(126)和第二端部(128);并且
所述槽(120)在相邻的槽(120)之间限定了多个支撑元件(160)。
4.如权利要求3所述的定子叠片(101),其中所述多个外通道(116)围绕所述内通道(114)设置。
5.如权利要求4所述的定子叠片(101),其中:
所述多个外通道(116)包括第一组外通道(140)和第二组外通道(142);
所述第一组外通道(140)围绕所述内通道(114)设置;
所述第一组外通道(140)在相邻的通道之间限定了多个第一支撑元件(162);
所述第二组外通道(142)围绕所述第一组外通道(140)设置;所述第二组外通道(142)在相邻的通道之间限定了多个第二支撑元件(164)。
6.如权利要求5所述的定子叠片(101),其中:
径向的每个第一支撑元件(162)的纵向轴线(202)沿着所述第二组外通道(142)中的通道的中间部分(126)设置;并且
径向的每个第二支撑元件(164)的纵向轴线(202)沿着所述第一组外通道(60)中的通道的中间部分(126)设置。
7.如权利要求1所述的定子叠片(101),其中:
所述多个外通道(116)包括第一组外通道(140)和第二组外通道(142);
所述第一组外通道(140)围绕所述内通道(114)设置;并且
所述第二组外通道(142)围绕所述第一组外通道(140)设置。
8.如权利要求1所述的定子叠片(101),其中所述主体(102)由耐用材料制成。
9.一种制造用于渐进式空腔泵(1)的定子组件(3)的方法,包括:
提供多个单体的定子叠片主体(110),每个定子叠片主体(110)是平面的,限定了主要的内通道(114)和多个外通道(116),所述外通道(116)被设置成有效地邻近所述内通道(114),由此所述内通道(114)至少部分地由环带(180)限定,其中所述环带(180)是柔性的;以及
将所述定子叠片主体(110)以堆叠的方式彼此耦接,其中每个定子叠片主体(110)与每个相邻的定子叠片主体成角度地偏移。
10.如权利要求9所述的方法,其中提供多个定子叠片主体(110)包括:
提供叠片材料;
从所述叠片材料切割定子叠片主体;
在所述定子叠片主体(110)中切割内通道(114);以及
切割多个外通道(116),所述多个外通道被设置成有效地邻近所述定子叠片主体(110)中的所述内通道(114)。
11.如权利要求10所述的方法,其中切割多个外通道(116)包括:
切割第一组外通道(140),所述第一组外通道被设置成有效地邻近所述内通道(114);以及
切割第二组外通道(142),所述第二组外通道被设置成有效地邻近所述第一组外通道(140)。
12.如权利要求9所述的方法,其中将所述定子叠片主体(110)以堆叠的方式彼此耦接包括堆叠所述定子叠片主体(110)、焊接所述定子叠片主体(110)的外表面、将每个所述定子叠片主体(110)焊接到相邻的定子叠片主体、或者机械地压缩所述定子叠片主体(110)的堆叠中的至少一者。
13.一种用于渐进式空腔泵(1)的定子组件(3),所述渐进式空腔泵(1)包括伸长的螺旋转子(2),所述定子组件(3)包括:
多个单体的定子叠片主体(110),每个定子叠片主体(110)是平面的,限定了主要的内通道(114)和多个外通道(116),所述外通道(116)被设置成有效地邻近所述内通道(114),由此所述内通道(114)至少部分地由环带(180)限定,其中所述环带(180)是柔性的;
所述定子叠片主体(110)以堆叠的方式彼此耦接,其中所述定子叠片主体的内通道(114)限定了螺旋通道(104),并且所述定子叠片主体的外通道(116)限定了螺旋外通道(190);并且
其中所述螺旋通道(104)包括柔性组件(11)。
14.如权利要求13所述的定子组件(3),其中所述多个定子叠片主体(110)由耐用材料制成。
15.如权利要求13所述的定子组件(3),其中所述螺旋转子(2)包括具有外表面(23)的主体(22),所述转子的主体的外表面(23)包括两个相对的表面,并且其中所述螺旋通道(104)限定了恒定接触通道或压缩通道中的一者。
16.如权利要求13所述的定子组件(3),其中所述螺旋通道(104)包括固有湍流器(170)。
17.如权利要求13所述的定子组件(3),其中:
每个定子叠片主体(110)的所述多个外通道(116)包括第一组外通道(140)和第二组外通道(142);
所述第一组外通道(140)围绕相关联的所述内通道(114)设置;并且
所述第二组外通道(142)围绕相关联的所述第一组外通道(140)设置。
CN201580080924.XA 2015-05-04 2015-11-04 定子 Active CN107709778B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562156512P 2015-05-04 2015-05-04
US62/156,512 2015-05-04
PCT/US2015/058921 WO2016178710A1 (en) 2015-05-04 2015-11-04 Stator

Publications (2)

Publication Number Publication Date
CN107709778A CN107709778A (zh) 2018-02-16
CN107709778B true CN107709778B (zh) 2019-11-05

Family

ID=61099080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580080924.XA Active CN107709778B (zh) 2015-05-04 2015-11-04 定子

Country Status (3)

Country Link
EP (1) EP3292308B1 (zh)
CN (1) CN107709778B (zh)
HK (1) HK1244525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021006414A1 (de) * 2021-12-30 2023-07-06 Seepex Gmbh Stator für eine Exzenterschneckenpumpe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975121A (en) * 1973-11-14 1976-08-17 Smith International, Inc. Wafer elements for progressing cavity stators
US5807087A (en) * 1997-03-21 1998-09-15 Tarby, Inc. Stator assembly for a progressing cavity pump
US5832604A (en) * 1995-09-08 1998-11-10 Hydro-Drill, Inc. Method of manufacturing segmented stators for helical gear pumps and motors
CN1729361A (zh) * 2002-10-21 2006-02-01 诺埃提克工程公司 莫瓦诺型泵的定子
CN102713127A (zh) * 2009-11-13 2012-10-03 普拉德研究及开发股份有限公司 定子插入物、其制造方法及包括该定子插入物的井下动力钻具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2712122A1 (de) * 1977-03-19 1978-09-28 Streicher Foerdertech Exzenterschneckenpumpe
US4144001A (en) * 1977-03-29 1979-03-13 Fordertechnik Streicher Gmbh Eccentric worm pump with annular wearing elements
US9309767B2 (en) * 2010-08-16 2016-04-12 National Oilwell Varco, L.P. Reinforced stators and fabrication methods
US9133841B2 (en) * 2013-04-11 2015-09-15 Cameron International Corporation Progressing cavity stator with metal plates having apertures with englarged ends

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975121A (en) * 1973-11-14 1976-08-17 Smith International, Inc. Wafer elements for progressing cavity stators
US5832604A (en) * 1995-09-08 1998-11-10 Hydro-Drill, Inc. Method of manufacturing segmented stators for helical gear pumps and motors
US5807087A (en) * 1997-03-21 1998-09-15 Tarby, Inc. Stator assembly for a progressing cavity pump
CN1729361A (zh) * 2002-10-21 2006-02-01 诺埃提克工程公司 莫瓦诺型泵的定子
CN102713127A (zh) * 2009-11-13 2012-10-03 普拉德研究及开发股份有限公司 定子插入物、其制造方法及包括该定子插入物的井下动力钻具

Also Published As

Publication number Publication date
CN107709778A (zh) 2018-02-16
EP3292308A1 (en) 2018-03-14
EP3292308A4 (en) 2018-12-12
HK1244525A1 (zh) 2018-08-10
EP3292308B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
CA2535687C (en) Progressing cavity stator including at least one cast longitudinal section
CA2889612C (en) Metal stators
US10774832B2 (en) Stator
US11821288B2 (en) Hydraulic tools, drilling systems including hydraulic tools, and methods of using hydraulic tools
CA2939024C (en) Hybrid elastomer/metal on metal motor
US20060182643A1 (en) Progressing cavity stator having a plurality of cast longitudinal sections
US7214042B2 (en) Progressing cavity pump with dual material stator
WO2018222490A1 (en) Method of coupling stator/rotor laminates
CN107709778B (zh) 定子
EP2699821B1 (en) Rotors formed using involute curves
US8985977B2 (en) Asymmetric lobes for motors and pumps
CA2551292A1 (en) Stator for an eccentric single-rotor screw pump and method for its production
WO2007083872A1 (en) Rotor structure of rotary positive displacement pump
CN105829660B (zh) 液压凸轮轴调节器的分件式转子中的非切削制成的油通道
US11815139B2 (en) PDM transmission with sliding contact between convex shaft pins and concave bearings surfaces
US20170268506A1 (en) Method of Coupling Stator/Rotor Laminates
US11655815B2 (en) Semi-rigid stator
RU2345208C1 (ru) Героторная машина
US20240044251A1 (en) High modulus liners in pdm stators with diameter reliefs compensating for rotor tilt
EP3467311B1 (en) Vortex compressor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1244525

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant