CN107705588A - It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network - Google Patents

It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network Download PDF

Info

Publication number
CN107705588A
CN107705588A CN201711068207.2A CN201711068207A CN107705588A CN 107705588 A CN107705588 A CN 107705588A CN 201711068207 A CN201711068207 A CN 201711068207A CN 107705588 A CN107705588 A CN 107705588A
Authority
CN
China
Prior art keywords
mrow
msub
mover
intersection
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711068207.2A
Other languages
Chinese (zh)
Inventor
陈明
方忠良
徐云
杨军喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG GELA WEIBAO GLASS TECHNOLOGY Co Ltd
Original Assignee
ZHEJIANG GELA WEIBAO GLASS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG GELA WEIBAO GLASS TECHNOLOGY Co Ltd filed Critical ZHEJIANG GELA WEIBAO GLASS TECHNOLOGY Co Ltd
Priority to CN201711068207.2A priority Critical patent/CN107705588A/en
Publication of CN107705588A publication Critical patent/CN107705588A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network, comprise the following steps:1) intersection is initialized;2) constraint equation is established to the position of green wave band bandwidth in the cycle;3) section constraint is carried out to the position of green wave band bandwidth in the cycle;4) loop constraint is carried out to the position of green wave band bandwidth in the cycle;5) sets target function and constraints, the green ripple Optimized model suitable for symmetrical and asymmetric phase sequence is drawn.Compared with prior art, the present invention is directed to intersection road network characteristic and actual traffic demand, it is a kind of suitable for symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network by providing, while bidirectional green wave band maximum is pursued, take into account the actual demand of each intersection in road network, intersection is chosen suitable clearance phase sequence according to own layer geometrical property and traffic stream characteristics, a kind of widely applicable, practical method is provided for Philodendron ‘ Emerald Queen' design.

Description

It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network
Technical field
The invention belongs to traffic signalization field, is specifically related to a kind of suitable for symmetrical and asymmetric mixed-phase sequence The green ripple optimization method of road network of row.
Background technology
The important component that Philodendron ‘ Emerald Queen' controls as urban traffic signal, it is even whole improving traffic congestion The traffic in city plays vital effect.However, existing green ripple control method still has following problem not solve: Existing symmetrical and asymmetric mixed-phase sequence green wave coordination control method is only applicable main line, can not be applied to road network.
The content of the invention
In order to which overcome the shortcomings of existing Philodendron ‘ Emerald Queen' can not be applied to road network, the present invention proposes one kind and is applied to Symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network, for using symmetrical and asymmetric mixed-phase sequence Road network, the present invention analyze traffic light time and the relation of flow first, provide a kind of suitable for symmetrical and asymmetric mixed-phase The green ripple Optimized model of road network of sequence.
In order to realize foregoing invention purpose, the present invention uses following technical scheme:
A kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network, this method includes following step Suddenly:
1) intersection is initialized;
2) constraint equation is established to the position of green wave band bandwidth in the cycle;
3) section constraint is carried out to the position of green wave band bandwidth in the cycle;
4) loop constraint is carried out to the position of green wave band bandwidth in the cycle;
5) sets target function and constraints, draw and optimize suitable for symmetrical and asymmetric mixed-phase sequence green ripple Model.
Further, in the step 1), initialization is carried out to intersection includes following set:
1.1) imported car flow point turns left, straight trip and 3 bursts of wagon flows of turning right, right-hand rotation wagon flow follow straight traffic to let pass;
1.2) the loss time of each signal phase is fixed and equal, the loss time for start the loss time with it is clear Sky loss time sum;
1.3) the queue clearance time of each intersection uplink and downlink phase immobilizes.
1.4) intersection uses symmetrical phase sequence or asymmetric phase sequence, does not consider that phase overlaps design method.
Further, in the step 2), constraint equation is established to the position of green wave band bandwidth in the cycle, process is such as Under:
2.1) because an intersection green wave band is in the range of the elastic green time for coordinating phase, therefore it is directed to intersection Sij, intersection S(i+1)jUp coordination phase and descending coordination phase, green wave band position constraint can be obtained:
In formula:SijFor in the road network containing m bar main lines, i-th of intersection on j-th strip main line;LijFor on j-th strip main line I-th of section, i.e. intersection SijWith intersection S(i+1)jBetween section;Respectively intersection SijUp, descending association The normalization queue clearance time of phase modulation position;gijThe normalization of respectively up, the descending coordination phase in intersection is effectively green The lamp time;bijRespectively section LijUp, descending green wave band bandwidth;wijFor intersection SijThe up green ripple for coordinating phase Band position, it is defined as the time gap that up green wave band center starts to up coordination phase effective green time;To intersect Mouth SijThe descending green wave band position for coordinating phase, descending green wave band center is defined as to descending coordination phase effective green time knot The time gap of beam;All time variables are all normalized to the ratio in relative signal cycle;
2.2) by the relation of green time and flow, normalization effective green time is obtained:
In formula:For intersection SijThe up actually active green time for coordinating phase;Z is the inverse in cycle;γijFor Intersection SijThe up flow-rate ratio for coordinating phase, is defined as intersection SijThe up flow and all phases in intersection for coordinating phase The ratio of bit traffic sum;For intersection SijThe total losses time sum of all phases in a cycle,For intersection SijPhase number,For the actual loss time of a phase, equal to start lose when BetweenLost with emptyingTime sum.Similarly, the descending normalization green time for coordinating phase also can be by descending phase flow Amount ratioIt is calculated;
2.3) it is as follows according to formula (1)-(2) obtain green wave band constraints:
Further, in the step 3), section constraint is carried out to the position of green wave band bandwidth in the cycle, process is such as Under:
3.1) intersection S is calculated(i+1)jDescending phase green wave band midpoint to up phase green wave band midpoint time gap, Obtain section constraint:
In formula:tijRespectively section LijUp, down direction normalization hourage;For intersection Sij It is descending coordination phase green time open it is bright be ahead of it is up coordination phase green time open bright normalization time interval;
3.2)I(i, j) (i+1, j)For integer of the section constraint more than or equal to zero, bring formula (2) into formula (4), arrange:
Further, in the step 4), loop constraint is carried out to the position of green wave band bandwidth in the cycle, main line a, done Line b, main line c, main line d form a loop, SpaAnd SlcIt is same intersection, SpaIt is a-th of main line, p-th of intersection, Slc It is c-th of main line, l-th of intersection, other intersections on loop are similar therewith;Intersection Spa(Slc) and hand over Prong S(p+1)a(Sqd) up coordination phase difference on east-west direction, φ(p+1, a) (q, d)For intersection S(p+1)a(Sqd) east-west direction It is up to coordinate phase and the up definition from other intersection variables on phase difference, loop coordinated between phase of North and South direction It is similar therewith;8 variable parameter sums are the integral multiple in cycle, and time variable normalizing is the ratio of relative cycle, obtains loop about Beam condition is as follows:
Further, in the step 5), object function is:
Constraints is:
In formula:kijWithRespectively section LijUp direction green wave band and down direction green wave band weight coefficient, its Choose generally according to main line section up direction flow and down direction flow to determine, meet
lijFor section LijDistance;VmaxAnd VminThe respectively maximum of travel speed, minimum value;CmaxAnd CminRespectively For the maximum in intersection cycle, minimum value.
Beneficial effects of the present invention are shown:For intersection road network characteristic and actual traffic demand, by providing one kind Suitable for the green ripple optimization method of road network of symmetrical and asymmetric mixed-phase sequence, while bidirectional green wave band maximum is pursued, The actual demand of each intersection in road network is taken into account, intersection is chosen according to own layer geometrical property and traffic stream characteristics Suitable clearance phase sequence, a kind of widely applicable, practical new method is provided for Philodendron ‘ Emerald Queen' design.
Brief description of the drawings
Fig. 1 is the when m- space diagram of mixing phase sequence maximum green wave band model of the present invention.
Fig. 2 is a loop schematic diagram of the present invention.
Fig. 3 is loop space expanded view of the present invention.
Fig. 4 is actual road network figure of the present invention.
Embodiment
In order that those skilled in the art the present invention is realized technological means, create feature, achieve the goal and effect It is easy to understand, the present invention is described in further details below with reference to accompanying drawing.
Reference picture 1~Fig. 4, it is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network, bag Include following steps:
1) intersection is initialized;
2) constraint equation is established to the position of green wave band bandwidth in the cycle;
3) section constraint is carried out to the position of green wave band bandwidth in the cycle;
4) loop constraint is carried out to the position of green wave band bandwidth in the cycle;
5) sets target function and constraints, draw and optimize suitable for symmetrical and asymmetric mixed-phase sequence green ripple Model.
In the present invention, in the step 1), initialization is carried out to intersection includes following set:
1.1) imported car flow point turns left, straight trip and 3 bursts of wagon flows of turning right, right-hand rotation wagon flow follow straight traffic to let pass;
1.2) the loss time (starting the loss time with emptying loss time sum) of each signal phase is fixed and equal;
1.3) the queue clearance time of each intersection uplink and downlink phase immobilizes;
1.4) intersection uses symmetrical phase sequence or asymmetric phase sequence, does not consider that phase overlaps design method.
According to Fig. 1, it is in step 2) of the present invention, constraint equation, process is established to the position of green wave band bandwidth in the cycle It is as follows:
2.1) because an intersection green wave band is in the range of the elastic green time for coordinating phase, therefore it is directed to intersection Sij, intersection S(i+1)jUp coordination phase and descending coordination phase, green wave band position constraint can be obtained:
In formula:SijFor in the road network containing m bar main lines, i-th of intersection on j-th strip main line;LijFor on j-th strip main line I-th of section, i.e. intersection SijWith intersection S(i+1)jBetween section;Respectively intersection SijUp, descending association The normalization queue clearance time of phase modulation position;gijThe normalization of respectively up, the descending coordination phase in intersection is effectively green The lamp time;bijRespectively section LijUp, descending green wave band bandwidth;wijFor intersection SijThe up green ripple for coordinating phase Band position, it is defined as the time gap that up green wave band center starts to up coordination phase effective green time;To intersect Mouth SijThe descending green wave band position for coordinating phase, descending green wave band center is defined as to descending coordination phase effective green time knot The time gap of beam;All time variables are all normalized to the ratio in relative signal cycle.
2.2) by the relation of green time and flow, normalization effective green time is obtained:
In formula:For intersection SijThe up actually active green time for coordinating phase;Z is the inverse in cycle;γijFor Intersection SijThe up flow-rate ratio for coordinating phase, is defined as intersection SijThe up flow and all phases in intersection for coordinating phase The ratio of bit traffic sum;For intersection SijThe total losses time sum of all phases in a cycle,For intersection SijPhase number,For the actual loss time of a phase, equal to start lose when BetweenLost with emptyingTime sum.Similarly, the descending normalization green time for coordinating phase also can be by descending phase flow Amount ratioIt is calculated.
2.3) according to Fig. 1, convolution (1)-(2) obtain green wave band constraints is as follows:
In the present invention, in the step 3), section constraint is carried out to the position of green wave band bandwidth in the cycle, process is such as Under:
3.1) according to BE sections in Fig. 1, intersection S is calculated(i+1)jDescending phase green wave band midpoint is into up phase green wave band The time gap of point, section constraint can be obtained:
In formula:tijRespectively section LijUp, down direction normalization hourage;For intersection Sij It is descending coordination phase green time open it is bright be ahead of it is up coordination phase green time open bright normalization time interval;
3.2)I(i, j) (i+1, j)For integer of the section constraint more than or equal to zero, bring formula (2) into formula (4), arrange:
In the present invention, in the step 4), loop constraint is carried out to the position of green wave band bandwidth in the cycle.According to Fig. 2, Main line a, main line b, main line c, main line d form a loop, SpaAnd SlcIt is same intersection, SpaIt is a-th main line p-th Intersection, SlcIt is c-th of main line, l-th of intersection, other intersections on loop are similar therewith.According to Fig. 3, intersection is existed Spatially deploy, obtain loop constraint.Intersection Spa(Slc) and intersection S(p+1)a(Sqd) on east-west direction Up coordination phase difference, φ(p+1, a) (q, d)For intersection S(p+1)a(Sqd) east-west direction it is up coordinate phase and North and South direction it is up The definition from other intersection variables on phase difference, loop coordinated between phase is similar therewith.From the figure 3, it may be seen that 8 variables Parameter sum is the integral multiple in cycle, and time variable normalizing is the ratio of relative cycle, and it is as follows to obtain loop constraints:
In the present invention, in the step 5), object function is:
Constraints is:
In formula:kijWithRespectively section LijUp direction green wave band and down direction green wave band weight coefficient, its Choose generally according to main line section up direction flow and down direction flow to determine, meet
LijFor section LijDistance;VmaxAnd VminThe respectively maximum of travel speed, minimum value;CmaxAnd CminRespectively For the maximum in intersection cycle, minimum value.
This example is optimized for embodiment with the green ripple of a certain actual road network in Hangzhou.As shown in figure 4, the road network is by 6 intersections Mouth I1..., I6And 7 section R12, R23..., R56Composition, major trunk roads are east-west Bin Anlu, Bin Kang road, attached branch Road is long river road, Jiang Honglu and the Jiang Huilu of south-north direction.The distance between each Adjacent Intersections are shown in Table 1.One kind is applied to Symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network, comprises the following steps:
Table 1
Step 1), which carries out initialization to intersection, includes following set:
1.1) imported car flow point turns left, straight trip and 3 bursts of wagon flows of turning right, right-hand rotation wagon flow follow straight traffic to let pass;
1.2) the loss time of each signal phase is fixed and equal, and the loss time is starts the loss time with emptying Lose time sum;
1.3) the queue clearance time of each intersection uplink and downlink phase immobilizes;
1.4) intersection uses symmetrical phase sequence or asymmetric phase sequence, does not consider that phase overlaps design method.
In step 2), constraint equation is established to the position of green wave band bandwidth in the cycle, process is as follows:
2.1) because an intersection green wave band is in the range of the elastic green time for coordinating phase, therefore it is directed to intersection Sij, intersection S(i+1)jUp coordination phase and descending coordination phase, green wave band position constraint can be obtained:
In formula:SijFor in the road network containing m bar main lines, i-th of intersection on j-th strip main line;LijFor on j-th strip main line I-th of section, i.e. intersection SijWith intersection S(i+1)jBetween section;Respectively intersection SijUp, descending association The normalization queue clearance time of phase modulation position;gijThe normalization of respectively up, the descending coordination phase in intersection is effectively green The lamp time;bijRespectively section LijUp, descending green wave band bandwidth;wijFor intersection SijThe up green ripple for coordinating phase Band position, it is defined as the time gap that up green wave band center starts to up coordination phase effective green time;To intersect Mouth SijThe descending green wave band position for coordinating phase, descending green wave band center is defined as to descending coordination phase effective green time knot The time gap of beam;All time variables are all normalized to the ratio in relative signal cycle.
2.2) by the relation of green time and flow, normalization effective green time is obtained:
In formula:For intersection SijThe up actually active green time for coordinating phase;Z is the inverse in cycle;γijFor Intersection SijThe up flow-rate ratio for coordinating phase, is defined as intersection SijThe up flow and all phases in intersection for coordinating phase The ratio of bit traffic sum;For intersection SijThe total losses time sum of all phases in a cycle,For intersection SijPhase number,For the actual loss time of a phase, equal to start lose when BetweenLost with emptyingTime sum.Similarly, the descending normalization green time for coordinating phase also can be by descending phase flow Amount ratioIt is calculated.
2.3) according to Fig. 1, convolution (1)-(2) obtain green wave band constraints is as follows:
Step 3), section constraint is carried out to the position of green wave band bandwidth in the cycle, process is as follows:
3.1) according to BE sections in Fig. 1, intersection S is calculated(i+1)jDescending phase green wave band midpoint is into up phase green wave band The time gap of point, obtain section constraint:
In formula:tijRespectively section LijUp, down direction normalization hourage;For intersection Sij It is descending coordination phase green time open it is bright be ahead of it is up coordination phase green time open bright normalization time interval;
3.2)I(i, j) (i+1, j)For integer of the section constraint more than or equal to zero, formula (2) is brought into formula (4), arrangement can obtain:
Step 4) carries out loop constraint to the position of green wave band bandwidth in the cycle, according to Fig. 2, main line a, main line b, main line C, main line d form a loop, SpaAnd SlcIt is same intersection, SpaIt is a-th of main line, p-th of intersection, SlcIt is c-th L-th of intersection of main line, other intersections on loop are similar therewith.According to Fig. 3, intersection is spatially deployed, obtained Loop constrains.Intersection Spa(Slc) and intersection S(p+1)a(Spd) up coordination phase difference on east-west direction, φ(p+1, a) (q, d)For intersection S(p+1)a(Sqd) east-west direction it is up coordinate phase and North and South direction it is up coordinate phase between from Phase difference, the definition of other intersection variables on loop are similar therewith.From the figure 3, it may be seen that 8 variable parameter sums are the cycle Integral multiple, time variable normalizing are the ratio of relative cycle, and it is as follows can to obtain loop constraints:
In step 5), object function is:
Constraints is:
In formula:kijWithRespectively section LijUp direction green wave band and down direction green wave band weight coefficient, its Choose generally according to main line section up direction flow and down direction flow to determine, meet
lijFor section LijDistance;VmaxAnd VminThe respectively maximum of travel speed, minimum value;CmaxAnd CminRespectively For the maximum in intersection cycle, minimum value.
By above-mentioned steps, the optimal timing scheme of the green ripple of the symmetrical and asymmetric mixed-phase sequence road network such as institute of table 2 is obtained Show.
Table 2
Finally it should be noted that:Above disclosed is only a kind of preferred embodiments of the present invention, can not be come certainly with this The interest field of the present invention, therefore the equivalent variations made according to the claims in the present invention are limited, still belong to the model that the present invention is covered Enclose.

Claims (6)

1. a kind of be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network, it is characterised in that described excellent Change method comprises the following steps:
1) intersection is initialized;
2) constraint equation is established to the position of green wave band bandwidth in the cycle;
3) section constraint is carried out to the position of green wave band bandwidth in the cycle;
4) loop constraint is carried out to the position of green wave band bandwidth in the cycle;
5) sets target function and constraints, draw suitable for the green ripple optimization of symmetrical and asymmetric mixed-phase sequence road network Model.
It is 2. according to claim 1 a kind of suitable for symmetrical and asymmetric mixed-phase sequence the green ripple optimization side of road network Method, it is characterised in that:In the step 1), initialization is carried out to intersection includes following set:
2.1) imported car flow point turns left, straight trip and 3 bursts of wagon flows of turning right, right-hand rotation wagon flow follow straight traffic to let pass;
2.2) the loss time of each signal phase is fixed and equal, and the loss time is starts the loss time and empty loss Time sum;
2.3) the queue clearance time of each intersection uplink and downlink phase immobilizes;
2.4) intersection uses symmetrical phase sequence or asymmetric mixed-phase sequence, does not consider that phase overlaps design method.
It is 3. according to claim 2 a kind of suitable for symmetrical and asymmetric mixed-phase sequence the green ripple optimization side of road network Method, it is characterised in that:In the step 2), constraint equation is established to the position of green wave band bandwidth in the cycle, process is as follows:
3.1) because an intersection green wave band is in the range of the elastic green time for coordinating phase, therefore it is directed to intersection Sij、 Intersection S(i+1)jUp coordination phase and descending coordination phase, green wave band position constraint can be obtained:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>t</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>q</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mover> <mi>g</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mover> <mi>t</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>q</mi> </msubsup> <mo>-</mo> <mfrac> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>t</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> <mi>q</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>g</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula:SijFor in the road network containing m bar main lines, i-th of intersection on j-th strip main line;LijFor i-th on j-th strip main line Section, i.e. intersection SijWith intersection S(i+1)jBetween section;Respectively intersection SijUp, descending coordination phase The normalization queue clearance time;gijThe respectively normalization effective green time of up, the descending coordination phase in intersection; bijRespectively section LijUp, descending green wave band bandwidth;wijFor intersection SijThe up green wave band position for coordinating phase, It is defined as the time gap that up green wave band center starts to up coordination phase effective green time;For intersection SijUnder Row coordinate phase green wave band position, be defined as descending green wave band center to it is descending coordinate phase effective green time terminate when Between distance;All time variables are all normalized to the ratio in relative signal cycle;
3.2) by the relation of green time and flow, normalization effective green time is obtained:
<mrow> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>a</mi> </msubsup> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> <mo>-</mo> <msubsup> <mi>L</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>C</mi> </msubsup> <mo>)</mo> </mrow> <mi>z</mi> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>C</mi> </msubsup> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formula:For intersection SijThe up actually active green time for coordinating phase;Z is the inverse in cycle;γijFor intersection SijThe up flow-rate ratio for coordinating phase, is defined as intersection SijThe up flow for coordinating phase and all phase flows in intersection The ratio of sum;For intersection SijThe total losses time sum of all phases in a cycle,To hand over Prong SijPhase number,For the actual loss time of a phase, the time is lost equal to startingLost with emptyingTime sum;Similarly, the descending normalization green time for coordinating phase also can be by descending phase flow-rate ratioIt is calculated;
3.3) it is as follows according to formula (1)-(2) obtain green wave band constraints:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>t</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>q</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>C</mi> </msubsup> <mi>z</mi> <mo>-</mo> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>C</mi> </msubsup> <mi>z</mi> <mo>-</mo> <msubsup> <mover> <mi>t</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>q</mi> </msubsup> <mo>-</mo> <mfrac> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>t</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> <mi>q</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> <mi>C</mi> </msubsup> <mi>z</mi> <mo>-</mo> <mfrac> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>C</mi> </msubsup> <mi>z</mi> <mo>-</mo> <msubsup> <mover> <mi>t</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> <mi>q</mi> </msubsup> <mo>-</mo> <mfrac> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
It is 4. according to claim 3 a kind of suitable for symmetrical and asymmetric mixed-phase sequence the green ripple optimization side of road network Method, it is characterised in that:In the step 3), section constraint is carried out to the position of green wave band bandwidth in the cycle, process is as follows:
4.1) intersection S is calculated(i+1)jDescending phase green wave band midpoint obtains road to the time gap at up phase green wave band midpoint Section constraint:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>t</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> <mrow> <mi>d</mi> <mo>&amp;RightArrow;</mo> <mi>u</mi> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>g</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> <mo>,</mo> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>t</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>t</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>d</mi> <mo>&amp;RightArrow;</mo> <mi>u</mi> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>g</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula:tijRespectively section LijUp, down direction normalization hourage;For intersection SijIt is descending Coordinate phase green time open it is bright be ahead of it is up coordination phase green time open bright normalization time interval;
4.2)I(i, j) (i+1, j)For integer of the section constraint more than or equal to zero, bring formula (2) into formula (4), arrange
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>t</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>C</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> <mi>C</mi> </msubsup> <mo>)</mo> </mrow> <mi>z</mi> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </msub> <mo>=</mo> <msubsup> <mi>t</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mi>j</mi> </mrow> <mrow> <mi>d</mi> <mo>&amp;RightArrow;</mo> <mi>u</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>t</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>d</mi> <mo>&amp;RightArrow;</mo> <mi>u</mi> </mrow> </msubsup> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
It is 5. according to claim 4 a kind of suitable for symmetrical and asymmetric mixed-phase sequence the green ripple optimization side of road network Method, it is characterised in that:In the step 4), loop constraint is carried out to the position of green wave band bandwidth in the cycle, main line a, done Line b, main line c, main line d form a loop, SpaAnd SlcIt is same intersection, SpaIt is a-th of main line, p-th of intersection, Slc It is c-th of main line, l-th of intersection;Intersection Spa(Slc) and intersection S(p+1)a(Sqd) upper on east-west direction Row coordinates phase difference, φ(p+1, a) (q, d)For intersection S(p+1)a(Sqd) east-west direction is up coordinates phase and the up association of North and South direction Between phase modulation position from phase difference;8 variable parameter sums are the integral multiple in cycle, and time variable normalizing is the ratio of relative cycle Value, it is as follows to obtain loop constraints:
It is 6. according to claim 5 a kind of suitable for symmetrical and asymmetric mixed-phase sequence the green ripple optimization side of road network Method, it is characterised in that:In step 5), object function is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>F</mi> <mi>i</mi> <mi>n</mi> <mi>d</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>t</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mi>z</mi> <mo>,</mo> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>I</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mi>o</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mi>max</mi> <mrow> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>n</mi> <mi>j</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mover> <mi>b</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
Constraints is:
In formula:kijWithRespectively section LijUp direction green wave band and down direction green wave band weight coefficient, its choose Determine, meet generally according to main line section up direction flow and down direction flow
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>n</mi> <mi>j</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>;</mo> </mrow>
lijFor section LijDistance;VmaxAnd VminThe respectively maximum of travel speed, minimum value;CmaxAnd CminRespectively intersect Maximum, the minimum value in mouth cycle.
CN201711068207.2A 2017-11-03 2017-11-03 It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network Pending CN107705588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711068207.2A CN107705588A (en) 2017-11-03 2017-11-03 It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711068207.2A CN107705588A (en) 2017-11-03 2017-11-03 It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network

Publications (1)

Publication Number Publication Date
CN107705588A true CN107705588A (en) 2018-02-16

Family

ID=61177729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711068207.2A Pending CN107705588A (en) 2017-11-03 2017-11-03 It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network

Country Status (1)

Country Link
CN (1) CN107705588A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109191835A (en) * 2018-09-03 2019-01-11 北京全路通信信号研究设计院集团有限公司 A kind of control method and system of tramcar operation
CN109285361A (en) * 2018-11-19 2019-01-29 江苏航天大为科技股份有限公司 The scheme transition method changed for urban trunk road coordination control direction
CN111081041A (en) * 2019-12-13 2020-04-28 连云港杰瑞电子有限公司 Traffic flow direction-oriented region coordination control method
CN111311949A (en) * 2020-02-29 2020-06-19 华南理工大学 Signal phase and phase sequence optimization method for non-closed type coordinated line network
CN113205695A (en) * 2021-04-13 2021-08-03 东南大学 Multi-period length bidirectional trunk line green wave control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867424A (en) * 2012-09-26 2013-01-09 杭州鼎鹏交通科技有限公司 Area coordinating traffic control method
CN103456181A (en) * 2012-07-18 2013-12-18 同济大学 Improved MULTIBAND main line coordination control method
CN104376727A (en) * 2014-11-12 2015-02-25 河南理工大学 Arterial traffic four-intersection control sub-area bidirectional green wave coordination control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456181A (en) * 2012-07-18 2013-12-18 同济大学 Improved MULTIBAND main line coordination control method
CN102867424A (en) * 2012-09-26 2013-01-09 杭州鼎鹏交通科技有限公司 Area coordinating traffic control method
CN104376727A (en) * 2014-11-12 2015-02-25 河南理工大学 Arterial traffic four-intersection control sub-area bidirectional green wave coordination control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李永强;李康;冯远静: "数据驱动交通响应绿波协调信号控制", 《控制理论与应用》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109191835A (en) * 2018-09-03 2019-01-11 北京全路通信信号研究设计院集团有限公司 A kind of control method and system of tramcar operation
CN109285361A (en) * 2018-11-19 2019-01-29 江苏航天大为科技股份有限公司 The scheme transition method changed for urban trunk road coordination control direction
CN109285361B (en) * 2018-11-19 2020-12-08 江苏航天大为科技股份有限公司 Scheme transition method for coordinately controlling direction change of traffic trunk lines
CN111081041A (en) * 2019-12-13 2020-04-28 连云港杰瑞电子有限公司 Traffic flow direction-oriented region coordination control method
CN111311949A (en) * 2020-02-29 2020-06-19 华南理工大学 Signal phase and phase sequence optimization method for non-closed type coordinated line network
CN111311949B (en) * 2020-02-29 2021-07-16 华南理工大学 Signal phase and phase sequence optimization method for non-closed type coordinated line network
CN113205695A (en) * 2021-04-13 2021-08-03 东南大学 Multi-period length bidirectional trunk line green wave control method
CN113205695B (en) * 2021-04-13 2022-02-18 东南大学 Multi-period length bidirectional trunk line green wave control method

Similar Documents

Publication Publication Date Title
CN107705588A (en) It is a kind of to be applied to symmetrical and asymmetric mixed-phase sequence the green ripple optimization method of road network
CN105185130B (en) A kind of signal coordinating control method between intersection under variable period
CN103559797B (en) A kind of Universal phase position type artery two-way green wave coordination control
CN108877246A (en) A kind of Automatic computing system and its calculation method of main line two-way green wave coordination parameter
CN109544945B (en) Regional control phase timing optimization method based on lane saturation
CN107170257B (en) A kind of reverse changeable driveway intelligent control method based on multi-source data
CN104123849B (en) A kind of Adjacent Intersections two-way linkage control method considering dynamic queue length
CN104485004B (en) Signal control method combining main trunk road bidirectional dynamic green wave and secondary trunk road semi-induction
CN103778792B (en) Urban trunk one-way green wave control optimization method considering vehicle speed non-uniformity
CN104021686B (en) A kind of traffic coordinating and controlling method of multi-intersection
CN106297334B (en) Main line section division methods under Philodendron ‘ Emerald Queen&#39;
CN105118311B (en) Two-phases signal intersection Arterial Coordination Control method
CN106023608B (en) A kind of method of the real-time dynamic timing of crossroad access signal lamp
CN110047303B (en) Phase sequence adjusting method for improving bandwidth of green wave band in bidirectional green wave control
CN104200680B (en) The coordinating control of traffic signals method of arterial street under supersaturation traffic behavior
CN104134356B (en) Control method of city intersection model reference self-adaptive signals
CN103578281A (en) Optimal control method and device for traffic artery signal lamps
CN107316472A (en) A kind of dynamic coordinate control method towards the two-way different demands in arterial highway
CN105206071B (en) Intersection timing method based on mixed traffic flow Delay Model
CN104021685A (en) Traffic control method of intersections containing mixed traffic flows
CN108538065A (en) A kind of major urban arterial highway control method for coordinating based on adaptive iterative learning control
CN103794064B (en) The implementation method of major trunk roads some crossroads bidirectional green wave band intuitively
CN105551271B (en) A kind of traffic organization and signal control method towards left right model stagger intersection
CN106652480B (en) A kind of intersection maximum queue length computational methods based on microwave geomagnetic data
CN107886744A (en) One kind is used for subway station adjacent to intersection public transport priority signal control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180216

WD01 Invention patent application deemed withdrawn after publication