CN107704863A - Pca主元重排的故障特征表示方法 - Google Patents

Pca主元重排的故障特征表示方法 Download PDF

Info

Publication number
CN107704863A
CN107704863A CN201710364786.9A CN201710364786A CN107704863A CN 107704863 A CN107704863 A CN 107704863A CN 201710364786 A CN201710364786 A CN 201710364786A CN 107704863 A CN107704863 A CN 107704863A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
msubsup
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710364786.9A
Other languages
English (en)
Other versions
CN107704863B (zh
Inventor
刘卓
王天真
汤天浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201710364786.9A priority Critical patent/CN107704863B/zh
Publication of CN107704863A publication Critical patent/CN107704863A/zh
Application granted granted Critical
Publication of CN107704863B publication Critical patent/CN107704863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Complex Calculations (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明适用于模式识别中故障诊断的特征提取后的特征表示领域,公开并提供了PCA主元重排的故障特征表示方法。该主元重排(Principal Components Rearrangement,PCR)方法针对原始故障样本之间出现“重叠”现象,所述方法包括:基于PCA(Principal Components Analysis,PCA)方法的特征提取;主元的离线重排;反向重构投影矩阵。本发明是在传统PCA故障特征提取之后,进一步根据一种主元重排方法进行特征表示,该方法在合适的主元样本的置信区间内,能将互相重叠的故障进行分离,大大提高了传统PCA故障特征提取的效率,为后续故障诊断及容错控制等环节的成功提供了前提保障。

Description

PCA主元重排的故障特征表示方法
技术领域
本发明属于模式识别中故障诊断的特征提取后的特征表示领域,尤其涉 及PCA主元重排的故障特征表示方法。
背景技术
在故障特征提取之后,如何对所提取的故障特征数据进行明显的表示, 使故障特征有分类的代表性,是故障诊断性能是否优良的关键性问题,对于快速 分类诊断、提高分类准确率具有关键性意义。其中对于高维数据特征提取的传统 PCA而言,主元提取之后的特征表示是PCA提取的关键步骤,选择合适的重排 间隔重构有效的投影矩阵是主要思路,以这样的思路可以改进传统PCA方法, 使其故障特征之后的特征更具有分类的代表性。
对于PCA特征提取之后的特征表示,由于常见的做法是在一层或几层特 征提取后,使用其他特征提取方法进一步加强特征提取效果,或者为了提高故障 诊断性能,在特征提取方法不变的情况下,优化诊断分类器、选用高精度的分类 算法。
“一层或几层特征提取后,使用其他特征提取方法进一步加强特征提取 效果”做法类似于算法的组合或融合,但是往往算法的复杂度较高,在组合时也 欠缺一定的理论说明;“在特征提取方法不变的情况下,优化诊断分类器、选用 高精度的分类算法”做法虽然在分类器性能增加的情况下,能够实现高性能的故 障诊断,但容易受所提取的特征的影响,比如“维数灾难”,此外,这种做法对于 分类器的参数调整要求较高,不利于快速故障诊断,另外如果样本数量较多时, 受噪声(主要是高斯噪声)的影响,不同故障特征互相重叠,则故障分类性能会 急剧下降。
发明内容
针对以上问题,本发明的主要目的在于公开并提供了PCA主元重排的故 障特征表示方法,旨在解决样本数量较多时,受噪声(主要是高斯噪声)的影响, 不同故障特征互相重叠,而造成现有故障特征提取方法性能不佳影响到故障诊断 性能的问题。
所述的PCA主元重排的故障特征表示方法包含以下三个步骤:
步骤一:基于PCA方法的特征提取
PCA方法由于其运算过程存在主要特征的选取过程,因此经常被用于高维 数据的降维以及特征提取,传统的PCA方法步骤如下:
定义PCA特征提取输入数据为其中M、N分别代表样本的总 数量以及每个样本中的变量数,满足M=I×J,其中I、J分别代表故障种类数 (含正常)以及每类样本的数量,因此矩阵X可以被分解为如公式(1)相等数 量的I块:
对于常见的工业采样过程,高斯噪声几乎占了大多数,假定这里每类数据样 本除了真值成分外,均含有高斯噪声,其中的第i类样本xi近似高斯分布,求其 高斯分布的均值和标准差分别为μi和σi。其中第i类样本xi可表示为公式(2):
其中i=1,2,…I。则的标准化矩阵为为了便于表达,这里引入维数 为J×1的单位向量1J×1,因此的表达式如公式(3)所示:
其中μi_cc是xi按照其列序号顺序所求的平均值向量,维数为1×N,则X的标准化矩阵X*的协方差矩阵见公式(4):
其中标记“()H”表示共轭转置运算。如果λii和vii(ii=1,2,…,N)分别是所对应 的特征值和特征向量。
累积方差百分比(Cumulative Percentage of Variance,CPV)定义为公式(5):
根据公式(5),主元数目k可以由公式(6)计算得到。
如果定义由特征值CPV所选取的特征向量构建的投影矩阵为 PT=(PT1,PT1,…,PTk),则PCA特征提取后的结果数据可由公式(7)所示。
Y=XPT (7)
Y详细的表达见公式(8):
其中的一列代表一个主元,主元每个列向量都分别被用作重排算法的输 入数据。
为了便于表示,也将矩阵Y如公式(1)行分块为由 于PCA是一个按方差最大方向的正交旋转,等同于一个线性坐标变换,而一个 符合高斯分布的样本,经过线性变换,其结果也是符合高斯分布的,因为PCA 的输入数据矩阵X按照I的数量进行行分块,每一块数据矩阵均符合高斯分布, 因此中对应的每一块数据矩阵也是符合高斯分布的,比如第 i个类别序号对应的数据矩阵xi符合高斯分布,则对应的Yi也是高斯分布的。将 传统PCA提取得到的特征进一步的表示,使其更明显,如下文。
步骤二:主元的离线重排
这一部分,主要是运用一种基于特征的概率分布情况的重排方法,将Y中每 一个主元分别进行重排,这样主要是为了使得每个主元中的特征之间更有代表性 和明显性,便于后续的分类诊断。这部分主要有两个步骤:
(1)分别选择Y的列向量(主元)
比如选择Y中的第c列yc,其表达式为
yc=(y1c,y1c,…yMc)T (9)
其中c=1,2,…,k,如果按照类别划分,此处为I类,则yc也可以写为(10)式:
对于每个类别序号所对应的数据,均含有J个样本。因此对于yc中的标记第 i类的向量yc_i=(y[(i-1)J+1]c,y[(i-1)J+2]c,…,y(i×J)c),其中i=1,2,…,I,因为yc_i属于Yi第c列,对于每个主元来说,其中标记第i类的特征yc_i也是属于高斯分布的,因 此可以求出yc_i对应的期望μc_i和标准差σc_i
(2)对所选主元向量重排
求出(10)每个类别序号对应的数据均值为
其中μc_1c_2,…μc_I分别是yc_1,yc_2,…yc_I所对应的算术平均值,也是其特征数 据分布对应的期望,其中第i个期望其中i=1,2,…,I, j=1,2,…,J。因为yc_i也是符合高斯分布的,因此可以列写出其累积分布函数 F(z,μc_ic_i),可见公式(12):
定义yc_i分布的置信区间为CIc_i,为了使得特征的样本点数尽可能分布于所 在置信区间中,根据高斯分布的“3σ”原则,可以取 CIc_i=[μc_i-3σc_ic_i+3σc_i],因此Pr(z∈CIc_i)≈99.7%,其中i=1,2,…,I。
则第i类特征数据在CIc_i=[μc_i-3σc_ic_i+3σc_i]中概率分布的横坐标区 间长度可由公式(13)求出:
Δzc_i=2×|F-1(z<(uc_i+3σc_i),μc_ic_i)-uc_i| (13)
其中F-1是求(12)概率分布函数的反函数,一般查表能够得到,如果采用 MATLAB工具实现,则对应的是“NORMINV”函数。
为了保证每个主元向量中的不同类别标记的特征能够尽可能明显和差异性 增大,一种可以选择的方法是选择样本的间距为Δzc_i(i=1,2,…,I)中的最大值, 定义为“重排间隔”,见公式(14)所示:
Δzmax=max(Δzc_1,Δzc_2,…Δzc_I) (14)
如果yc_i重排完之后的数据表示为 对应的期望和标准差分别为 则经过重排之后的,yc_i的样本期望μc_i变换成的可以由公式 (15)所求出:
其中l是μc_i中的排序序号,μc_i中第l大的元素。对于第c个主 元的不同类别序号对应的主元特征,期望值之间的间距都等于Δzmax(14),这种操 作类似于一种均匀的特征表示,其克服了当样本数量增多时的“特征互相重叠” 问题。其中重排只涉及到期望的变化,对应的标准差则不发生变化。
最后,yc_i重排完之后的数据表示为可表示为
其中1J×1为元素均为1、维数为J×1的向量,则yc经过重排之后的可表达为
其他的所有主元向量均是按照(11)到(17)的公式所运算。接下来需要构 建新的投影矩阵,重构主元重排方法的模型。
步骤三:反向重构投影矩阵
由于步骤(2)取的是Y中的第c列向量(第c个主元)的重排过程,而 c=1,2,…,k,当重排完所有k个主元之后,得到重排之后的结果矩阵YPCR表达 式为(18)。
根据PCA特征提取输入数据以及可由式(7)的形 式重构出重排之后的投影矩阵替换传统PCA的投影矩阵PT,其中 可由(19)算出:
其中X#是X的伪逆矩阵,由于X往往不是方阵,因此这里取其伪逆矩阵。常见 伪逆矩阵的求解方法:直接求法、SVD分解法和QR分解法,总结如下:
(1)直接求解
X#=(XHX)-1XH (20)
(2)SVD分解法
U×S×VT=X (21)
其中UTU=I,VTV=I,且I是单位矩阵。接着将S中的非零元素求倒数得 到矩阵T,则伪逆矩阵X#
X#=V×TT×UT (22)
(3)QR分解法
QR=X (23)
接着,按照直接法求出R#,即R#=(RHR)-1RH,则伪逆矩阵X#
X#=R#QH (24)
以上三种方法各有优势,比如直接法的运算量最小,SVD分解法和QR分 解法适合稀疏矩阵求解,因此在实际计算中,要根据具体的数据特性和要求进行 X伪逆矩阵的求解,进而尽可能准确地计算得出重排算法重构的投影矩阵。另外, 值得注意的是,如果伪逆矩阵求取的效果不佳时,PCR特征表示之后的结果数 据YPCR需要由(19)式新的投影矩阵映射得出,并且求伪拟矩阵的方法也 不局限于以上求法。
附图说明
图1是本发明的主要步骤流程图;
图2是本发明的实施例所提供的PCA主元重排的故障特征表示方法的原 始数据结构;
图3是PCA主元重排的特征表示方法的具体流程框图;
图4是PCA特征提取之后数据的用于检验正态分布特性的Q-Q图
图5是PCA特征提取方法的第一主元特征数据分布图;
图6是经过PCA主元重排的故障特征表示方法之后第一主元特征数据分 布图;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及 实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 用以解释本发明,并不用于限定本发明。
图1是本发明的主要步骤流程,其操作包含以下三个步骤:
步骤一:基于PCA方法的特征提取
PCA方法由于其运算过程存在主要特征的选取过程,因此经常被用于高维 数据的降维以及特征提取,传统的PCA方法步骤如下:
定义PCA特征提取输入数据为其中M、N分别代表样本的总 数量以及每个样本中的变量数,满足M=I×J,其中I、J分别代表故障种类数 (含正常)以及每类样本的数量,因此矩阵X可以被分解为如公式(1)相等数 量的I块:
由2.4.3节分析,对于常见的工业采样过程,高斯噪声几乎占了大多数,假 定这里每类数据样本除了真值成分外,均含有高斯噪声,其中的第i类样本xi近 似高斯分布,求其高斯分布的均值和标准差分别为μi和σi。其中第i类样本xi可 表示为公式(2):
其中i=1,2,…I。则的标准化矩阵为为了便于表达,这里引入维数 为J×1的单位向量1J×1,因此的表达式如公式(3)所示:
其中μi_cc是xi按照其列序号顺序所求的平均值向量,维数为1×N,则X的标准化矩阵X*的协方差矩阵见公式(4):
其中标记“()H”表示共轭转置运算。如果λii和vii(ii=1,2,…,N)分别是所对应 的特征值和特征向量。
其累积方差百分比(Cumulative Percentage of Variance,CPV)定义为公式(5):
根据公式(5),主元数目k可以由公式(6)计算得到。
如果定义由特征值CPV所选取的特征向量构建的投影矩阵为 PT=(PT1,PT1,…,PTk),则PCA特征提取后的结果数据可由公式(7)所示。
Y=XPT (7)
Y详细的表达见公式(8):
其中的一列代表一个主元,主元每个列向量都分别被用作重排算法的输 入数据。
为了便于表示,也将矩阵Y如公式(1)行分块为由于PCA 是一个按方差最大方向的正交旋转,等同于一个线性坐标变换,而一个符合高斯 分布的样本,经过线性变换,其结果也是符合高斯分布的,因为PCA的输入数 据矩阵X按照I的数量进行行分块,每一块数据矩阵均符合高斯分布,因此 中对应的每一块数据矩阵也是符合高斯分布的,比如第i个 类别序号对应的数据矩阵xi符合高斯分布,则对应的Yi也是高斯分布的。将传 统PCA提取得到的特征进一步的表示,使其更明显,如下文。
步骤二:主元的离线重排
这一部分,主要是运用一种基于特征的概率分布情况的重排方法,将Y中每 一个主元分别进行重排,这样主要是为了使得每个主元中的特征之间更有代表性 和明显性,便于后续的分类诊断。这部分主要有两个步骤:
(1)分别选择Y的列向量(主元)
比如选择Y中的第c列yc,其表达式为
yc=(y1c,y1c,…yMc)T (9)
其中c=1,2,…,k,如果按照类别划分,此处为I类,则yc也可以写为(10)式:
对于每个类别序号所对应的数据,均含有J个样本。因此对于yc中的标记第 i类的向量yc_i=(y[(i-1)J+1]c,y[(i-1)J+2]c,…,y(i×J)c),其中i=1,2,…,I,因为yc_i属于Yi第c列,对于每个主元来说,其中标记第i类的特征yc_i也是属于高斯分布的,因 此可以求出yc_i对应的期望μc_i和标准差σc_i
(2)对所选主元向量重排
求出(10)每个类别序号对应的数据均值为
其中μc_1c_2,…μc_I分别是yc_1,yc_2,…yc_I所对应的算术平均值,也是其特征数 据分布对应的期望,其中第i个期望其中i=1,2,…,I, j=1,2,…,J。因为yc_i也是符合高斯分布的,因此可以列写出其累积分布函数 F(z,μc_ic_i),可见公式(12):
定义yc_i分布的置信区间为CIc_i,为了使得特征的样本点数尽可能分布于所 在置信区间中,根据高斯分布的“3σ”原则,可以取 CIc_i=[μc_i-3σc_ic_i+3σc_i],因此Pr(z∈CIc_i)≈99.7%,其中i=1,2,…,I。
则第i类特征数据在CIc_i=[μc_i-3σc_ic_i+3σc_i]中概率分布的横坐标区 间长度可由公式(13)求出:
Δzc_i=2×|F-1(z<(uc_i+3σc_i),μc_ic_i)-uc_i| (13)
其中F-1是求(12)概率分布函数的反函数,一般查表能够得到,如果采用 MATLAB工具实现,则对应的是“NORMINV”函数。
为了保证每个主元向量中的不同类别标记的特征能够尽可能明显和差异性 增大,一种可以选择的方法是选择样本的间距为Δzc_i(i=1,2,…,I)中的最大值, 定义为“重排间隔”,见公式(14)所示:
Δzmax=max(Δzc_1,Δzc_2,…Δzc_I) (14)
如果yc_i重排完之后的数据表示为 对应的期望和标准差分别为 则经过重排之后的,yc_i的样本期望μc_i变换成的可以由公式 (15)所求出:
其中l是μc_i中的排序序号,μc_i中第l大的元素。对于第c个主元的 不同类别序号对应的主元特征,期望值之间的间距都等于Δzmax(14),这种操作类 似于一种均匀的特征表示,其克服了当样本数量增多时的“特征互相重叠”问题。 其中重排只涉及到期望的变化,对应的标准差则不发生变化。
最后,yc_i重排完之后的数据表示为可表示为
其中1J×1为元素均为1、维数为J×1的向量,则yc经过重排之后的可表达为
其他的所有主元向量均是按照(11)到(17)的公式所运算。接下来需要构 建新的投影矩阵,重构主元重排方法的模型。
步骤三:反向重构投影矩阵
由于步骤2)取的是Y中的第c列向量(第c个主元)的重排过程,而 c=1,2,…,k,当重排完所有k个主元之后,得到重排之后的结果矩阵YPCR表达 式为(18)。
根据PCA特征提取输入数据以及可由式(7)的形 式重构出重排之后的投影矩阵替换传统PCA的投影矩阵PT,其中 可由(19)算出:
其中X#是X的伪逆矩阵,由于X往往不是方阵,因此这里取其伪逆矩阵。 常见伪逆矩阵的求解方法:直接求法、SVD分解法和QR分解法,总结如下:
(1)直接求解
X#=(XHX)-1XH (20)
(2)SVD分解法
U×S×VT=X (21)
其中UTU=I,VTV=I,且I是单位矩阵。接着将S中的非零元素求倒数得 到矩阵T,则伪逆矩阵X#
X#=V×TT×UT (22)
(3)QR分解法
QR=X (23)
接着,按照直接法求出R#,即R#=(RHR)-1RH,则伪逆矩阵X#
X#=R#QH (24)
以上三种方法各有优势,比如直接法的运算量最小,SVD分解法和QR分 解法适合稀疏矩阵求解,因此在实际计算中,要根据具体的数据特性和要求进行 X伪逆矩阵的求解,进而尽可能准确地计算得出重排算法重构的投影矩阵。另外, 值得注意的是,如果伪逆矩阵求取的效果不佳时,PCR特征表示之后的结果数 据YPCR需要由(19)式新的投影矩阵映射得出,并且求伪拟矩阵的方法也 不局限于以上求法。
为了充分表述本发明所述的技术方案,下面用具体的实施例来说明。
实施例:
图2提供了本发明PCA主元重排的故障特征表示方法的原始数据的结构 以及各个维度的含义。
图中的I代表故障的种类数,含正常情况,J是每一类故障中采集的样本 数量,原则上是相同的,避免数据不平衡给故障诊断带了影响。M是样本的总数 量,表示离线采集的不同故障的样本数量,其中满足数量关系M=I×J。其中的 N代表在每个样本中所采的点数,可能代表时域中具体时刻离散数据点的数量, 或频域中各频率点谐波幅值特征的总数量。本实施例中,I=13,J=400,M=5200, N=1000。
根据以上结构的原始数据,如图3,给出了实施例提供的PCA主元重排 的故障特征表示方法的流程图,为了便于说明,其中表述了该方法主要的部分。
步骤S101是将原始数据进行标准化,其具体步骤如下:
假设符合图1的数据样本为X的第i类样本xi为正态(高斯) 分布,求其正态(高斯)分布的均值和标准差分别为μi和σi
其中第i类样本xi可表示为公式(1):
其中i=1,2,…I。
引入维数为J×1的单位向量1J×1,计算xi的标准化矩阵的表达式如公 式(2)所示:
其中μi_cc是xi按照其列序号顺序所求的平均值向量,维数为1×N,则X的标准化矩阵
S102是基于PCA进行特征提取,其步骤如下:
计算X*的协方差矩阵见公式(3):
求出所对应的特征值和特征向量:λii和vii(ii=1,2,…,N)。
设置累积方差百分比(Cumulative Percentage of Variance,CPV)定义为公 式(4):
计算主元数量如公式(5):
S103依次选择PCA特征提取的结果矩阵中的一个主元。
S104是对所选择的主元不同故障标记的数据求期望和标准差,比如取第 c个主元中第i类主元特征数据yc_i,其期望和标准差分别为μc_i和σc_i
S105是根据正态(高斯)分布的3σ原则设置置信区间,比如对于yc_i根 据正态分布的3σ原则,则对应的置信区间为[μc_i-3σc_ic_i+3σc_i]。
S106是根据正态分布的3σ原则设置置信区间,其包含以下内容:
采用正态分布的反函数求 出μc_i+3σc_i点的横坐标值。
计算对应区间长度Δzc_i=2×|F-1(z<(uc_i+3σc_i),μc_ic_i)-uc_i|。
求出最大区间长度作为重排间隔:Δzmax=max(Δzc_1,Δzc_2,…Δzc_I)。
S107环节得到重排结果矩阵:
S108环节采用原始数据的伪逆矩阵变换得到X#,根据公式(6)重构了 投影矩阵:
图4采用了Q-Q图方法检验了本实施例原始数据的正态分布性能,Q-Q 图中待检验数据和标准高斯分布线的拟合程度即代表了高斯分布的程度,在高斯 分布的“3σ原则”选取的置信区间中,实验的原始样本基本和标准高斯分布线 拟合,说明所提取的主元特征满足是“高斯分布”,因此主元重排方法也基本适 用,满足其使用的前提。
图5是本实施例原始数据PCA特征提取的结果,如果对不同类别的数据 进行标记,依次是故障1到故障13,由图可见本实施例的特征存在“重叠问题”。 为了便于查看重叠问题,对于标记为故障10和故障13以及故障11和故障12的 特征数据的分布进行放大。
发现标记为故障10和故障13以及故障11和故障12的特征数据的分布 几乎完全重合,其特征数据点和高斯分布几乎一一对应。
图6是本发明所提供的PCA主元重排的故障特征表示方法的处理结果, 采用了同一主元中不同故障特征之间的最大间距作为重排间隔,其主元特征中的 “特征重叠问题”在规定的置信区间中能够很好地克服“特征重叠问题”,满足 了提取特征需要明显的需要,对于后续的故障诊断是极有意义的。

Claims (1)

1.一种PCA主元重排的故障特征表示方法,其特征在于包括以下3个步骤:
步骤一:基于PCA方法的特征提取
PCA特征提取原始数据为其中M、N分别代表样本的总数量和每个样本的变量数,满足M=I×J,I、J分别代表含正常情形的故障种类数、每个样本中采样点数;假定每类数据样本除真值成分外均含高斯噪声,样本符合高斯分布,计算X经过PCA提取得到结果如下式:
<mrow> <mi>Y</mi> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <msub> <mi>y</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>M</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>M</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
步骤二:主元的离线重排
(1)选择Y的主元向量
选择Y中的第c列主元向量yc,按类别划分,yc可写为:
<mrow> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <mo>...</mo> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>I</mi> </mrow> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
yc中的标记第i类的向量yc_i如(3)式:
yc_i=(y[(i-1)J+1]c,y[(i-1)J+2]c,…,y(i×J)c) (3)
其中i=1,2,…,I,并计算yc_i对应期望μc_i和标准差σc_i
(2)重排所选主元向量
求出(2)中每个类别序号对应的数据均值:
<mrow> <mover> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>I</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
即第i个期望为μc_i
<mrow> <msub> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>J</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>y</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>J</mi> <mo>+</mo> <mi>j</mi> <mo>&amp;rsqb;</mo> <mi>c</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中i=1,2,…,I,j=1,2,…,J;
yc_i的累积分布函数F(z,μc_ic_i),可见公式(6):
<mrow> <mi>F</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </msqrt> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>z</mi> </msubsup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
定义yc_i分布的置信区间为CIc_i,根据高斯分布的“3σ”原则,CIc_i设置为
CIc_i=[μc_i-3σc_ic_i+3σc_i] (7)
第i类特征数据在CIc_i中概率分布的横坐标区间长度为
Δzc_i=2×|F-1(z<(uc_i+3σc_i),μc_ic_i)-uc_i| (8)
其中F-1是F(z,μc_ic_i)的反函数,求取“重排间隔”,见公式(9):
Δzmax=max(Δzc_1,Δzc_2,…Δzc_I) (9)
yc_i重排后为其对应的期望和标准差分别为利用“重排间隔”,μc_i变换成的如式(10):
<mrow> <msubsup> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mover> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <mi>l</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;z</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
μc_i中第l大的元素。计算yc_i重排完之后的数据
<mrow> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mn>1</mn> <mrow> <mi>J</mi> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
其中1J×1为元素均为1、维数为J×1的向量,计算yc经过重排之后的
<mrow> <msubsup> <mi>y</mi> <mi>c</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mn>2</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mo>_</mo> <mi>I</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
其他所有主元向量均是按照(2)~(12)进行重排;
步骤三:反向重构投影矩阵
当重排完所有k个主元后,重排的结果矩阵YPCR
<mrow> <msup> <mi>Y</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mn>1</mn> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mn>2</mn> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
根据X及YPCR,重构出重排之后的投影矩阵
<mrow> <msubsup> <mi>P</mi> <mi>T</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>X</mi> <mo>#</mo> </msup> <msup> <mi>Y</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>R</mi> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
其中X#是X的伪逆矩阵,X不是方阵时取其伪逆矩阵。
CN201710364786.9A 2017-05-22 2017-05-22 Pca主元重排的故障特征表示方法 Active CN107704863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710364786.9A CN107704863B (zh) 2017-05-22 2017-05-22 Pca主元重排的故障特征表示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710364786.9A CN107704863B (zh) 2017-05-22 2017-05-22 Pca主元重排的故障特征表示方法

Publications (2)

Publication Number Publication Date
CN107704863A true CN107704863A (zh) 2018-02-16
CN107704863B CN107704863B (zh) 2021-06-15

Family

ID=61169521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710364786.9A Active CN107704863B (zh) 2017-05-22 2017-05-22 Pca主元重排的故障特征表示方法

Country Status (1)

Country Link
CN (1) CN107704863B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279358A (zh) * 2011-06-20 2011-12-14 湖南大学 一种基于mcskpca的神经网络模拟电路故障诊断方法
CN103761372A (zh) * 2014-01-06 2014-04-30 上海海事大学 一种基于主元分析与多分类相关向量机的多电平逆变器故障诊断策略
CN104361238A (zh) * 2014-11-17 2015-02-18 北京信息科技大学 一种基于信息熵改进pca的故障敏感特征提取方法
CN105739489A (zh) * 2016-05-12 2016-07-06 电子科技大学 一种基于ica-knn的间歇过程故障检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279358A (zh) * 2011-06-20 2011-12-14 湖南大学 一种基于mcskpca的神经网络模拟电路故障诊断方法
CN103761372A (zh) * 2014-01-06 2014-04-30 上海海事大学 一种基于主元分析与多分类相关向量机的多电平逆变器故障诊断策略
CN104361238A (zh) * 2014-11-17 2015-02-18 北京信息科技大学 一种基于信息熵改进pca的故障敏感特征提取方法
CN105739489A (zh) * 2016-05-12 2016-07-06 电子科技大学 一种基于ica-knn的间歇过程故障检测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
TIANZHEN WANG等: "Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter", 《ISATRANSACTIONS》 *
XU HAO等: "RPCA-SVM fault diagnosis strategy of cascaded H-bridge multilevel inverters", 《2014 FIRST INTERNATIONAL CONFERENCE ON GREEN ENERGY ICGE 2014》 *
YING YAN等: "Fault Diagnosis Framework for Air Handling Units based on the Integration of Dependency Matrices and PCA", 《2014 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE)》 *
刘远 等: "基于PCA-SVM模型的多电平逆变系统故障诊断", 《电力系统保护与控制》 *
唐勇波 等: "基于重构贡献和灰关联熵的变压器诊断方法", 《仪器仪表学报》 *
林龙 等: "基于时频图像不变矩特征提取的轴承故障诊断方法", 《机电工程技术》 *

Also Published As

Publication number Publication date
CN107704863B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Raissi et al. Multistep neural networks for data-driven discovery of nonlinear dynamical systems
Berry et al. Generating all the minimal separators of a graph
Deng et al. Analysis of fractional differential equations with multi-orders
CN103425994B (zh) 一种用于模式分类的特征选择方法
Boys Electronic wave functions IV. Some general theorems for the calculation of Schrödinger integrals between complicated vector-coupled functions for many-electron atoms
De Bernardi et al. Pseudo-random number generation using generative adversarial networks
Nuo A novel selection method of network intrusion optimal route detection based on naive Bayesian
Wu et al. Multi-sensor signal fusion for a compound fault diagnosis method with strong generalization and noise-tolerant performance
Schuhmacher et al. Unravelling physics beyond the standard model with classical and quantum anomaly detection
Myrzakul et al. Chaotic inflation in higher derivative gravity theories
Pumi et al. A dynamic model for double‐bounded time series with chaotic‐driven conditional averages
CN107563518A (zh) 一种基于社会力模型群优化算法的极限学习机的学习方法
Rossi et al. Hypergraph states in Grover's quantum search algorithm
Wootton Hexagonal matching codes with two-body measurements
Coronel-Brizio et al. The Anderson–Darling test of fit for the power-law distribution from left-censored samples
CN107704863A (zh) Pca主元重排的故障特征表示方法
CN109669413A (zh) 一种基于动态潜独立变量的动态非高斯过程监测方法
Fernandes et al. Effectiveness of the Krotov method in finding controls for open quantum systems
Oliveira et al. Boundary crisis and transient in a dissipative relativistic standard map
Si et al. An architecture-based reliability estimation framework through component composition mechanisms
Heinosaari et al. Generalized coherent states and extremal positive operator valued measures
Wang et al. First-order differential filtering spectrum division method and information fusion multi-scale network for fault diagnosis of bearings under different loads
Qin Efficient verification of determinate processes
Malviya et al. Linear approximation of a vectorial Boolean function using quantum computing
Han et al. The forecast of the postoperative survival time of patients suffered from non-small cell lung cancer based on PCA and extreme learning machine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant