CN107703936A - 基于卷积神经网络的自动导航小车系统及小车定位方法 - Google Patents

基于卷积神经网络的自动导航小车系统及小车定位方法 Download PDF

Info

Publication number
CN107703936A
CN107703936A CN201710864272.XA CN201710864272A CN107703936A CN 107703936 A CN107703936 A CN 107703936A CN 201710864272 A CN201710864272 A CN 201710864272A CN 107703936 A CN107703936 A CN 107703936A
Authority
CN
China
Prior art keywords
road sign
agv dollies
dolly
convolutional neural
neural networks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710864272.XA
Other languages
English (en)
Inventor
周源远
蔡梅高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Light Boat Intelligent Technology Co Ltd
Original Assignee
Nanjing Light Boat Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Light Boat Intelligent Technology Co Ltd filed Critical Nanjing Light Boat Intelligent Technology Co Ltd
Priority to CN201710864272.XA priority Critical patent/CN107703936A/zh
Publication of CN107703936A publication Critical patent/CN107703936A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means

Abstract

本发明公开了基于卷积神经网络的自动导航小车系统及小车定位方法,包括AGV小车、引导部分以及远程服务器。AGV小车的摄像头采集AGV小车前方的视频传输给控制芯片。引导部分包括路面上的矩形网格,矩形网格的交叉点上贴有路标,路标上设有数字标记且每个路标上的数字标记均不相同。远程服务器将路标的坐标信息、每个路标上的数字信息以及路径信息以无线通讯方式传输至AGV小车。AGV小车自出发点起通过摄像头采集AGV小车前方矩形网格中的路标信息,通过控制芯片与路径信息比对行驶。本发明通过卷积神经网络识别路标,通过比对路标信息定位小车当前所处位置,计算量较小,反应速度快;特殊情况可用卷积神经网络识别路标上的数字信息,通过数字信息来实现精确定位。

Description

基于卷积神经网络的自动导航小车系统及小车定位方法
技术领域
本发明涉及基于卷积神经网络的自动导航小车系统及小车定位方法。
背景技术
在现代科学技术的发展中,电子化、信息化、网络化和智能化已成为车辆以后发展的动向。AGV小车是该发展动向的完美表现。AGV小车,指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,AGV的全程是Automated Guided Vehicle。AGV小车越来越广泛的应用于工业生产实践中,由于它的高自动智能化,使工厂既节约了人工成本和生产成本,又提高了生产效率和生产周期。
目前市场上推出了由后台计算机控制的自动无人搬运车,通过计算机发出搬运指令,控制AGV小车的行驶路线,AGV小车循线的引导方式主要有电磁感应引导、超声波引导、激光引导或红外引导。在实际循线中,AGV小车完成循线任务或者产生故障停止前进后,后台服务器需要提供额外的计算和通讯服务来对AGV小车进行定位,AGV小车定位功能往往需要通过在AGV小车上加装GPS定位装置来实现,增加了功耗和成本,同时GPS定位信号在室内环境容易受干扰,稳定性不好。
发明内容
为解决上述问题,本发明的目的是提供一种基于卷积神经网络的自动导航小车系统及小车定位方法。
实现本发明目的的技术方案是:基于卷积神经网络的自动导航小车系统的小车定位方法,包括以下步骤:
步骤一、构建自动导航小车系统;所述自动导航小车系统包括AGV小车和引导机构;所述AGV小车上设有摄像头与摄像头连接的带卷积神经网络的控制芯片;所述引导机构包括由设置在路面上由若干条横线和纵线形成的矩形网格,矩形网格的每个交叉点处设有不重复的路标;矩形网格中的路标为矩形标贴;每个所述路标的中心点与矩形网络中的交叉点重合,路标左右侧和前后侧的对称线与交叉点处的横线和纵线重合;矩形网格中的路标为矩形标贴;每个所述路标上都设有不重复的数字标记,每个路标上的数字标记为不重复的三位数字;路标颜色选择与路面主色反差较大的颜色,远程服务器将每个路标上的数字标记以数字标记集方式保存并传输至AGV小车;
步骤二、远程服务器将矩形网格的结构、矩形网格线中路标位置保存并以无线通讯方式传输至AGV小车;矩形网格中的路标位置即路标的坐标信息,每个路标的坐标信息均不相同,远程服务器将矩形网络中所有路标的坐标信息集传输至AGV小车;
步骤三、远程服务器接收到AGV小车路径规划请求,将包括多个路标位置的路径信息发送至AGV小车,AGV小车根据路径信息开始行驶;路径信息为多个路标位置的坐标信息集。
步骤四、AGV小车在行驶过程中通过摄像头采集前方视频图像,通过带卷积神经网络的控制芯片进行视频图像的分析并识别路标,控制芯片统计由卷积神经网络分析出的行驶过的路标数量,和矩形网格比对获得AGV小车的大概位置;再通过卷积神经网络计算前方最近路标距离本小车的距离,从而获得AGV小车的精确位置。
当AGV小车在行驶过程中产生故障停止或接近抵达目标点时,控制芯片通过摄像头将前方最近路标上的数字标记识别后与控制芯片内保存的所有路标的数字标记集对比后得出AGV小车当前位置,再计算前方最近路标距离AGV小车的距离即可得到AGV小车具体定位。
自动导航小车系统中,卷积神经网络模型的处理过程包括以下步骤:
①、样本采集;
采集路标图像和小车图像,对图像进行分类生成路标样本和小车样本;
②、对路标样本和车辆样本预处理;
根据设定的样本尺寸,对路标样本和小车样本随机地进行对称翻转变化,随机修剪,色彩抖动,噪声扰动;手动将路标样本、小车样本中包含路标、小车的长方形区域框选出,将长方形框的左上角像素点的坐标值和右下角像素点的坐标值记录下来,完成小车或路标的标注;
③、卷积网络的训练:
将步骤②中标注好的小车样本和路标样本输入深度卷积网络中去,获得该图像文件的网络输出,然后计算出网络输出和标注的矩形框坐标之间的差值,然后将该差值通过反向传递进行卷积网络权重的更新。依照步骤③对所有的训练图像迭代上百次,最终获得训练好的卷积网络模型。
④、将路标样本和车辆样本输入已训练完成的卷积神经网络,卷积神经网络计算后获得识别结果,根据识别结果对路标和小车的位置、角度做进一步计算。
进一步优选地,①中步骤包括:从拍摄的视频或图片中截取大量路标样本和小车样本组成路标样本和小车样本,路标样本和小车样本分别包括了路标图像的各个视角和小车图像的各个视角。
进一步优选地,②中步骤包括:将样本图像的像素尺寸范围转换至288*288–544*544。
进一步优选地,③中步骤包括:在识别出路标后,将该路标中心与图像底线中心连线,中心连接与垂直线的夹角即为本小车当前行进方向的夹角。中心连接的长度即为本小车距离前面路标的距离。
采用了上述技术方案,本发明具有以下的有益效果:(1)本发明利用卷积神经网络来模拟人眼对路标的定位,平时利用路标简洁定位,利用卷积神经网络来识别摄像头拍摄的路标信息,并记住行驶过的路标数量以及与前方路标的距离,从而知道目前所处的位置,简洁定位计算量较小,反应速度快,可满足绝大多数时间的定位要求;当AGV小车运行接近目标地或故障停止时,利用卷积神经网络识别路标上的数字信息,通过数字信息来实现精确定位,进一步提高定位的精确性。
(2)本发明中,AGV小车在整个行驶过程中的定位由各小车独立完成,不需要通过后台服务器,大大提高了整个小车系统的性能和吞吐率,也降低了服务器单点故障对整个系统的不良影响。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明中自动导航小车系统的结构模块图。
图2为本发明中实施例1中的小车定位方法流程图。
图3为本发明中实施例1的小车定位方法示意图。
图4为本发明中实施例2中的小车定位方法流程图。
图5为本发明中实施例2的小车定位方法示意图。
具体实施方式
(实施例1)
如图1、图2和图3所示,本实施例的基于卷积神经网络的自动导航小车系统的小车定位方法,包括以下步骤:
步骤一、构建自动导航小车系统;自动导航小车系统包括AGV小车和引导机构;AGV小车上设有摄像头与摄像头连接的带卷积神经网络的控制芯片;引导机构包括由设置在路面上由若干条横线和纵线形成的矩形网格,矩形网格的每个交叉点处设有不重复的路标,矩形网格中的路标为矩形标贴;每个路标的中心点与矩形网络中的交叉点重合,路标左右侧和前后侧的对称线与交叉点处的横线和纵线重合;路标颜色选择与路面主色反差较大的颜色;
步骤二、远程服务器将矩形网格的结构(6X6)、矩形网格线中路标位置保存并以无线通讯方式传输至AGV小车;矩形网格中的路标位置即路标的坐标信息,坐标以横线上的数值为横坐标,纵线上的数字为纵坐标,每个路标的坐标信息均不相同,远程服务器将矩形网络中所有路标的坐标信息集传输至AGV小车;
步骤三、远程服务器接收到AGV小车路径规划请求,将出发点A点至目标点B点的路径信息发送至AGV小车,路径信息为多个路标位置的坐标信息集,AGV小车根据路径信息上的坐标信息集【(0,0)—(0,1)-(1,1)—(2,1)-(3,1)—(4,1)-(4,2)—(4,3)-(4,4)】依次开始行驶;
步骤四、AGV小车在行驶过程中通过摄像头采集前方视频图像并通过带卷积神经网络的控制芯片进行视频图像的分析,当小车行驶至图中C点时,控制芯片将AGV小车行驶过的路标数量(4个)结合路径信息中的路标位置来确定当前位置以及经过坐标点(2,1)且未到坐标点(3,1),再计算前方最近路标距离AGV小车的距离即可得到AGV小车具体定位。
构建卷积神经网络模型的步骤如下:
(1)将352X352像素大小的图片作为输入层Input0输入卷积层Conv1,对其进行行块大小为3X3像素、步长为1像素、填充距离为1像素的卷积操作,使用16个卷积核,得到16张352X352像素的特征图;
(2)将卷积层Conv1输出的16张特征图输入到池化层Pool2,对其进行最大池操作,池化块的大小为2X2像素,步长为2像素,得到16张176X176像素的特征图;
(3)将池化层Pool2输出的16张特征图输入卷积层Conv3,对其进行行块大小为3X3像素、步长为1像素、填充距离为1像素的卷积操作,需要用到32个卷积核,得到32张176X176像素的特征图;
(4)将卷积层Conv3输出的32张特征图输入到池化层Pool4,对其进行最大池操作,池化块的大小为2X2像素,步长为2像素,得到32张88X88像素的特征图;
(5)将池化层Pool4输出的32张特征图输入卷积层Conv5,对其进行块大小为3X3像素、步长为1像素、填充距离为1像素的卷积操作,需要用到64个卷积核,得到64张88X88像素的特征图;
(6)将卷积层Conv5输出的64张特征图输入到池化层Pool6,对其进行最大池操作,池化块的大小为2X2像素,步长为2像素,得到64张44X44像素的特征图;
(7)将池化层Pool6输出的64张特征图输入卷积层Conv7,对其进行行块大小为3X3像素、步长为1像素、填充距离为1像素的卷积操作,需要用到128个卷积核,得到128张44X44像素的特征图;
(8)将卷积层Conv7输出的128张特征图输入到池化层Pool8,对其进行最大池操作,池化块的大小为2X2像素,步长为2像素,得到128张22X22像素的特征图;
(9)将池化层Pool8输出的输出的128张特征图输入卷积层Conv9,对其进行行块大小为3X3像素、步长为1像素、填充距离为1像素的卷积操作,需要用到256个卷积核,得到256张22X22像素的特征图;
(10)将卷积层Conv9输出的256张特征图输入到池化层Pool10,对其进行最大池操作,池化块的大小为2X2像素,步长为2像素,得到256张11X11像素的特征图;
(11)将池化层Pool10输出的输出的256张特征图输入卷积层Conv11,对其进行行块大小为3X3像素、步长为1像素、填充距离为1像素的卷积操作,需要用到512个卷积核,得到512张11X11像素的特征图;
(12)将卷积层Conv11输出的输出的512张特征图输入卷积层Conv12,对其进行行块大小为3X3像素、步长为1像素、填充距离为1像素的卷积操作,需要用到1024个卷积核,得到1024张11X11像素的特征图;
(13)将卷积层Conv12输出的输出的1024张特征图输入卷积层Conv13,对其进行行块大小为1X1像素、步长为1像素、填充距离为1像素的卷积操作,需要用到80个卷积核,得到80张11X11像素的特征图;
(14)根据最后获得的80张11*11的特征图判断图中各个像素点周围可能出现的目标物体及其轮廓矩形框的顶点坐标。输出判断结果。
(实施例2)
如图1、图4和图5所示,本实施例的基于卷积神经网络的自动导航小车系统的小车定位方法,包括以下步骤:
步骤一、构建自动导航小车系统;自动导航小车系统包括AGV小车和引导机构;AGV小车上设有摄像头与摄像头连接的带卷积神经网络的控制芯片;引导机构包括由设置在路面上由若干条横线和纵线形成的矩形网格,矩形网格的每个交叉点处设有不重复的路标;矩形网格中的路标为矩形标贴;每个路标的中心点与矩形网络中的交叉点重合,路标左右侧和前后侧的对称线与交叉点处的横线和纵线重合;每个路标上都设有不重复的数字标记,每个路标上的数字标记为不重复的三位数字,远程服务器将每个路标上的数字标记以数字标记集方式保存并传输至AGV小车。
步骤二、远程服务器将矩形网格的结构(6X6)、矩形网格线中路标位置保存并以无线通讯方式传输至AGV小车;矩形网格中的路标位置即路标的坐标信息,坐标以横线上的数值为横坐标,纵线上的数字为纵坐标,每个路标的坐标信息均不相同,远程服务器将矩形网络中所有路标的坐标信息集传输至AGV小车;
步骤三、远程服务器接收到AGV小车路径规划请求,将出发点A点至目标点B点的路径信息发送至AGV小车,路径信息为多个路标位置的坐标信息集,AGV小车根据路径信息上的坐标信息集【(0,0)—(0,1)-(1,1)—(2,1)-(3,1)—(4,1)-(4,2)—(4,3)-(4,4)】依次开始行驶;当AGV小车行驶至C点产生故障停止时,控制芯片通过摄像头将前方最近路标上的数字标记431识别后与控制芯片内保存的所有路标的数字标记集对比后得出AGV小车当前位置,再计算前方最近路标距离AGV小车的距离即可得到AGV小车具体定位。
步骤四、AGV小车在行驶过程中通过摄像头采集前方视频图像并通过带卷积神经网络的控制芯片进行视频图像的分析,当小车行驶至图中D点时,控制芯片将AGV小车行驶过的路标数量(7个)结合路径信息中的路标位置来确定当前位置以及经过坐标点(4,2)且未到坐标点(4,3),再计算前方最近路标距离AGV小车的距离即可得到AGV小车具体定位。
步骤五,AGV小车接近抵达目标点B点时,控制芯片通过摄像头将前方最近路标上的数字标记(448)识别后与控制芯片内保存的目标点路标的数字标记对比后确认定位。
本实施例中构建卷积神经网络模型的步骤与实施例1相同。
以上的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:包括以下步骤:
步骤一、构建自动导航小车系统;所述自动导航小车系统包括AGV小车和引导机构;所述AGV小车上设有摄像头与摄像头连接的带卷积神经网络的控制芯片;所述引导机构包括由设置在路面上由若干条横线和纵线形成的矩形网格,矩形网格的每个交叉点处设有不重复的路标;
步骤二、远程服务器将矩形网格的结构、矩形网格线中路标位置保存并以无线通讯方式传输至AGV小车;
步骤三、远程服务器接收到AGV小车路径规划请求,将包括多个路标位置的路径信息发送至AGV小车,AGV小车根据路径信息开始行驶;
步骤四、AGV小车在行驶过程中通过摄像头采集前方视频图像,通过带卷积神经网络的控制芯片进行视频图像的分析并识别路标,控制芯片统计由卷积神经网络分析出的行驶过的路标数量,和矩形网格比对获得AGV小车的大概位置;再通过卷积神经网络计算前方最近路标距离本小车的距离,从而获得AGV小车的精确位置。
2.根据权利要求1中所述的基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:
所述步骤二中,矩形网格中的路标位置即路标的坐标信息,每个路标的坐标信息均不相同,远程服务器将矩形网络中所有路标的坐标信息集传输至AGV小车;
所述步骤三中,路径信息为多个路标位置的坐标信息集。
3.根据权利要求1中所述的基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:
所述步骤一中,矩形网格中的路标为矩形标贴;每个所述路标的中心点与矩形网络中的交叉点重合,路标左右侧和前后侧的对称线与交叉点处的横线和纵线重合。
4.根据权利要求1中所述的基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:
所述步骤一中,矩形网格中的路标为矩形标贴;每个所述路标上都设有不重复的数字标记,远程服务器将每个路标上的数字标记以数字标记集方式保存并传输至AGV小车。
5.根据权利要求4中所述的基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:
所述步骤四中,当AGV小车在行驶过程中产生故障停止时,控制芯片通过摄像头将前方最近路标上的数字标记识别后与控制芯片内保存的所有路标的数字标记集对比后得出AGV小车当前位置,再计算前方最近路标距离AGV小车的距离即可得到AGV小车具体定位。
6.根据权利要求4中所述的基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:
所述步骤四中,当AGV小车接近抵达目标点时,控制芯片通过摄像头将前方最近路标上的数字标记识别后与控制芯片内保存的所有路标的数字标记集对比后得出AGV小车当前位置,再计算前方最近路标距离AGV小车的距离即可得到AGV小车具体定位。
7.根据权利要求4中所述的基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:
所述步骤一中,每个路标上的数字标记为不重复的三位数字。
8.根据权利要求1中所述的基于卷积神经网络的自动导航小车系统的小车定位方法,其特征在于:
所述步骤一中,路标颜色选择与路面主色反差较大的颜色。
CN201710864272.XA 2017-09-22 2017-09-22 基于卷积神经网络的自动导航小车系统及小车定位方法 Pending CN107703936A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710864272.XA CN107703936A (zh) 2017-09-22 2017-09-22 基于卷积神经网络的自动导航小车系统及小车定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710864272.XA CN107703936A (zh) 2017-09-22 2017-09-22 基于卷积神经网络的自动导航小车系统及小车定位方法

Publications (1)

Publication Number Publication Date
CN107703936A true CN107703936A (zh) 2018-02-16

Family

ID=61173172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710864272.XA Pending CN107703936A (zh) 2017-09-22 2017-09-22 基于卷积神经网络的自动导航小车系统及小车定位方法

Country Status (1)

Country Link
CN (1) CN107703936A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283928A (zh) * 2018-09-25 2019-01-29 华南农业大学 一种基于机器视觉的自动导航运输车及其自动行驶方法
CN109446973A (zh) * 2018-10-24 2019-03-08 中车株洲电力机车研究所有限公司 一种基于深度神经网络图像识别的车辆定位方法
CN110456805A (zh) * 2019-06-24 2019-11-15 深圳慈航无人智能系统技术有限公司 一种无人机智能循迹飞行系统及方法
CN111486849A (zh) * 2020-05-29 2020-08-04 北京大学 一种基于二维码路标的移动视觉导航方法及系统
TWI726412B (zh) * 2019-09-06 2021-05-01 國立成功大學 識別室內位置的建模系統、可攜式電子裝置、室內定位方法、電腦程式產品及電腦可讀取紀錄媒體
CN113504779A (zh) * 2021-08-16 2021-10-15 广东顺力智能物流装备股份有限公司 智能物流用基于标识带识别agv无人导航系统及其导航方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142683A (zh) * 2013-11-15 2014-11-12 上海快仓智能科技有限公司 基于二维码定位的自动引导车导航方法
CN105310604A (zh) * 2014-07-30 2016-02-10 Lg电子株式会社 机器人清洁系统以及控制机器人清洁器的方法
CN105974928A (zh) * 2016-07-29 2016-09-28 哈尔滨工大服务机器人有限公司 一种机器人导航路径规划方法
CN205879193U (zh) * 2016-07-13 2017-01-11 哈尔滨工大服务机器人有限公司 一种机器人视觉导航路标及系统
US20170010104A1 (en) * 2015-02-10 2017-01-12 Mobileye Vision Technologies Ltd. Super landmarks as navigation aids
CN106526580A (zh) * 2016-10-26 2017-03-22 哈工大机器人集团上海有限公司 用于确定机器人位置的路标、设备及机器人位置确定方法
CN206113954U (zh) * 2016-09-14 2017-04-19 哈工大机器人集团上海有限公司 一种用于确定机器人位置的路标和设备
CN106772240A (zh) * 2016-12-13 2017-05-31 哈工大机器人集团上海有限公司 剔除点阵式反射标签干扰点方法及机器人导航方法
CN106845547A (zh) * 2017-01-23 2017-06-13 重庆邮电大学 一种基于摄像头的智能汽车定位与道路标识识别系统及方法
KR20170075572A (ko) * 2015-12-23 2017-07-03 부산대학교 산학협력단 거점 기반 무선유도장치 및 그의 무선유도방법
CN107065862A (zh) * 2017-03-08 2017-08-18 杭州电子科技大学 基于视觉引导与rfid导航的仓储物流机器人群控系统
CN107122701A (zh) * 2017-03-03 2017-09-01 华南理工大学 一种基于图像显著性和深度学习的交通道路标志识别方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142683A (zh) * 2013-11-15 2014-11-12 上海快仓智能科技有限公司 基于二维码定位的自动引导车导航方法
CN105310604A (zh) * 2014-07-30 2016-02-10 Lg电子株式会社 机器人清洁系统以及控制机器人清洁器的方法
US20170010104A1 (en) * 2015-02-10 2017-01-12 Mobileye Vision Technologies Ltd. Super landmarks as navigation aids
KR20170075572A (ko) * 2015-12-23 2017-07-03 부산대학교 산학협력단 거점 기반 무선유도장치 및 그의 무선유도방법
CN205879193U (zh) * 2016-07-13 2017-01-11 哈尔滨工大服务机器人有限公司 一种机器人视觉导航路标及系统
CN105974928A (zh) * 2016-07-29 2016-09-28 哈尔滨工大服务机器人有限公司 一种机器人导航路径规划方法
CN206113954U (zh) * 2016-09-14 2017-04-19 哈工大机器人集团上海有限公司 一种用于确定机器人位置的路标和设备
CN106526580A (zh) * 2016-10-26 2017-03-22 哈工大机器人集团上海有限公司 用于确定机器人位置的路标、设备及机器人位置确定方法
CN106772240A (zh) * 2016-12-13 2017-05-31 哈工大机器人集团上海有限公司 剔除点阵式反射标签干扰点方法及机器人导航方法
CN106845547A (zh) * 2017-01-23 2017-06-13 重庆邮电大学 一种基于摄像头的智能汽车定位与道路标识识别系统及方法
CN107122701A (zh) * 2017-03-03 2017-09-01 华南理工大学 一种基于图像显著性和深度学习的交通道路标志识别方法
CN107065862A (zh) * 2017-03-08 2017-08-18 杭州电子科技大学 基于视觉引导与rfid导航的仓储物流机器人群控系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283928A (zh) * 2018-09-25 2019-01-29 华南农业大学 一种基于机器视觉的自动导航运输车及其自动行驶方法
CN109446973A (zh) * 2018-10-24 2019-03-08 中车株洲电力机车研究所有限公司 一种基于深度神经网络图像识别的车辆定位方法
CN109446973B (zh) * 2018-10-24 2021-01-22 中车株洲电力机车研究所有限公司 一种基于深度神经网络图像识别的车辆定位方法
CN110456805A (zh) * 2019-06-24 2019-11-15 深圳慈航无人智能系统技术有限公司 一种无人机智能循迹飞行系统及方法
CN110456805B (zh) * 2019-06-24 2022-07-19 深圳慈航无人智能系统技术有限公司 一种无人机智能循迹飞行系统及方法
TWI726412B (zh) * 2019-09-06 2021-05-01 國立成功大學 識別室內位置的建模系統、可攜式電子裝置、室內定位方法、電腦程式產品及電腦可讀取紀錄媒體
CN111486849A (zh) * 2020-05-29 2020-08-04 北京大学 一种基于二维码路标的移动视觉导航方法及系统
CN113504779A (zh) * 2021-08-16 2021-10-15 广东顺力智能物流装备股份有限公司 智能物流用基于标识带识别agv无人导航系统及其导航方法

Similar Documents

Publication Publication Date Title
CN107703936A (zh) 基于卷积神经网络的自动导航小车系统及小车定位方法
JP7351487B2 (ja) トポロジーマップに基づくインテリジェントナビゲーションの方法及びシステム
CN105318888B (zh) 基于无人机感知的无人驾驶车辆路径规划方法
CN108256413B (zh) 可通行区域检测方法及装置、存储介质、电子设备
CN106966298B (zh) 基于机器视觉的装配式建筑智能吊装方法与系统
CN107609502A (zh) 用于控制无人驾驶车辆的方法和装置
WO2021249071A1 (zh) 一种车道线的检测方法及相关设备
CN107481292A (zh) 车载摄像头的姿态误差估计方法和装置
CN107729808A (zh) 一种用于输电线路无人机巡检的图像智能采集系统及方法
CN108068817A (zh) 一种无人驾驶汽车自动变道装置及方法
CN110019570A (zh) 用于构建地图的方法、装置及终端设备
CN106845487A (zh) 一种端到端的车牌识别方法
CN107703937A (zh) 基于卷积神经网络的自动导航小车系统及其冲突规避方法
CN108216229A (zh) 交通工具、道路线检测和驾驶控制方法及装置
CN105261034B (zh) 一种高速公路上车流量的统计方法及装置
CN107808123A (zh) 图像可行域检测方法、电子设备、存储介质、检测系统
CN107677287A (zh) 基于卷积神经网络的自动导航小车系统及小车循线方法
CN104750008B (zh) 一种ZigBee网络中的农业机器人无线遥控系统
CN103345165A (zh) 缩微智能车群的智能交通硬件在线仿真系统
CN106705955A (zh) 一种海量级agv调度方法及其系统
WO2022095060A1 (zh) 路径规划方法、路径规划装置、路径规划系统和介质
CN110428583B (zh) 一种基于嵌入式开发和深度学习的叉车实时监控预警系统及方法
CN109976339B (zh) 一种车载配网巡检数据采集方法与巡检系统
CN110008891A (zh) 一种行人检测定位方法、装置、车载计算设备及存储介质
CN107390699A (zh) 一种甘蔗种植机的路线规划系统及其路线规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216