CN107703757A - The super-twisting sliding mode control method of gyroscope system - Google Patents

The super-twisting sliding mode control method of gyroscope system Download PDF

Info

Publication number
CN107703757A
CN107703757A CN201711085211.XA CN201711085211A CN107703757A CN 107703757 A CN107703757 A CN 107703757A CN 201711085211 A CN201711085211 A CN 201711085211A CN 107703757 A CN107703757 A CN 107703757A
Authority
CN
China
Prior art keywords
mrow
msub
mover
centerdot
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711085211.XA
Other languages
Chinese (zh)
Inventor
冯治琳
费峻涛
王欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201711085211.XA priority Critical patent/CN107703757A/en
Publication of CN107703757A publication Critical patent/CN107703757A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

The invention discloses a kind of super-twisting sliding mode control method of gyroscope system, the super-twisting sliding mode controller for the method design gyroscope system being combined using Equivalent Sliding Mode control with supertwist control, then using the Lyapunov function pair gyroscope systems of D-quadratic form when being disturbed by constant value disturbance and variate, carry out stability analysis, it is ensured that system asymptotic stability.The present invention can effectively suppress to buffet caused by common sliding Mode Algorithm, and sliding variable and its first derivative can be made to converge to zero in finite time, so as to ensure that the track of gyroscope can accurately and effectively track its reference locus, ensure system Globally asymptotic, the robustness of improvement system, improve sensitivity and the accuracy of system.

Description

The super-twisting sliding mode control method of gyroscope system
Technical field
The present invention relates to a kind of super-twisting sliding mode control method of gyroscope system, belong to the control technology of gyroscope Field.
Background technology
Gyro is inertial navigation and the fundamental measurement element of inertial guidance system.Microthrust test is because it is in cost, volume, structure Etc. big advantage be present, so as to be widely used in navigation, space flight, aviation and oil field exploration exploitation and land vehicle Navigation and positioning etc. in civilian, military field.Because it has the influence of error and temperature in design and manufacture, original can be caused Difference between part characteristic and design, so as to cause the reduction of gyroscope system sensitivity and precision, the master of gyroscope control It is compensation foozle and measurement angular speed to want problem.By the research and development of decades, although gyroscope is in structure design Significant progress is achieved with precision etc., but limitation and technique machining accuracy itself due to its design principle in itself Limitation so that the development of gyroscope be difficult to obtain qualitative leap.
The measurement of angular speed and the compensation of foozle are the subject matter of microthrust test control, and traditional control method is main Solve drive shaft oscillation amplitude and the stable control of frequency and the matching problem of two axle frequencies, it is impossible to efficiently solve micro- top Deficiency and defect existing for spiral shell.
The content of the invention
The technical problems to be solved by the invention are the defects of overcoming prior art, there is provided a kind of gyroscope system surpasses Sliding-mode control is distorted, can effectively suppress control input buffeting, make control input more smooth, and sliding formwork can be made Variable and its first derivative make system reach Asymptotic Stability state, improve the items of system in Finite-time convergence to zero Energy.
In order to solve the above technical problems, the present invention provides a kind of super-twisting sliding mode control method of gyroscope system, bag Include following steps:
1) gyroscope system is reduced into one has damped oscillation system by what mass and spring were formed, establishes micro- top The dimensionless mathematical modeling of spiral shell instrument system;
2) design reference model;
3) sliding-mode surface is designed;
4) slided using Equivalent Sliding Mode control with the supertwist for the method design gyroscope system that supertwist control is combined Mould controller, design control law are as follows:
U=ucon+udis (9)
Wherein, u is control law, uconFor continuous control portion, the equivalent control term u of system is taken aseq, udisFor discontinuous control Part, it is taken as system switching control item usw
5) entered using the Lyapunov function pair gyroscope systems of D-quadratic form when being disturbed by constant value disturbance and variate Row stability analysis, it is ensured that system asymptotic stability.
The foregoing dimensionless mathematical modeling for establishing gyroscope system comprises the following steps:
Newton's law in 1-1) being according to rotation, considers influence of the various foozles to micro- spiral shell top instrument, obtains The mathematical modeling of gyroscope is:
Wherein, m is the quality of mass, and x, y are mass in drive shaft and the position vector of the axle of sensitive axis two, dxx,dyy Represent x, the damped coefficient of the axles of y two, kxx,kyyIt is x respectively, the spring constant of the axles of y two, ux,uyIt is to represent x, the control of the axles of y two is defeated Enter, kxy, dxyIt is coupling spring coefficient and damped coefficient, Ω caused by foozlezRepresent the angle in gyroscope working environment Speed,It is Coriolis force;
1-2) by the both sides of the mathematical modulo pattern (1) of gyroscope simultaneously divided by gyroscope mass quality m, reference Length q0, square ω of the resonant frequency of two axles0 2, the mathematical modeling for obtaining nondimensionalization is as follows:
The expression formula of each characteristic is:
Symbol " → " represents that the amount on the symbol left side is replaced with the amount on the right of symbol;
The mathematical modulo pattern (2) of nondimensionalization 1-3) is rewritten as vector form:
1-4) consider the parameter uncertainty and external interference of gyroscope system, the mathematical modeling of gyroscope system is repaiied It is changed to:
Wherein, Δ D be inertial matrix D+2 Ω unknown parameter uncertainty, Δ K be matrix K unknown parameter not Certainty, d are external interferences;
1-5) definition is uncertain and external interference is:
Then formula (5) is expressed as:
Wherein:
Foregoing reference model is:
Reference model chooses stable pure oscillation, order:
qr1=A1sin(ω1T), qr2=A2sin(ω2T),
Wherein, A1, A2For the amplitude of vibration, ω1, ω2For the frequency of vibration.
Foregoing sliding-mode surface s is designed as:
Wherein, c is sliding-mode surface constant, s1,s2For s two components, e is tracking error,
Wherein,For the output trajectory of gyroscope system,For the desired trajectory of gyroscope system. Foregoing equivalent control term ueqSolution procedure it is as follows:
To sliding-mode surface derivation, obtain:
In the case where not considering external interference, obtained by formula (4):
Formula (13) is updated into formula (12) to obtain:
OrderThus equivalent controller, equivalent control term u are obtainedeqFor:
The switching control item uswDesign is as follows:
Wherein, k1> 0, k2> 0;
Then control law is:
Under foregoing constant value disturbance, k1> 0, k2> 0;
Under the variate disturbance,
Wherein, δ is the boundary value of uncertain and external interference derivative.
The beneficial effects of the present invention are:
(1) present invention employs the control of equivalent control and super-twisting control algolithms system designed in conjunction Rule, equivalent control ensure that system mode is moved in sliding-mode surface, super-twisting sliding formwork controls realize it is uncertain and The robustness of external interference, it restrained effectively control input buffeting;
(2) present invention takes the influence of interference into account, and can make sliding variable and its first derivative limited For Fast Convergent to zero, its reference locus can accurately and effectively be tracked by ensuring that the movement locus of control system in time, Control system Global asymptotic stability is ensure that, improves robustness, sensitivity and the accuracy of control system.
(3) present invention employs D-quadratic form Lyapunov function pairs to system when being disturbed by constant value disturbance and variate System has carried out stability analysis, ensures system Asymptotic Stability, having reached the movement locus of system can accurately and quickly track The purpose of reference locus.
Brief description of the drawings
Fig. 1 is the simplified model figure of gyroscope system of the present invention;
Fig. 2 is the super-twisting System with Sliding Mode Controller structured flowcharts of gyroscope system of the present invention;
Fig. 3 is the tracking curves of microthrust test X-axis and Y-axis in present example;
Fig. 4 is the speed tracing curve of gyroscope system in present example;
Fig. 5 be present example in gyroscope system X-axis, Y-axis control input curve;
Fig. 6 is microthrust test system X-axis and Y-axis track following error curve in present example;
Fig. 7 is the speed tracing error curve of gyroscope system in present example;
Fig. 8 is the sliding-mode surface convergence curve in microthrust test system both direction in present example.
Embodiment
The invention will be further described below.Following examples are only used for the technical side for clearly illustrating the present invention Case, and can not be limited the scope of the invention with this.
The mathematical modeling of one, gyroscopes:
Micro- spiral shell top instrument is generally by the mass hung by resilient material, electrostatic drive and sensing device further three parts Composition.As shown in Figure 1 one can be reduced to has damped oscillation system by what mass and spring were formed, which show The z-axis micromachined vibratory gyroscope model of simplification under cartesian coordinate system.
Newton's law in being according to rotation, considers the influence to micro- spiral shell top such as various foozles, then by micro- The nondimensionalization processing of gyroscope, the mathematical modeling for finally giving gyroscope are:
Wherein, m is the quality of mass, and x, y are mass in drive shaft and the position vector of the axle of sensitive axis two, dxx,dyy Represent x, the damped coefficient of the axles of y two, kxx,kyyIt is x respectively, the spring constant of the axles of y two, ux,uyIt is to represent x, the control of the axles of y two is defeated Enter, kxy, dxyIt is coupling spring coefficient and damped coefficient, Ω caused by foozlezRepresent the angle in gyroscope working environment Speed,It is Coriolis force.
The mathematical modulo pattern (1) of gyroscope is a kind of form for having dimension, that is to say, that the physical quantity in equation is not only Consider numerical values recited, and including the uniformity of its physical unit is also contemplated that, therefore add the complexity of controller design Degree.The intrinsic frequency scope of the axle of gyroscope two is typically in kHz scopes, but input angular velocity may be in the several years per hour To in the range of the several years per second, there is very big magnitude and distinguish in both, it is not easy to realize numerical simulation in time.In order to solve Two above problem, it is necessary to which nondimensionalization processing is carried out to model.Nondimensionalization is very valuable in numerical simulation, and it can make When two big time frame differences be present, numerical simulation is easily realized, while it can be various microthrust test systems Design provides a unified mathematical formulae.
By the both sides of formula (1) simultaneously divided by microthrust test mass quality m, reference length q0, the resonant frequency of two axles Square ω0 2, it is as follows to obtain nondimensionalization model:
The expression formula of each characteristic is:
Symbol " → " represents that the amount on the symbol left side is replaced with the amount on the right of symbol.
Nondimensionalization modular form (2) contains two equations, adds the difficulty and complexity of controller design.Therefore have It is necessary that model is subjected to equivalent transformation, the equivalent transformation of model be beneficial to the design of controller and the stability analysis of system and The application of various advanced control methods.Then formula (2) is rewritten as following vector form:
The equivalent mould of the parameter uncertainty and external interference of consideration system, then the microthrust test system according to described by (4) formula Type, gyroscope system model may be modified such that:
In formula, Δ D be inertial matrix D+2 Ω unknown parameter uncertainty, Δ K be matrix K unknown parameter not Certainty, d are external interferences.
Further formula (5) is represented by:
Have in formula:
Supertwist (super-twisting) System with Sliding Mode Controller of two, gyroscopes
The super-twisting System with Sliding Mode Controller structured flowcharts of gyroscope are as shown in Figure 2.
The control problem of gyroscope system is to control the track following problem of gyroscope system, and the target of control is Design a suitable control law u so that the output q of system can in finite time quickly and accurately track reference track qr.The present invention will control to be combined with supertwist control algolithm using Equivalent Sliding Mode come design control law u, selects following control Rule:
U=ucon+udis (9)
In formula, uconFor continuous control part, the equivalent control term u of system can be taken aseq, wherein ueqFor ensureing system State is on sliding-mode surface, udisFor discontinuous control section, realize to external interference and probabilistic robust control and weaken system The buffeting of system, it can be taken as system switching control item usw, switching control herein realized with supertwist control algolithm.
Defining sliding-mode surface is:
In formula, c is sliding-mode surface constant, s1,s2For s two components, e is tracking error, wherein:
In formula, q is the output trajectory of gyroscope system,For the desired trajectory of gyroscope system, it is expected Stable pure oscillation is chosen in track, wherein:qr1=A1sin(ω1T), qr2=A2sin(ω2T), A1, A2For the amplitude of vibration, ω1, ω2For the frequency of vibration.
Equivalent controller is designed first:
Sliding-mode surface derivation can be obtained:
In the case where not considering external interference, the mathematical modeling of microthrust test system system can be described as (4) formula, according to formula (4), it is represented by following form:
Formula (13) is updated into formula (12) to obtain:
OrderIt can thus be concluded that equivalent controller:
Based on supertwist control algolithm, design switching law is:
Wherein, k1> 0, k2> 0.
So the control law for obtaining gyroscope system is:
Three, stability analyses
It will consider that the parameter uncertainty of system and gyroscope system mathematic model (6) formula of external interference substitute into (12) Formula obtains:
(17) formula substitution (18) formula is obtained:
Consider two kinds of situations:
(1), chooseDisturbed for constant value, (19) formula is converted accordingly, can transform to:
Wherein, k1> 0, k2> 0,Order:
Because k1> 0, k2> 0, its proper polynomial areΔ is variable, therefore A is Hurwitz matrixes, so to any positive definite symmetric matrices Q, there must be a positive definite symmetric matrices P, meet Lyapunov equations:
ATP+PA=-Q (22)
Consider that D-quadratic form function V (x, y) is alternative Lyapunov functions:
In above formula:Solved using chain rule (Chain Rule)UsingHave:
Have to track derivations of the V along system (20):
Because Q is positive definite symmetric matrices, have:
Therefore system is stable.
(2) if, takeDisturbed for variate, the stability of a system proves as follows:
Formula (19) is converted accordingly, can be changed to:
Wherein,(δ is the border of uncertain and external interference derivative Value), k1,k2Value meet following formula:
Take positive definite symmetric matricesThe Lyapunov functions of D-quadratic form are:
WhereinOrder:
Utilize inequalityIt is and rightDerivation has:
Have to V along formula (27) system path derivation:
Make Q=- (ATP+PA+δ2CTC+PBBTP), then
Now have:
If Q > 0,K when Q is positive definite is obtained by the Shur properties mended1And k2Span be formula (28), can Know that system can be in Finite-time convergence to origin.
Four, experiment simulations are analyzed
In order to verify the feasibility of the gyroscope system super-twisting sliding mode scheme designed by the present invention, MATLAB is now utilized Simulation software carries out numerical simulation experiment.
The parameter selection of gyroscope experiment simulation is as follows:
M=1.8 × 10-7Kg, kxx=63.955N/m, kyy=95.92N/m, kxy=12.779N/m
dxx=1.8 × 10-6Ns/m, dyy=1.8 × 10-6Ns/m,dxy=3.6 × 10-7Ns/m
It is assumed that the angular speed of input is Ωz=100rad/s, nondimensionalization processing is carried out to gyroscope system, chooses ginseng It is q to examine length0=1 μm, reference frequency ω0=1000Hz, the dimensionless group for obtaining gyroscope system are as follows:
ωx 2=355.3, ωy 2=532.9, ωxy=70.99, dxx=0.01
dyy=0.01, dxy=0.002, Ωz=0.1
If the primary condition of system is:X (0)=1.0,Y (0)=0.5,The two axle phases of microthrust test Hope that running orbit is:qr1=sin (π t), qr2=cos (0.5 π t), in sliding formwork control, take the parameter c=10 of sliding-mode surface.When micro- Gyro system Parameter Perturbation 10%, external interference take white noise signal d=[0.5*randn (1,1);0.5*randn (1,1)], Take δ=10, in Super-Twisting switching laws, take k1=20, k2=30, setting simulation time is 60s.
Simulation result is as shown in Figures 3 to 8.
Fig. 3 is the tracking curves of the X-axis that gyroscope system obtains under super-twisting sliding mode control and Y-axis, wherein, Solid line is reference locus, and dotted line is actual path.As seen from Figure 3, under super-twisting sliding mode control, system can be quickly accurate Ground track reference track, control effect are good.
Fig. 4 is the speed tracing curve of gyroscope system, wherein, solid line is reference velocity, and dotted line is actual speed.From It can be seen from the figure that, the speed tracing of system equally can quickly realize the accurate tracking to reference velocity in finite time.
Fig. 5 is gyroscope system X-axis, Y-axis control input curve, as seen from Figure 5, is controlled using super-twisting sliding mode It can effectively suppress to buffet, improve systematic function.
Fig. 6 is X-axis and Y-axis track following error, as seen from Figure 6, the rail of system is made using super-twisting sliding mode control Mark tracking error can rapidly go to zero in finite time, and convergence rate is very fast.
Fig. 7 is the speed tracing error in X-axis and Y-axis, as seen from Figure 7, makes system using super-twisting sliding mode control Speed tracing error can rapidly be gone to zero in finite time, convergence rate is very fast.
Fig. 8 is sliding-mode surface convergence curve of the microthrust test system under Super-Twisting sliding formwork controls in both direction, It can be seen that sliding-mode surface function can quickly go to zero in finite time, sliding stability region is reached.
Described above is only the preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, without departing from the technical principles of the invention, some improvement and deformation can also be made, these are improved and deformation Also it should be regarded as protection scope of the present invention.

Claims (6)

1. the super-twisting sliding mode control method of gyroscope system, it is characterised in that comprise the following steps:
1) gyroscope system is reduced into one has damped oscillation system by what mass and spring were formed, establishes gyroscope The dimensionless mathematical modeling of system;
2) design reference model;
3) sliding-mode surface is designed;
4) the super-twisting sliding mode control for the method design gyroscope system being combined using Equivalent Sliding Mode control with supertwist control Device processed, design control law are as follows:
U=ucon+udis (9)
Wherein, u is control law, uconFor continuous control portion, the equivalent control term u of system is taken aseq, udisFor discontinuous control unit Point, it is taken as system switching control item usw
5) carried out steady using the Lyapunov function pair gyroscope systems of D-quadratic form when being disturbed by constant value disturbance and variate Qualitative analysis, it is ensured that system asymptotic stability.
2. the super-twisting sliding mode control method of gyroscope system according to claim 1, it is characterised in that the foundation The dimensionless mathematical modeling of gyroscope system comprises the following steps:
Newton's law in 1-1) being according to rotation, considers influence of the various foozles to micro- spiral shell top instrument, obtains micro- top The mathematical modeling of spiral shell instrument is:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>m</mi> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>=</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>m&amp;Omega;</mi> <mi>z</mi> </msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>m</mi> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>=</mo> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>m&amp;Omega;</mi> <mi>z</mi> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, m is the quality of mass, and x, y are mass in drive shaft and the position vector of the axle of sensitive axis two, dxx,dyyRepresent The damped coefficient of the axle of x, y two, kxx,kyyIt is x respectively, the spring constant of the axles of y two, ux,uyIt is to represent x, the control input of the axles of y two, kxy, dxyIt is coupling spring coefficient and damped coefficient, Ω caused by foozlezRepresent the angle speed in gyroscope working environment Degree,It is Coriolis force;
1-2) by the both sides of the mathematical modulo pattern (1) of gyroscope simultaneously divided by gyroscope mass quality m, reference length q0, square ω of the resonant frequency of two axles0 2, the mathematical modeling for obtaining nondimensionalization is as follows:
<mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mi>x</mi> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>=</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;Omega;</mi> <mi>z</mi> </msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msup> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mi>y</mi> <mo>=</mo> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;Omega;</mi> <mi>z</mi> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
The expression formula of each characteristic is:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mrow> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mfrac> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>,</mo> <mfrac> <msub> <mi>d</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mrow> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msub> <mi>d</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mrow> <msup> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msubsup> <mi>&amp;omega;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>,</mo> <mfrac> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <msup> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>,</mo> <mfrac> <msub> <mi>k</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mrow> <msup> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msubsup> <mi>&amp;omega;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>,</mo> <mfrac> <msub> <mi>&amp;Omega;</mi> <mi>z</mi> </msub> <mrow> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msub> <mi>&amp;Omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Symbol " → " represents that the amount on the symbol left side is replaced with the amount on the right of symbol;
The mathematical modulo pattern (2) of nondimensionalization 1-3) is rewritten as vector form:
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>D</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>K</mi> <mi>q</mi> <mo>=</mo> <mi>u</mi> <mo>-</mo> <mn>2</mn> <mi>&amp;Omega;</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
1-4) consider the parameter uncertainty and external interference of gyroscope system, the mathematical modeling modification of gyroscope system For:
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;Omega;</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>D</mi> <mo>)</mo> </mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mrow> <mo>(</mo> <mi>K</mi> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>K</mi> <mo>)</mo> </mrow> <mi>q</mi> <mo>=</mo> <mi>u</mi> <mo>+</mo> <mi>d</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Δ D is the uncertainty of inertial matrix D+2 Ω unknown parameter, and Δ K is the uncertain of the unknown parameter of matrix K Property, d is external interference;
1-5) definition is uncertain and external interference is:
Then formula (5) is expressed as:
Wherein:
<mrow> <mi>q</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>D</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>d</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>K</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>&amp;omega;</mi> <mi>x</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <msubsup> <mi>&amp;omega;</mi> <mi>y</mi> <mn>2</mn> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>u</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>y</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;Omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;Omega;</mi> <mi>z</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
3. the super-twisting sliding mode control method of gyroscope system according to claim 2, it is characterised in that the reference Model is:
<mrow> <msub> <mi>q</mi> <mi>r</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mrow> <mi>r</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Reference model chooses stable pure oscillation, order:
qr1=A1sin(ω1T), qr2=A2sin(ω2T),
Wherein, A1, A2For the amplitude of vibration, ω1, ω2For the frequency of vibration.
4. the super-twisting sliding mode control method of gyroscope system according to claim 3, it is characterised in that the sliding formwork Face s is designed as:
<mrow> <mi>s</mi> <mo>=</mo> <mi>c</mi> <mi>e</mi> <mo>+</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>&amp;lsqb;</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Wherein, c is sliding-mode surface constant, s1,s2For s two components, e is tracking error,
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>e</mi> <mo>=</mo> <mi>q</mi> <mo>-</mo> <msub> <mi>q</mi> <mi>r</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>q</mi> <mrow> <mi>r</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>q</mi> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>r</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein,For the output trajectory of gyroscope system,For the desired trajectory of gyroscope system.
5. the super-twisting sliding mode control method of gyroscope system according to claim 4, it is characterised in that described equivalent Control item ueqSolution procedure it is as follows:
To sliding-mode surface derivation, obtain:
<mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>c</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>c</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In the case where not considering external interference, obtained by formula (4):
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mi>K</mi> <mi>q</mi> <mo>+</mo> <mi>u</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Formula (13) is updated into formula (12) to obtain:
<mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>c</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mi>K</mi> <mi>q</mi> <mo>+</mo> <mi>u</mi> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
OrderThus equivalent controller, equivalent control term u are obtainedeqFor:
<mrow> <msub> <mi>u</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>c</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>K</mi> <mi>q</mi> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
The switching control item uswDesign is as follows:
<mrow> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <mrow> <mo>|</mo> <mi>s</mi> <mo>|</mo> </mrow> </msqrt> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>&amp;Integral;</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
Wherein, k1> 0, k2> 0;
Then control law is:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>u</mi> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>u</mi> <mrow> <mi>d</mi> <mi>i</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mi>c</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>K</mi> <mi>q</mi> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <mrow> <mo>|</mo> <mi>s</mi> <mo>|</mo> </mrow> </msqrt> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>&amp;Integral;</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
6. the super-twisting sliding mode control method of gyroscope system according to claim 5, it is characterised in that the constant value Under disturbance, k1> 0, k2> 0;
Under the variate disturbance,
Wherein, δ is the boundary value of uncertain and external interference derivative.
CN201711085211.XA 2017-11-07 2017-11-07 The super-twisting sliding mode control method of gyroscope system Pending CN107703757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711085211.XA CN107703757A (en) 2017-11-07 2017-11-07 The super-twisting sliding mode control method of gyroscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711085211.XA CN107703757A (en) 2017-11-07 2017-11-07 The super-twisting sliding mode control method of gyroscope system

Publications (1)

Publication Number Publication Date
CN107703757A true CN107703757A (en) 2018-02-16

Family

ID=61179823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711085211.XA Pending CN107703757A (en) 2017-11-07 2017-11-07 The super-twisting sliding mode control method of gyroscope system

Country Status (1)

Country Link
CN (1) CN107703757A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240083A (en) * 2018-09-28 2019-01-18 河海大学常州校区 The adaptive fuzzy super-twisting sliding mode control method of gyroscope system
CN109742941A (en) * 2019-01-16 2019-05-10 武汉工程大学 DC-DC converter chaotic control method, system and medium based on supertwist control
CN109917645A (en) * 2019-02-21 2019-06-21 河海大学常州校区 The double feedback fuzzy neural network super-twisting sliding mode Control System Design methods of microthrust test
CN110262237A (en) * 2019-06-25 2019-09-20 河海大学常州校区 Gyroscope super-twisting sliding mode control method based on double feedback fuzzy neural networks
CN110262252A (en) * 2019-07-12 2019-09-20 河海大学常州校区 For the continuous distortion sliding-mode control of perturbed system
CN111308888A (en) * 2019-12-12 2020-06-19 山东大学 Gain strategy-based micro-electromechanical system control method and system
CN111381500A (en) * 2020-03-25 2020-07-07 东莞理工学院 Second-order integral sliding mode control of 2D (two-dimensional) electrostatic driving MEMS (micro-electromechanical system) torsion micromirror with side electrode
CN111487865A (en) * 2020-03-25 2020-08-04 东莞理工学院 First-order sliding mode and Twisting control of 2D (two-dimensional) electrostatic driving MEMS (micro-electromechanical system) torsion micromirror with side electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240083B (en) * 2018-09-28 2021-10-01 河海大学常州校区 Self-adaptive fuzzy super-distortion sliding mode control method of micro gyroscope system
CN109240083A (en) * 2018-09-28 2019-01-18 河海大学常州校区 The adaptive fuzzy super-twisting sliding mode control method of gyroscope system
CN109742941A (en) * 2019-01-16 2019-05-10 武汉工程大学 DC-DC converter chaotic control method, system and medium based on supertwist control
CN109742941B (en) * 2019-01-16 2020-05-22 武汉工程大学 DC-DC converter chaotic control method, system and medium based on super-distortion control
CN109917645A (en) * 2019-02-21 2019-06-21 河海大学常州校区 The double feedback fuzzy neural network super-twisting sliding mode Control System Design methods of microthrust test
CN110262237A (en) * 2019-06-25 2019-09-20 河海大学常州校区 Gyroscope super-twisting sliding mode control method based on double feedback fuzzy neural networks
CN110262237B (en) * 2019-06-25 2022-09-23 河海大学常州校区 Micro gyroscope super-distortion sliding mode control method based on double-feedback fuzzy neural network
CN110262252A (en) * 2019-07-12 2019-09-20 河海大学常州校区 For the continuous distortion sliding-mode control of perturbed system
CN110262252B (en) * 2019-07-12 2022-03-08 河海大学常州校区 Continuous distortion sliding mode control method for disturbance system
CN111308888A (en) * 2019-12-12 2020-06-19 山东大学 Gain strategy-based micro-electromechanical system control method and system
CN111308888B (en) * 2019-12-12 2021-05-28 山东大学 Gain strategy-based micro-electromechanical system control method and system
CN111487865A (en) * 2020-03-25 2020-08-04 东莞理工学院 First-order sliding mode and Twisting control of 2D (two-dimensional) electrostatic driving MEMS (micro-electromechanical system) torsion micromirror with side electrode
CN111381500A (en) * 2020-03-25 2020-07-07 东莞理工学院 Second-order integral sliding mode control of 2D (two-dimensional) electrostatic driving MEMS (micro-electromechanical system) torsion micromirror with side electrode

Similar Documents

Publication Publication Date Title
CN107703757A (en) The super-twisting sliding mode control method of gyroscope system
CN105045097B (en) A kind of gyroscope inverting global sliding mode fuzzy control method based on neutral net
CN107831660A (en) Gyroscope self-adaption high-order super-twisting sliding mode control method
CN104281056B (en) The gyroscope Robust Adaptive Control method learnt based on the neutral net upper bound
CN107655472B (en) A kind of high-precision inertial navigation set error compensating method based on deep learning
CN104374388B (en) Flight attitude determining method based on polarized light sensor
CN103389648B (en) The global sliding mode control method of gyroscope
CN107807527A (en) The adaptive super-twisting sliding mode control method of gyroscope adjustable gain
CN106052716A (en) Method for calibrating gyro errors online based on star light information assistance in inertial system
CN105806363B (en) The underwater large misalignment angle alignment methods of SINS/DVL based on SRQKF
CN105865452B (en) A kind of mobile platform position and orientation estimation method based on indirect Kalman filtering
CN105737823A (en) GPS/SINS/CNS integrated navigation method based on five-order CKF
CN103279038B (en) Based on the gyroscope Sliding Mode Adaptive Control method of T-S fuzzy model
CN110703610B (en) Nonsingular terminal sliding mode control method for recursive fuzzy neural network of micro gyroscope
CN103345155B (en) The self-adaptation back stepping control system and method for gyroscope
CN104503246B (en) Indirect adaptive neural network sliding-mode control method for micro-gyroscope system
CN105278331A (en) Robust-adaptive neural network H-infinity control method of MEMS gyroscope
CN102645223B (en) Serial inertial navigation vacuum filtering correction method based on specific force observation
CN104155874B (en) Method for controlling inversion adaptive fuzzy dynamic sliding mode of micro gyroscope
CN103345154B (en) The indirect self-adaptive modified fuzzy sliding mode controlling method of gyroscope system
CN110262237A (en) Gyroscope super-twisting sliding mode control method based on double feedback fuzzy neural networks
Chen et al. An improved strong tracking Kalman filter algorithm for the initial alignment of the shearer
CN102866633B (en) Dynamic sliding-mode control system of miniature gyroscope
Sun et al. A robust indirect Kalman filter based on the gradient descent algorithm for attitude estimation during dynamic conditions
Zhang et al. SINS initial alignment based on fifth-degree cubature Kalman filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216

RJ01 Rejection of invention patent application after publication