CN107703750A - A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller - Google Patents

A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller Download PDF

Info

Publication number
CN107703750A
CN107703750A CN201710942596.0A CN201710942596A CN107703750A CN 107703750 A CN107703750 A CN 107703750A CN 201710942596 A CN201710942596 A CN 201710942596A CN 107703750 A CN107703750 A CN 107703750A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710942596.0A
Other languages
Chinese (zh)
Inventor
王瑶为
张文安
吴祥
董辉
仇翔
俞立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710942596.0A priority Critical patent/CN107703750A/en
Publication of CN107703750A publication Critical patent/CN107703750A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller, a part of this method first against each single-axis servo system by Uncertainty Management caused by time delay for the disturbance of system summation, and then linear extended state observer is designed, it is estimated.Secondly, synchronous error model is established, and then designs the PD type position synchronization control devices with disturbance compensation function, while the system of realization has good uniaxiality tracking control performance, realizes good position synchronization control performance.The present invention ensures that system has good interference free performance and robust performance while can effectively handle time-vary delay system to networking multiaxial motion position synchronization control systematic influence.

Description

A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller
Technical field
The present invention be applied to networking motion control field, be related to it is a kind of suitable for networking Multi-axis coordinated motion control Position synchronization control method.
Background technology
In modern intelligence manufacture industry, the application of Multi-axis motion control is increasingly extensive, can be achieved again by multi-shaft interlocked Miscellaneous functions of the equipments, such as industrial robot, shaftless printing press, weaving loom and printing packaging machine.With the quick hair of network technology Exhibition, multi-shaft motion control system just develop towards the direction of networking and high speed.Network is introduced into servo-control system, controlled Row data communication is entered by Ethernet between device and multiple-axis servo driver processed, substantially increased between controller and driver Message transmission rate and reliability, while accurate multi-axial Simultaneous function is also achieved, system wiring is greatly reduced, is improved System extended capability.Commodity ethernet has the incomparable advantage of fieldbus, base in bandwidth, cost and opening etc. Flexibility, rapidity and the control accuracy of equipment can be improved well in the servo-drive system of the commodity ethernet development of opening. Therefore, the Multi-axis motion control based on commodity ethernet has been increasingly becoming one of core technology of modern intelligence manufacture.
However, Ethernet is designed for commercial situations, Ethernet introducing kinetic control system is added new Factor and problem, for example, Ethernet uncertainty communication mechanism causes various communication uncertain problems, it is difficult to meet modern sport Control system hard real-time and high speed, high-precision processing request.Although some existing commercial industrial ethernet technologys, such as EtherCAT, SERCOS-III, POWERLINK, but be to realize that deterministic data passes by changing data link layer protocol mostly It is defeated.Therefore, these commercial Ethernets may be considered a kind of high-speed field bus, it is necessary to which special chip realizes protocol stack, special Develop software and carry out system development, cost is high, technical licensing is difficult and incompatible standard ethernet.If it can propose to solve from control plane Certainly Ethernet information transfer uncertainty will have great theory significance to the theory and method of kinetic control system performance impact And actual application value.Meanwhile realize that multiaxial motion position synchronization control is a core skill in Multi-axis coordinated motion control Art, it is related to single shaft position servo control and multiaxis position synchronization control.The main target of position servo control be improve position with Track precision and interference free performance, people also been proposed many advanced control methods, PID control, sliding formwork control such as with feedforward System, Self Adaptive Control and fuzzy control.Although the transfer rate of real-time ethernet is significantly improved, network lures The influence of sampling dithering that time delay is brought to position tracking precision is led still to can not ignore, existing position servo control method and Position synchronization control method is rare to consider these influences.In many network inducement delay compensation of network control system field Method, such as PREDICTIVE CONTROL, self-adapting Smith predictor, but But most of algorithms is more complicated, is not suitable for commercial Application.Recently, it is Japanese Scholar Natori and Ohnishi propose Communication Jamming observer (CDOB), network inducement delay are modeled as disturbing, and pass through Communication Jamming observer carries out real-time estimation compensation, obtains good delay compensation effect, but needs system accurate model, has Certain limitation.At present, there is no good solution still for the position synchronization control problem of networking multiaxial motion.
The content of the invention
In order to overcome the shortcomings of the position synchronization control method in existing network multi-shaft motion control system, the present invention carries A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller is supplied.First, by caused by time delay not The part that certainty processing disturbs for system summation, and then linear extended state observer (LESO) is designed, in estimating system While state, summation disturbance is estimated.Secondly, synchronous error model, PD of the design with disturbance compensation function are established Type position synchronization control device, while the system of realization has good uniaxiality tracking control performance, realize that good position is same Walk control performance.
In order to solve the above-mentioned technical problem the technical solution adopted by the present invention is as follows:
A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller, methods described include as follows Step:
For step 1) in the case where network inducement delay is less than a sampling period, foundation contains time-varying network inducing delay Single-axis servo control system model, by networking single-axis servo control system modelling for one with a step input delay from Dissipate linearly time-varying system, and then one that the uncertain dynamic processing of system caused by time-vary delay system is disturbed for the summation of system Part, including procedure below:
1.1) Multi-asis servo system state-space model is established:
According to the dynamic characteristic of multi-shaft motion control system, (i=1 ..., n) the axle servo-drive system i-th under velocity mode is obtained State-space model be
Wherein, xi1And x (t)i2(t) position quantity and speed amount of the i-th axle servo-drive system are represented respectively,For i-th Axle servo system control inputs, i.e. speed setting value,For the i-th axle servo-drive system is unknown and the interference volume of bounded,It is position quantity for the i-th axle servo-drive system output valve, ai、biFor the model constant coefficient of the i-th axle servo-drive system;
1.2) the single-axis servo control system model established under the influence of time-varying network inducing delay:
There is network inducement delay in packet, use in network transmission processRepresent that the i-th axle sensor to controller leads to The time delay in road,The i-th axis controller is represented to the time delay of actuator channels, then in systematic sampling moment tkUnknown time-varying be present Network inducement delay, it is designated as Due to sensor node using the time drive, controller node and Actuator node is event-driven, network delayA respectively less than sampling period T, then in any sampling period (tk,tk+1] Interior, the control input for acting on actuator is made up of two parts, and a part is that the control being calculated by a upper controlling cycle is defeated Enter ui(k-1), another part is the control input u that current control period is calculatedi(k), and form represents as follows:
Therefore, according to formula (1) and (2), using the single-axis servo after sampling period T discretization control system model as:
WillUse 1-aiAfter T approximations, formula (3) is turned to:
By in formula (4) by time-vary delay systemCaused time-varying dynamic and system interference are considered as the disturbance of system summation, with one New variable xi3(k) represent, i.e.,
And makeThus the networking single-axis servo that will be represented by formula (4) controls system mould Type expands into following third-order system model:
Wherein, xi1(k+1)、xi2(k+1)、xi3(k+1) represent that the i-th axle servo-drive system position exports x respectivelyi1(k), motor Speed xi2(k), new expansion state amount xi3(k) in the value of+1 sampling instant of kth;
Step 2) establishes networking multiaxial motion position synchronization coupling error model;
Isochronous controller of the step 3) design based on linear active disturbance rejection control, realizes that networking multiaxial motion position is synchronously controlled System.
Further, the step 2), establishes networking multiaxial motion position synchronization coupling error model, and process is as follows:
2.1) defining multiaxis position synchronous error model is
ε (k)=Γ e (k) (6)
Wherein, ε (k), e (k) are respectively multiaxis position synchronous error vector sum multiaxis position error vector, and ε (k)= [ε1(k),…,εi(k),…,εn(k)] ', e (k)=[e11(k),…,ei1(k),…,en1(k)] ', symbol " ' " representing matrix Transposition, εi(k)、ei1(k) the i-th (i=1 ..., n) shaft position synchronous error and site error are represented respectively, and Γ represents synchronous conversion Matrix;
The synchronous transformation matrix Γ of selection is as follows:
I.e. position synchronous error represents as follows:
2.2) establishing multiaxis position synchronization coupling error model is
E (k)=e (k)+α ε (k) (9)
Wherein, E (k)=[E1(k),…,Ei(k),…,En(k)], and α is diagonal and positive definite control gain matrix, will Formula (6) substitutes into (9) and obtained
E (k)=(I+ α Γ) e (k) (10)
Wherein, I represent unit matrix, when (I+ α Γ) can the inverse time, E (k) → 0 can release e (k) → 0, further, by e (k) ε (k) → 0 → 0 is released.
Further, in the step 3), the process for designing the isochronous controller based on linear active disturbance rejection control is as follows:
3.1) to the i-th axle Servo Control System Design linearity tracking differentiator, i=1 ..., n, transition process arranging, give Signal v0As reference input, position v is obtained by Nonlinear Tracking Differentiator0Approximate velocity differential signal vi2(k), obtain simultaneously Setting signal v0Transition value vi1(k), the reference signal of setting is smoothed, prevents excessive overshoot, its form is as follows:
Wherein, ri0For the Turbo Factor of Nonlinear Tracking Differentiator, fhi(k) it is vi2Differential value, T is the sampling period;
3.2) to the i-th axle Servo Control System Design linear extended state observer, state and summation disturbance to system (uncertain and Unmarried pregnancy etc. as caused by time delay) carries out estimation in real time and compensation, its form are as follows:
Wherein, ei(k) it is the i-th axle servo-drive system physical location and the difference of its estimate, i.e. the position margin of error, zi1(k) it is To the i-th axle servo-drive system position xi1(k) estimation, zi2(k) it is to speed xi2(k) estimation, zi3(k) it is to new expansion state Amount is summation disturbance xi3(k) estimation, βi1、βi2、βi3For one group of parameter to be adjusted, to ensure estimated accuracy, according to high-gain State Observer Design principle, βi1、βi2、βi3Value is more than the upper bound of noise or disturbance, and can take β by POLE PLACEMENT USINGi1=3 ωi0, βi2=3 ωi0 2,ωi0For observer bandwidth, bi0For adjustable compensating factor;
3.3) for the uncertain and summation disturbance as caused by time-vary delay system in compensation system, in i-th (i=1 ..., n) The controlled quentity controlled variable u that axle servo-drive system obtainsi0(k) z is subtracted ini3(k) new controlled quentity controlled variable, i.e. u are obtainedi(k)=ui0(k)-zi3(k)/ bi0, summation disturbance caused by time-vary delay system can be included in bucking-out system, eliminate influence of the time-vary delay system to systematic function, design The following Synchronization Control with disturbance compensation is restrained:
Wherein, Kp、KdAnd KeTo control gain matrix, e (k)=[e11(k) … ei1(k) … en1(k)],ei1(k) it is the Setting signal transition value v of the i-th axle servo-drive systemi1(k) with Position estimation value zi1(k) error, ei2(k) it is the differential value v of the i-th axle servo-drive system Setting signali2(k) with velocity estimation value vi2(k) error, ui0(k) it is synchronous error feedback control amount, ui(k) it is final controlled quentity controlled variable.
Compared with prior art, the beneficial effects of the present invention are:It is to be by Uncertainty Management caused by time-vary delay system A part for the summation disturbance of system, and linear extended state observer (LESO) is designed, while estimating system state, to total Estimated with disturbance, and then design the PD types Synchronization Control rule with compensation interference and realize the synchronization of networking multiaxial motion position Control.This programme can effectively handle influence of the time-vary delay system to system, while have good robust performance, and controlling party The design of method need to only obtain the order of system, without system accurate model, can be generalized to well in sector application.
Brief description of the drawings
Fig. 1 is the position synchronization control structure chart based on automatic disturbance rejection controller.
Fig. 2 is the sampling period sequence and time-delay series figure of experimental verification.
Fig. 3 is the position synchronization control design sketch of experimental verification.
Fig. 4 is the site error design sketch of experimental verification.
Fig. 5 is the position coupling synchronous error figure of experimental verification.
Fig. 6 is each axle interference estimate of experimental verification.
Embodiment
In order that technical scheme, mentality of designing can become apparent from, retouched in detail again below in conjunction with the accompanying drawings State.
1~Fig. 6 of reference picture, a kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller, institute The method of stating comprises the following steps:
For step 1) in the case where network inducement delay is less than a sampling period, foundation contains time-varying network inducing delay Single-axis servo control system model, by networking single-axis servo control system modelling for one with a step input delay from Dissipate linearly time-varying system, and then one that the uncertain dynamic processing of system caused by time-vary delay system is disturbed for the summation of system Part, including procedure below:
1.1) Multi-asis servo system state-space model is established:
According to the dynamic characteristic of multi-shaft motion control system, (i=1 ..., n) the axle servo-drive system i-th under velocity mode is obtained State-space model be
Wherein, xi1And x (t)i2(t) position quantity and speed amount of the i-th axle servo-drive system are represented respectively,For i-th Axle servo system control inputs, i.e. speed setting value,For the i-th axle servo-drive system is unknown and the interference volume of bounded,It is position quantity for the i-th axle servo-drive system output valve, ai、biFor the model constant coefficient of the i-th axle servo-drive system;
1.2) the single-axis servo control system model established under the influence of time-varying network inducing delay:
There is network inducement delay in packet, use in network transmission processRepresent that the i-th axle sensor to controller leads to The time delay in road,The i-th axis controller is represented to the time delay of actuator channels, then in systematic sampling moment tkUnknown time-varying be present Network inducement delay, it is designated as Due to sensor node using the time drive, controller node and Actuator node is event-driven, network delayA respectively less than sampling period T, then in any sampling period (tk,tk+1] Interior, the control input for acting on actuator is made up of two parts, and a part is that the control being calculated by a upper controlling cycle is defeated Enter ui(k-1), another part is the control input u that current control period is calculatedi(k), and form represents as follows:
Therefore, according to formula (1) and (2), using single-axis servo after sampling period T discretization control system model as:
WillUse 1-aiAfter T approximations, formula (3) can be turned to:
By in formula (4) by time-vary delay systemCaused time-varying dynamic and system interference are considered as the disturbance of system summation, with one New variable xi3(k) represent, i.e.,
And makeThus the networking single-axis servo that will be represented by formula (4) controls system mould Type expands into following third-order system model:
Wherein, xi1(k+1)、xi2(k+1)、xi3(k+1) represent that the i-th axle servo-drive system position exports x respectivelyi1(k), motor Speed xi2(k), new expansion state amount xi3(k) in the value of+1 sampling instant of kth;
Step 2) establishes networking multiaxial motion position synchronization coupling error model;
Isochronous controller of the step 3) design based on linear active disturbance rejection control, realizes that networking multiaxial motion position is synchronously controlled System.
Further, in the step 2), the process for establishing networking multiaxial motion position synchronization coupling error model is as follows:
2.1) defining multiaxis position synchronous error model is
ε (k)=Γ e (k) (6)
Wherein, ε (k), e (k) are respectively multiaxis position synchronous error vector sum multiaxis position error vector, and ε (k)= [ε1(k),…,εi(k),…,εn(k)] ', e (k)=[e11(k),…,ei1(k),…,en1(k)] ', symbol " ' " representing matrix Transposition, εi(k)、ei1(k) the i-th (i=1 ..., n) shaft position synchronous error and site error are represented respectively, and Γ represents synchronous conversion Matrix;
The synchronous transformation matrix Γ of selection is as follows:
I.e. position synchronous error represents as follows:
2.2) establishing multiaxis position synchronization coupling error model is
E (k)=e (k)+α ε (k) (9)
Wherein, E (k)=[E1(k),…,Ei(k),…,En(k)], and α is diagonal and positive definite control gain matrix, will Formula (6) substitutes into (9) and obtained
E (k)=(I+ α Γ) e (k) (10)
Wherein, I represent unit matrix, when (I+ α Γ) can the inverse time, E (k) → 0 can release e (k) → 0, further, by e (k) ε (k) → 0 can → 0 be released.
Further, in the step 3), the process for designing the isochronous controller based on linear active disturbance rejection control is as follows:
3.1) to the i-th axle Servo Control System Design linearity tracking differentiator, i=1 ..., n, transition process arranging, give Signal v0As reference input, position v is obtained by Nonlinear Tracking Differentiator0Approximate velocity differential signal vi2(k), obtain simultaneously Setting signal v0Transition value vi1(k), the reference signal of setting is smoothed, prevents excessive overshoot, its form is as follows:
Wherein, ri0For the Turbo Factor of Nonlinear Tracking Differentiator, fhi(k) it is vi2Differential value, T is the sampling period;
3.2) to the i-th axle Servo Control System Design linear extended state observer, state and summation disturbance to system (uncertain and Unmarried pregnancy etc. as caused by time delay) carries out estimation in real time and compensation, its form are as follows:
Wherein, ei(k) it is the i-th axle servo-drive system physical location and the difference of its estimate, i.e. the position margin of error, zi1(k) it is To the i-th axle servo-drive system position xi1(k) estimation, zi2(k) it is to speed xi2(k) estimation, zi3(k) it is to new expansion state Amount is summation disturbance xi3(k) estimation, βi1、βi2、βi3For one group of parameter to be adjusted, to ensure estimated accuracy, according to high-gain State Observer Design principle, βi1、βi2、βi3Value is generally higher than the upper bound of noise or disturbance, and can take β by POLE PLACEMENT USINGi1 =3 ωi0, βi2=3 ωi0 2,ωi0For observer bandwidth, bi0For adjustable compensating factor;
3.3) for the uncertain and summation disturbance as caused by time-vary delay system in compensation system, in i-th (i=1 ..., n) The controlled quentity controlled variable u that axle servo-drive system obtainsi0(k) z is subtracted ini3(k) new controlled quentity controlled variable, i.e. u are obtainedi(k)=ui0(k)-zi3(k)/ bi0, compensation process can include summation caused by time-vary delay system in bucking-out system and disturb, and eliminate time-vary delay system to systematic function Influence, the Synchronization Control with disturbance compensation is restrained as follows for design:
Wherein, Kp、KdAnd KeTo control gain matrix, e (k)=[e11(k)…ei1(k)…en1(k)],ei1(k) it is the Setting signal transition value v of the i-th axle servo-drive systemi1(k) with Position estimation value zi1(k) error, ei2(k) it is the differential value v of the i-th axle servo-drive system Setting signali2(k) with velocity estimation value vi2(k) error, ui0(k) it is synchronous error feedback control amount, ui(k) it is final controlled quentity controlled variable.
For the validity and superiority of checking institute extracting method, the present invention is carried out on the networking Motion Control Platform of four axles Experimental verification, sets primary condition and partial parameters in experiment, i.e., in position synchronization control device based on Active Disturbance Rejection Control The parameter difference of selection is as follows:KP=[0.02 0.02 0.02 0.02], Kd=[3.4 3.4 3.4 3.4], Ke=[2 22 2], r1=r2=r3=r3=100, b01=b02=b03=b04=18, ω10203040=100, α=diag { 0.5,0.5,0.5,0.5 }.
Sampling period is set as T=5ms, and sampling period sequence and time-delay series are as shown in Figure 2.Fig. 3 and Fig. 4 is real respectively The position synchronization control effect and site error effect of research are tested, Fig. 5 and Fig. 6 are respectively that coupling synchronous error and the interference of each axle are estimated Evaluation.As seen in figures 3-5, synchronously controlled using the networking multiaxial motion position of the present invention based on automatic disturbance rejection controller Method processed, even if time-varying network inducement delay be present, the position output of multi-shaft motion control system still has response quickly Speed, without overshoot, and steady-state error very little is almost nil, illustrates that uncertain dynamic energy is effective as caused by network inducement delay Ground is compensated, and multi-shaft motion control system is not influenceed by time-vary delay system on its performance substantially.When multi-axial Simultaneous motion control system System introduces an interference volume at the 7.8s moment in the 4th axle, the 4th axle is produced 10mm site error, more as we can see from the figure The position of axle kinetic control system soon tracks given reference value, and can soon tend to be synchronous, and position is synchronously missed Poor very little, without there is obvious shake after reference value is reached, when there is external disturbance still can effective compensation time-varying network lure Lead and dynamic is not known caused by time delay, show that system has good synchronization and tracking control performance.In summary, designed base Not only there is good compensation effect to network inducement delay in the synchronization control algorithm of automatic disturbance rejection controller, and outside is made an uproar Sound also has good rejection ability.
Described above is the experimental result that the present invention provides, and fully shows the superiority of designed method, it is clear that this hair It is bright to be not limited only to examples detailed above, without departing from its general principles and without departing from scope involved by substantive content of the present invention On the premise of, a variety of deformations can be made to it and be carried out.Scheme designed by the present invention can effectively solve the problem that networking multiaxis is transported The position synchronization control problem of autocontrol system, time-vary delay system can be effectively handled to networking multiaxial motion position synchronization control While systematic influence, ensure that system has good interference free performance and robust performance.

Claims (3)

  1. A kind of 1. networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller, it is characterised in that:The side Method comprises the following steps:
    Step 1) establishes the list containing time-varying network inducing delay in the case where network inducement delay is less than a sampling period Axle servo-control system model, by networking single-axis servo control system modelling for one have a step input delay it is discrete when Between linear time varying system, and then one that the uncertain dynamic processing of system caused by time-vary delay system is disturbed for the summation of system Point, including procedure below:
    1.1) Multi-asis servo system state-space model is established:
    According to the dynamic characteristic of multi-shaft motion control system, the shape of (i=1 ..., n) axle servo-drive system i-th under velocity mode is obtained State space model is
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, xi1And x (t)i2(t) position quantity and speed amount of the i-th axle servo-drive system are represented respectively,Watched for the i-th axle Dress system control input, i.e. speed setting value,For the i-th axle servo-drive system is unknown and the interference volume of bounded,It is position quantity for the i-th axle servo-drive system output valve, ai、biFor the model constant coefficient of the i-th axle servo-drive system;
    1.2) the single-axis servo control system model established under the influence of time-varying network inducing delay:
    There is network inducement delay in packet, use in network transmission processRepresent the i-th axle sensor to controller channel Time delay,The i-th axis controller is represented to the time delay of actuator channels, then in systematic sampling moment tkUnknown time-varying network be present Inducing delay, it is designated as Because sensor node is using time driving, controller node and execution Device node is event-driven, network delayA respectively less than sampling period T, then in any sampling period (tk,tk+1] in, make Control input used in actuator is made up of two parts, and a part is the control input u being calculated by a upper controlling cyclei (k-1), another part is the control input u that current control period is calculatedi(k), form represents as follows:
    <mrow> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    Therefore, according to formula (1) and (2), using the single-axis servo after sampling period T discretization control system model as:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Tx</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </msup> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>a</mi> <mi>i</mi> </msub> </mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </msup> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>a</mi> <mi>i</mi> </msub> </mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    WillUse 1-aiAfter T approximations, formula (3) is turned to:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Tx</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>T</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </msup> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    By in formula (4) by time-vary delay systemCaused time-varying dynamic and system interference are considered as the disturbance of system summation, with a new change Measure xi3(k) represent, i.e.,
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>b</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </msup> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </msup> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>w</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </msup> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <msubsup> <mi>&amp;tau;</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
    And makeThus will be expanded by the networking single-axis servo control system model that formula (4) represents Open into following third-order system model:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Tx</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <mfrac> <msub> <mi>b</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mi>T</mi> </mrow> </mfrac> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Td</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, xi1(k+1)、xi2(k+1)、xi3(k+1) represent that the i-th axle servo-drive system position exports x respectivelyi1(k), motor speed xi2(k), new expansion state amount xi3(k) in the value of+1 sampling instant of kth;
    Step 2) establishes networking multiaxial motion position synchronization coupling error model;
    Isochronous controller of the step 3) design based on linear active disturbance rejection control, realizes networking multiaxial motion position synchronization control.
  2. 2. a kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller as claimed in claim 1, Characterized in that, in the step 2), the process for establishing networking multiaxial motion position synchronization coupling error model is as follows:
    2.1) defining multiaxis position synchronous error model is
    ε (k)=Γ e (k) (6)
    Wherein, ε (k), e (k) are respectively multiaxis position synchronous error vector sum multiaxis position error vector, and ε (k)=[ε1 (k),…,εi(k),…,εn(k)] ', e (k)=[e11(k),…,ei1(k),…,en1(k)] ', symbol " ' " representing matrix turns Put, εi(k)、ei1(k) the i-th (i=1 ..., n) shaft position synchronous error and site error are represented respectively, and Γ represents synchronous conversion square Battle array;
    The synchronous transformation matrix Γ of selection is as follows:
    I.e. position synchronous error represents as follows:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>e</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>21</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>n</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>e</mi> <mn>21</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>31</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>e</mi> <mn>11</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>e</mi> <mrow> <mi>n</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>11</mn> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
    2.2) establishing multiaxis position synchronization coupling error model is
    E (k)=e (k)+α ε (k) (9)
    Wherein, E (k)=[E1(k),…,Ei(k),…,En(k)], and α is diagonal and positive definite control gain matrix, by formula (6) (9) are substituted into obtain
    E (k)=(I+ α Γ) e (k) (10)
    Wherein, I represents unit matrix, when (I+ α Γ) can the inverse time, E (k) → 0 can release e (k) → 0, further, by e (k) → 0 can release ε (k) → 0.
  3. A kind of 3. networking multiaxial motion position synchronization control side based on automatic disturbance rejection controller as claimed in claim 1 or 2 Method, it is characterised in that in the step 3), the design process for designing the isochronous controller based on linear active disturbance rejection control is as follows:
    3.1) to the i-th axle Servo Control System Design linearity tracking differentiator, i=1 ..., n, transition process arranging, Setting signal v0As reference input, position v is obtained by Nonlinear Tracking Differentiator0Approximate velocity differential signal vi2(k), while given Signal v0Transition value vi1(k), the reference signal of setting is smoothed, prevents excessive overshoot, its form is as follows:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>fh</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msubsup> <mi>r</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Tv</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Tfh</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, ri0For the Turbo Factor of Nonlinear Tracking Differentiator, fhi(k) it is vi2Differential value, T is the sampling period;
    3.2) to the i-th axle Servo Control System Design linear extended state observer, state and summation disturbance to system are carried out Estimation in real time and compensation, its form are as follows:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>T</mi> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, ei(k) it is the i-th axle servo-drive system physical location and the difference of its estimate, i.e. the position margin of error, zi1(k) it is to i-th Axle servo-drive system position xi1(k) estimation, zi2(k) it is to speed xi2(k) estimation, zi3(k) it is i.e. total to new expansion state amount With disturbance xi3(k) estimation, βi1、βi2、βi3For one group of parameter to be adjusted, to ensure estimated accuracy, seen according to high gain state Survey device design principle, βi1、βi2、βi3Value is more than the upper bound of noise or disturbance, and takes β by POLE PLACEMENT USINGi1=3 ωi0, βi2= 3ωi0 2,ωi0For observer bandwidth, bi0For adjustable compensating factor;
    3.3) for the uncertain and summation disturbance as caused by time-vary delay system in compensation system, obtained in the i-th axle servo-drive system Controlled quentity controlled variable ui0(k) z is subtracted ini3(k) new controlled quentity controlled variable, i.e. u are obtainedi(k)=ui0(k)-zi3(k)/bi0, wrap in bucking-out system Disturbed containing summation caused by time-vary delay system, eliminate influence of the time-vary delay system to systematic function, design has disturbance compensation as follows Synchronization Control rule:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;rsqb;</mo> </mrow> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mi>E</mi> <mo>+</mo> <msub> <mi>K</mi> <mi>d</mi> </msub> <mover> <mi>E</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mi>e</mi> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>I</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mi>&amp;Gamma;</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;rsqb;</mo> </mrow> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>(</mo> <mrow> <mi>I</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mi>&amp;Gamma;</mi> </mrow> <mo>)</mo> <mi>e</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mi>&amp;Gamma;</mi> <mo>)</mo> </mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>e</mi> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>I</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mi>&amp;Gamma;</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, Kp、KdAnd KeTo control gain matrix,ei1(k) it is the i-th axle The Setting signal transition value v of servo-drive systemi1(k) with position estimation value zi1(k) error, ei2(k) given for the i-th axle servo-drive system Determine the differential value v of signali2(k) with velocity estimation value vi2(k) error, ui0(k) it is synchronous error feedback control amount, ui(k) it is Final controlled quentity controlled variable.
CN201710942596.0A 2017-10-11 2017-10-11 A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller Pending CN107703750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710942596.0A CN107703750A (en) 2017-10-11 2017-10-11 A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710942596.0A CN107703750A (en) 2017-10-11 2017-10-11 A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller

Publications (1)

Publication Number Publication Date
CN107703750A true CN107703750A (en) 2018-02-16

Family

ID=61183586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710942596.0A Pending CN107703750A (en) 2017-10-11 2017-10-11 A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller

Country Status (1)

Country Link
CN (1) CN107703750A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427288A (en) * 2018-04-25 2018-08-21 江南大学 One kind has the H of the networking Linear Parameter-Varying Systems of time-vary delay system∞Fault tolerant control method
CN108555913A (en) * 2018-06-15 2018-09-21 天津大学 The Auto-disturbance-rejection Control of mobile mechanical arm position/force based on passivity
CN108628270A (en) * 2018-06-11 2018-10-09 哈尔滨工程大学 A kind of optimization network control unit and method based on PLC remote monitoring terminals
CN108762090A (en) * 2018-06-22 2018-11-06 哈尔滨工业大学 Multiple shafting servo-drive system synchronisation control means based on dynamic error coefficient
CN108873820A (en) * 2018-08-10 2018-11-23 哈尔滨工业大学 A kind of driven shaft reference instruction modified multiaxis rate servo synchronisation control means in real time
CN109001974A (en) * 2018-08-01 2018-12-14 浙江工业大学 The big coupled movements system position synchronisation control means of networking based on broad sense extended state observer
CN109116721A (en) * 2018-08-23 2019-01-01 广东工业大学 A kind of control method that time-varying system is changed into stational system
CN110209122A (en) * 2019-06-18 2019-09-06 广东工业大学 A kind of control method, device, medium and the equipment of multiaxial motion platform
CN112947045A (en) * 2021-01-26 2021-06-11 华中科技大学 Multi-axis synchronous motion control method
CN113031527A (en) * 2019-12-25 2021-06-25 新疆金风科技股份有限公司 Multi-axis synchronous variable pitch control method, device and system
CN113268037A (en) * 2021-04-23 2021-08-17 哈尔滨工业大学(深圳) Multi-axis cooperative control method based on time synchronization
CN113489385A (en) * 2021-07-06 2021-10-08 中国科学院光电技术研究所 Large-scale optical telescope pitch axis double-motor synchronous control method and system
CN113703397A (en) * 2021-08-27 2021-11-26 中国地质大学(武汉) Industrial internet multi-axis motion-oriented IEID synchronous control method
CN115097724A (en) * 2021-12-17 2022-09-23 沈阳新松机器人自动化股份有限公司 Cross coupling control method for robot synchronous control
CN115502986A (en) * 2022-11-15 2022-12-23 沈阳工业大学 Multi-joint mechanical arm event drive control method based on state observer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140107813A1 (en) * 2002-04-18 2014-04-17 Cleveland State University Scaling and parameterizing a controller
CN107085373A (en) * 2017-06-01 2017-08-22 浙江工业大学 A kind of cross-coupling control method of the networking multi-shaft motion control system based on Communication Jamming observer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140107813A1 (en) * 2002-04-18 2014-04-17 Cleveland State University Scaling and parameterizing a controller
CN107085373A (en) * 2017-06-01 2017-08-22 浙江工业大学 A kind of cross-coupling control method of the networking multi-shaft motion control system based on Communication Jamming observer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG SUN,ET AL.: "A Model-Free Cross-Coupled Control for Position Synchronization of Multi-Axis Motions: Theory and Experiments", 《IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY》 *
张文安等: "基于自抗扰技术的网络化无刷直流电机控制系统时延补偿", 《控制与决策》 *
高炳微等: "基于负载力补偿的自抗扰复合电液位置控制方法", 《农业机械学报》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427288A (en) * 2018-04-25 2018-08-21 江南大学 One kind has the H of the networking Linear Parameter-Varying Systems of time-vary delay system∞Fault tolerant control method
CN108628270A (en) * 2018-06-11 2018-10-09 哈尔滨工程大学 A kind of optimization network control unit and method based on PLC remote monitoring terminals
CN108555913B (en) * 2018-06-15 2021-04-27 天津大学 Passive-based active disturbance rejection control method for position/force of mobile mechanical arm
CN108555913A (en) * 2018-06-15 2018-09-21 天津大学 The Auto-disturbance-rejection Control of mobile mechanical arm position/force based on passivity
CN108762090A (en) * 2018-06-22 2018-11-06 哈尔滨工业大学 Multiple shafting servo-drive system synchronisation control means based on dynamic error coefficient
CN108762090B (en) * 2018-06-22 2021-04-02 哈尔滨工业大学 Multi-axis servo system synchronous control method based on dynamic error coefficient
CN109001974A (en) * 2018-08-01 2018-12-14 浙江工业大学 The big coupled movements system position synchronisation control means of networking based on broad sense extended state observer
CN109001974B (en) * 2018-08-01 2021-12-17 浙江工业大学 Position synchronization control method for networked large-association motion system based on generalized extended state observer
CN108873820A (en) * 2018-08-10 2018-11-23 哈尔滨工业大学 A kind of driven shaft reference instruction modified multiaxis rate servo synchronisation control means in real time
CN109116721A (en) * 2018-08-23 2019-01-01 广东工业大学 A kind of control method that time-varying system is changed into stational system
CN109116721B (en) * 2018-08-23 2021-10-19 广东工业大学 Control method for converting time-varying system into steady system
CN110209122A (en) * 2019-06-18 2019-09-06 广东工业大学 A kind of control method, device, medium and the equipment of multiaxial motion platform
CN113031527A (en) * 2019-12-25 2021-06-25 新疆金风科技股份有限公司 Multi-axis synchronous variable pitch control method, device and system
CN113031527B (en) * 2019-12-25 2023-05-30 新疆金风科技股份有限公司 Multi-axis synchronous pitch control method, device and system
CN112947045A (en) * 2021-01-26 2021-06-11 华中科技大学 Multi-axis synchronous motion control method
CN113268037A (en) * 2021-04-23 2021-08-17 哈尔滨工业大学(深圳) Multi-axis cooperative control method based on time synchronization
CN113268037B (en) * 2021-04-23 2022-04-29 哈尔滨工业大学(深圳) Multi-axis cooperative control method based on time synchronization
CN113489385A (en) * 2021-07-06 2021-10-08 中国科学院光电技术研究所 Large-scale optical telescope pitch axis double-motor synchronous control method and system
CN113489385B (en) * 2021-07-06 2023-10-03 中国科学院光电技术研究所 Method and system for synchronously controlling pitching axes of large optical telescope by double motors
CN113703397A (en) * 2021-08-27 2021-11-26 中国地质大学(武汉) Industrial internet multi-axis motion-oriented IEID synchronous control method
CN113703397B (en) * 2021-08-27 2022-09-30 中国地质大学(武汉) Industrial internet multi-axis motion-oriented IEID synchronous control method
CN115097724A (en) * 2021-12-17 2022-09-23 沈阳新松机器人自动化股份有限公司 Cross coupling control method for robot synchronous control
CN115097724B (en) * 2021-12-17 2022-12-20 沈阳新松机器人自动化股份有限公司 Cross coupling control method for robot synchronous control
CN115502986A (en) * 2022-11-15 2022-12-23 沈阳工业大学 Multi-joint mechanical arm event drive control method based on state observer
CN115502986B (en) * 2022-11-15 2023-02-17 沈阳工业大学 Multi-joint mechanical arm event drive control method based on state observer

Similar Documents

Publication Publication Date Title
CN107703750A (en) A kind of networking multiaxial motion position synchronization control method based on automatic disturbance rejection controller
CN107991867A (en) A kind of iterative learning profile errors control method of the networking multi-shaft motion control system based on automatic disturbance rejection controller
CN107085373A (en) A kind of cross-coupling control method of the networking multi-shaft motion control system based on Communication Jamming observer
CN110083179B (en) Consistency tracking control method for multi-agent system in preset time
EP0463934B1 (en) Time delay controlled processes
CN108303885A (en) A kind of motor position servo system self-adaptation control method based on interference observer
CN109333529A (en) More single arm robots containing predefined performance export consistent controller and design method
CN109459930B (en) Cooperative control method based on PD structure and neighbor lag control signal
CN109062043B (en) Spacecraft active disturbance rejection control method considering network transmission and actuator saturation
CN105171758B (en) Self-adaptive finite time convergence sliding-mode control method of robot
CN105772917A (en) Trajectory tracking control method of three-joint spot welding robot
CN109491251B (en) AC servo system model identification method and equipment considering data disturbance compensation
CN106209474A (en) A kind of network control system tracking and controlling method based on predictive compensation
Chowdhary et al. Experimental results of concurrent learning adaptive controllers
Qiu et al. Robust cooperative positioning control of composite nested linear switched reluctance machines with network-induced time delays
Al-Shuka et al. Hybrid regressor and approximation-based adaptive control of robotic manipulators with contact-free motion
Rahmani et al. A new method for control of networked systems with an experimental verification
CN109001974B (en) Position synchronization control method for networked large-association motion system based on generalized extended state observer
CN111367177B (en) Rigid frame system anti-interference control method and system based on second-order differential of estimated reference signal
Zhai et al. The application of disturbance observer to propulsion control of sub-mini underwater robot
Huang et al. Neural network based adaptive impedance control of constrained robots
Nguyen et al. Dual rate Kalman filter considering delayed measurement and its application in visual servo
Wang et al. Event‐triggered cooperative control for uncertain multi‐agent systems and applications
CN110361960B (en) Synchronous control method for bilateral teleoperation system based on time-lag probability distribution
Calugi et al. Output feedback adaptive control of robot manipulators using observer backstepping

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216