CN107702723A - A kind of robot path planning method, storage medium and equipment - Google Patents
A kind of robot path planning method, storage medium and equipment Download PDFInfo
- Publication number
- CN107702723A CN107702723A CN201711208457.1A CN201711208457A CN107702723A CN 107702723 A CN107702723 A CN 107702723A CN 201711208457 A CN201711208457 A CN 201711208457A CN 107702723 A CN107702723 A CN 107702723A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- path
- robot
- mtd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000012010 growth Effects 0.000 claims abstract description 54
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 31
- 229930192334 Auxin Natural products 0.000 claims description 14
- 239000002363 auxin Substances 0.000 claims description 14
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 claims description 14
- 238000009499 grossing Methods 0.000 claims description 13
- 230000000243 photosynthetic effect Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 claims description 7
- 238000005457 optimization Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 230000007246 mechanism Effects 0.000 claims description 6
- 239000013598 vector Substances 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims 6
- 230000004888 barrier function Effects 0.000 claims 2
- 238000004088 simulation Methods 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 9
- 238000011160 research Methods 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 9
- 230000003068 static effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011664 nicotinic acid Substances 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002015 leaf growth Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manipulator (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种机器人路径规划方法、存储介质及设备,所述方法包括:采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型;对机器人的行走路径进行最优路径搜索,规划出一条最优路径;对机器人的折线路径进行平滑处理。本发明采用蜂巢栅格方法对环境地图进行划分,避免了传统栅格法中转角过大、有效性和安全性问题;并将蜂巢栅格法和以植物为研究对象的树生长模拟算法结合,发挥各部分的优点,从新的方面来探究机器人路径规划问题。
The invention discloses a robot path planning method, storage medium and equipment. The method includes: constructing an environment map for robot walking by adopting a honeycomb grid method, and establishing an environment map model; searching for an optimal path for the robot's walking path , plan an optimal path; smooth the polyline path of the robot. The invention uses the honeycomb grid method to divide the environmental map, avoiding the problems of excessive corners, effectiveness and safety in the traditional grid method; and combining the honeycomb grid method with the tree growth simulation algorithm with plants as the research object, Give full play to the advantages of each part, and explore the problem of robot path planning from a new aspect.
Description
技术领域technical field
本发明涉及机器人路径规划领域,尤其涉及一种机器人路径规划方法、存储介质及设备。The invention relates to the field of robot path planning, in particular to a robot path planning method, storage medium and equipment.
背景技术Background technique
随着机器人产业发展迅速,智能化程度越来越高,机器人已经被广泛地用于各个领域,而路径规划问题是机器人控制和导航中的重要一环,一个好的路径规划策略可以保证机器人安全有效地完成指定任务,因此近年来,机器人的路径规划问题已经被广泛地探索和研究。With the rapid development of the robot industry and the increasing level of intelligence, robots have been widely used in various fields, and the path planning problem is an important part of robot control and navigation. A good path planning strategy can ensure the safety of robots To efficiently complete specified tasks, the problem of path planning for robots has been extensively explored and studied in recent years.
传统机器人路径规划多采用栅格法构建环境地图,算法模型主要是以模拟物理化学规律或者动物、昆虫,细菌等生物的生活方式为背景技术的传统研究方法,通过建立模型去描述自然界中的现象,这类模型往往能得到良好的近似解甚至最优解,从而使得算法的应用领域得到迅速拓宽。Traditional robot path planning mostly uses the grid method to construct environmental maps. The algorithm model is mainly based on the traditional research method of simulating physical and chemical laws or the lifestyles of animals, insects, bacteria and other organisms. It describes the phenomena in nature by establishing models. , this kind of model can often get a good approximate solution or even an optimal solution, so that the application field of the algorithm is rapidly expanded.
从生存角度来说,上述生物必须在较短时间内完成一些行为,这类仿生算法虽然在求解优化问题时,能快速收敛到一个满意解,但算法收敛速度较快,容易使算法陷入局部极值点。传统的栅格法还存在转角过大、有效性和安全性较低等问题。From the perspective of survival, the above-mentioned organisms must complete some behaviors in a relatively short period of time. Although this type of bionic algorithm can quickly converge to a satisfactory solution when solving an optimization problem, the algorithm has a fast convergence speed, and it is easy to cause the algorithm to fall into a local extreme. value points. The traditional grid method also has problems such as too large corners, low effectiveness and safety.
植物的生长方式不同于其他生物,它生长速度较慢、生存区域较广、生长时间较长,植物的适应能力在一定程度上超过其他生物群体。可见,以植物的生长方式为背景的树生长算法能为机器人路径规划问题提供一种新的思路。The growth mode of plants is different from other organisms. Its growth rate is slow, its living area is wider, and its growth time is longer. The adaptability of plants exceeds other biological groups to a certain extent. It can be seen that the tree growth algorithm based on the growth mode of plants can provide a new way of thinking for the robot path planning problem.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明提供一种机器人路径规划方法、存储介质及设备,采用蜂巢栅格方法对环境地图进行划分,避免了传统栅格法中转角过大、有效性和安全性问题;并将蜂巢栅格法和以植物为研究对象的树生长模拟算法结合,发挥各部分的优点,从新的方面来探究机器人路径规划问题。Aiming at the defects in the prior art, the present invention provides a robot path planning method, storage medium and equipment, adopts the honeycomb grid method to divide the environment map, and avoids the excessive corner angle, effectiveness and safety in the traditional grid method problems; combine the honeycomb grid method with the tree growth simulation algorithm with plants as the research object, give full play to the advantages of each part, and explore the robot path planning problem from a new aspect.
第一方面,本发明提供了一种机器人路径规划方法,所述方法包括:In a first aspect, the present invention provides a robot path planning method, the method comprising:
采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型;The honeycomb grid method is used to construct the environment map of the robot walking, and the environment map model is established;
对机器人的行走路径进行最优路径搜索,规划出一条最优路径;Search for the optimal path for the walking path of the robot, and plan an optimal path;
对机器人的折线路径进行平滑处理。Smoothes the robot's polyline path.
进一步地,所述采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型,具体包括:Further, the honeycomb grid method is used to construct the environment map for robot walking, and the environment map model is established, which specifically includes:
设蜂巢栅格的边长为1,xmax、ymax分别表示X轴方向和Y轴方向的最大值;e1、e2分别表示X轴和Y轴上一个单位的向量,且 Assuming that the side length of the honeycomb grid is 1, x max and y max represent the maximum values in the X-axis direction and the Y-axis direction respectively; e 1 and e 2 represent a unit vector on the X-axis and Y-axis respectively, and
NX为X轴上的最大序号数,NY为Y轴上的最大序号数;N X is the maximum serial number on the X axis, N Y is the maximum serial number on the Y axis;
则栅格坐标与序号的关系表示为:Then the relationship between the grid coordinates and the serial number is expressed as:
其中,Nx1为第一奇数行栅格最大序号数,Nx2为第一偶数行栅格最大序号数,序号与栅格的对应关系如图3所示。Among them, N x1 is the maximum serial number of the grid in the first odd row, N x2 is the maximum serial number of the grid in the first even row, and the corresponding relationship between the serial number and the grid is shown in Figure 3.
进一步地,所述对机器人的行走路径进行最优路径搜索,规划出一条最优路径,具体包括:Further, the searching for the optimal path of the walking path of the robot, and planning an optimal path specifically includes:
利用树向光分枝生长的寻优原理,采用树生长模拟算法对移动机器人进行全局遍历式路径规划,寻找出一条从起点到终点的最优路径。Using the optimization principle of tree-to-light branch growth, the tree growth simulation algorithm is used to plan the mobile robot's global traversal path to find an optimal path from the start point to the end point.
进一步地,所述树生长模拟算法的具体过程包括:Further, the specific process of the tree growth simulation algorithm includes:
计算环境地图内任意位置处枝条的光照强度和对应的光合速率,建立光照强度和光合速率的表达式;Calculate the light intensity and corresponding photosynthetic rate of branches at any position in the environment map, and establish the expressions of light intensity and photosynthetic rate;
计算在光照强度最大的位置的随机分枝的坐标位置;Calculate the coordinate position of the random branch at the position where the light intensity is the largest;
在模拟环境下寻优生长,确定最优路径。Optimizing growth in a simulated environment to determine the optimal path.
进一步地,所述任意位置处枝条的光照强度表达式为:Further, the expression of the light intensity of the branch at any position is:
其中,I(i)表示坐标(xi,yi)处枝条的光照强度,kl表示光照强度系数,(xT,yT)是目标位置的坐标,(xB,yB)是起始位置的坐标。Among them, I(i) represents the light intensity of the branches at the coordinates ( xi , y i ), k l represents the coefficient of light intensity, (x T , y T ) is the coordinates of the target position, (x B , y B ) is the coordinates of the starting position.
进一步地,所述随机分枝的坐标位置为:Further, the coordinate position of the random branch is:
其中,表示t代枝叶所感应到的光照强度的最强位置,即最佳生长素点的坐标位置,也是向光产生分枝点的坐标位置;表示该最强位置处向光方向的随机数,t表示分枝前该枝生长周期,t+1表示分枝后该枝生长周期。in, Indicates the strongest position of the light intensity sensed by the t-generation branches and leaves, that is, the coordinate position of the best auxin point, and also the coordinate position of the branch point that produces light; Indicates the random number in the light direction at the strongest position, t indicates the growth period of the branch before branching, and t+1 indicates the growth period of the branch after branching.
进一步地,所述对机器人的折线路径进行平滑处理,具体包括:Further, the smoothing of the polyline path of the robot specifically includes:
采用三阶贝塞尔曲线进行路径平滑,根据平滑后的曲线有无避开障碍物,建立相应的选择机制对避开障碍物、没有避开障碍物两种情况进行选择,使机器人的行走路径最大程度上平滑。A third-order Bezier curve is used for path smoothing. According to whether the smoothed curve avoids obstacles, a corresponding selection mechanism is established to choose between avoiding obstacles and not avoiding obstacles, so that the walking path of the robot Maximum smoothness.
进一步地,所述根据平滑后的曲线有无避开障碍物,建立相应的选择机制对避开障碍物、没有避开障碍物两种情况进行选择,具体包括:Further, according to whether the smoothed curve avoids obstacles, a corresponding selection mechanism is established to select the two situations of avoiding obstacles and not avoiding obstacles, specifically including:
设定规划出的路径点到障碍物的最小距离为Lmin,路径点到障碍物的安全距离为Dsafe,Set the minimum distance from the planned path point to the obstacle as L min , and the safe distance from the path point to the obstacle as D safe ,
式中:xi(t)和yi(t)是贝塞尔曲线规划后的路径点坐标;x0(i)和y0(i)是栅格地图中各障碍物的圆心;R(i)是各障碍物的半径大小,t贝塞尔曲线公式里的时间;In the formula: x i (t) and y i (t) are the path point coordinates after Bezier curve planning; x 0 (i) and y 0 (i) are the centers of obstacles in the grid map; R( i) is the radius size of each obstacle, the time in the t Bezier curve formula;
当路径点与障碍物的最小距离大于或等于安全距离时,选择贝塞尔曲线规划后的曲线路径段;当路径点与障碍物的最小距离小于安全距离时,放弃贝塞尔曲线规划的路径,选择原始算法下的路径规划段。When the minimum distance between the path point and the obstacle is greater than or equal to the safety distance, select the curved path segment planned by the Bezier curve; when the minimum distance between the path point and the obstacle is less than the safety distance, abandon the path planned by the Bezier curve , select the path planning segment under the original algorithm.
第二方面,本发明还提供了一种计算机可读存储介质,该程序被处理器执行时实现以下步骤:In a second aspect, the present invention also provides a computer-readable storage medium, and the program implements the following steps when executed by a processor:
采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型;The honeycomb grid method is used to construct the environment map of the robot walking, and the environment map model is established;
对机器人的行走路径进行最优路径搜索,规划出一条最优路径;Search for the optimal path for the walking path of the robot, and plan an optimal path;
对机器人的折线路径进行平滑处理。Smoothes the robot's polyline path.
第三方面,本发明还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下步骤:In a third aspect, the present invention also provides a computer device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor implements the following steps when executing the program:
采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型;The honeycomb grid method is used to construct the environment map of the robot walking, and the environment map model is established;
对机器人的行走路径进行最优路径搜索,规划出一条最优路径;Search for the optimal path for the walking path of the robot, and plan an optimal path;
对机器人的折线路径进行平滑处理。Smoothes the robot's polyline path.
由上述技术方案可知,本发明提供一种机器人路径规划方法、存储介质及设备,与现有技术相比,优点在于:It can be seen from the above technical solutions that the present invention provides a robot path planning method, storage medium and equipment. Compared with the prior art, the advantages are as follows:
(1)采用蜂巢栅格(正六边形栅格)方法对环境地图进行划分,清晰地给出了每个蜂巢栅格中心坐标位置与栅格序号数的对应公式,将算法中机器人路径规划点与栅格位置对应起来,避免了传统栅格法中转角过大、有效性和安全性问题。(1) The environment map is divided by honeycomb grid (regular hexagonal grid) method, and the corresponding formula between the coordinate position of each honeycomb grid center and the grid serial number is clearly given, and the robot path planning point in the algorithm is Corresponding to the grid position, it avoids the problems of excessive corners, effectiveness and safety in the traditional grid method.
(2)利用树向光分枝生长的寻优原理,系统地建立模型,使用树生长模拟算法对移动机器人进行全局遍历式路径规划,寻找出一条从起点到终点的最优路径,使得该算法能够在解决传统仿生算法存在的全局路径规划的问题上取得一定的效果。(2) Utilize the optimization principle of tree-to-light branch growth, build a model systematically, use the tree growth simulation algorithm to carry out global traversal path planning for mobile robots, and find an optimal path from the starting point to the end point, so that the algorithm It can achieve certain effects in solving the problem of global path planning existing in traditional bionic algorithms.
(3)在路径规划问题上将蜂巢栅格法和以植物为研究对象的树生长模拟算法结合,发挥各部分的优点,从而从新的方面来探究机器人路径规划问题。(3) Combining the honeycomb grid method and the tree growth simulation algorithm with plants as the research object in the path planning problem, and giving full play to the advantages of each part, so as to explore the robot path planning problem from a new aspect.
附图说明Description of drawings
图1为本发明提供的一种机器人路径规划方法的流程示意图。FIG. 1 is a schematic flowchart of a robot path planning method provided by the present invention.
图2为本发明提供的一种机器人路径规划方法的环境地图示意图。FIG. 2 is a schematic diagram of an environment map of a robot path planning method provided by the present invention.
图3为本发明提供的一种机器人路径规划方法所建立蜂巢栅格坐标系的示意图。Fig. 3 is a schematic diagram of a honeycomb grid coordinate system established by a robot path planning method provided by the present invention.
图4为树生长模拟算法的流程示意图。Fig. 4 is a schematic flow chart of the tree growth simulation algorithm.
图5为枝叶生长速率和生长素浓度的关系示意图。Figure 5 is a schematic diagram of the relationship between the growth rate of branches and leaves and the concentration of auxin.
图6为对机器人的行走路径中的部分折线点进行路径平滑的示意图。FIG. 6 is a schematic diagram of path smoothing for some broken line points in the walking path of the robot.
图7为使用贝塞尔曲线后的路径仍在障碍物与折线路径之间时的路径选择示意图。FIG. 7 is a schematic diagram of path selection when the path after using the Bezier curve is still between obstacles and the polyline path.
图8为使用贝塞尔曲线后的路径正好穿过障碍物时的路径选择示意图。FIG. 8 is a schematic diagram of path selection when the path using the Bezier curve just passes through an obstacle.
图9为本发明提供的机器人路径规划方法规划出的最优路径示意图。FIG. 9 is a schematic diagram of an optimal path planned by the robot path planning method provided by the present invention.
具体实施方式detailed description
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的保护范围。Embodiments of the technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solution of the present invention more clearly, so they are only examples, and should not be used to limit the protection scope of the present invention.
实施例一Embodiment one
如图1所示,本发明实施例一提供了一种基于树生长模拟算法的机器人路径规划方法,包括:As shown in Figure 1, Embodiment 1 of the present invention provides a robot path planning method based on a tree growth simulation algorithm, including:
步骤S1,采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型。In step S1, the honeycomb grid method is used to construct the environment map for the robot to walk, and an environment map model is established.
机器人行走的环境地图如图2所示,在由蜂巢栅格组成的环境地图中,环境被等分为形状相同的六边形栅格,本实施例的环境地图模型的构建建立在以40×50的蜂巢栅格组成的二维空间平面中,且空间内仅存在静态障碍物,同时将静态障碍物扩展为圆形来表示,并确定其圆心和半径,以确定静态障碍物在空间内的对应位置。The environment map of robot walking is shown in Figure 2. In the environment map composed of honeycomb grids, the environment is equally divided into hexagonal grids with the same shape. The construction of the environment map model in this embodiment is based on 40× In the two-dimensional space plane composed of 50 honeycomb grids, and there are only static obstacles in the space, at the same time, the static obstacles are expanded into a circle to represent, and the center and radius of the circle are determined to determine the position of the static obstacles in the space. Corresponding position.
本实施例假设移动机器人在环境地图中的起始位置为第一个蜂巢栅格B(xB,yB)、目标位置T(xT,yT),区域中静态障碍物的位置及大小已知,根据环境地图中的起始位置、目标位置以及障碍物位置,以横轴为X轴,纵轴为Y轴,构建新的蜂巢栅格坐标系,如图3所示。In this embodiment, it is assumed that the starting position of the mobile robot in the environment map is the first honeycomb grid B(x B ,y B ), the target position T(x T ,y T ), and the position and size of static obstacles in the area It is known that according to the starting position, target position and obstacle position in the environment map, the horizontal axis is the X axis and the vertical axis is the Y axis to construct a new honeycomb grid coordinate system, as shown in Figure 3.
在实际应用中根据移动机器人的尺寸,将移动机器人缩小为一个质点,机器人在栅格地图中的移动看作质点的移动,环境中将障碍物的边界做相应的扩展及模糊化处理。In practical application, according to the size of the mobile robot, the mobile robot is reduced to a mass point, the movement of the robot in the grid map is regarded as the movement of the mass point, and the boundary of the obstacle is expanded and blurred in the environment.
在图2中,黑色阴影所示的区域为处理后的障碍物,空白栅格表示机器人能够自由通过的地方,左下角的灰色圆点代表机器人路径的起始位置,右上角的灰色圆点代表机器人路径的目标位置;在图3中,左下角的灰色圆圈为机器人路径的起始位置,右上角的灰色圆圈为机器人路径的目标位置。这样将空间中机器人路径规划问题转化为栅格图中的最短路径搜索问题,简化了问题求解的复杂性。In Figure 2, the area shown by the black shadow is the obstacle after processing, the blank grid indicates the place where the robot can pass freely, the gray dot in the lower left corner represents the starting position of the robot path, and the gray dot in the upper right corner represents The target position of the robot path; in Figure 3, the gray circle in the lower left corner is the starting position of the robot path, and the gray circle in the upper right corner is the target position of the robot path. In this way, the robot path planning problem in space is transformed into the shortest path search problem in the grid graph, which simplifies the complexity of problem solving.
步骤S2,对机器人的行走路径进行最优路径搜索,规划出一条最优路径。Step S2, searching for an optimal path for the walking path of the robot, and planning an optimal path.
具体地,采用树生长模拟算法,对机器人的行走路径进行全局遍历式路径寻优,规划出一条从起始位置到目标位置的最优路径。Specifically, the tree growth simulation algorithm is used to perform global traversal path optimization on the walking path of the robot, and an optimal path from the starting position to the target position is planned.
其中,如图4所示,树生长模拟算法的具体过程为:Among them, as shown in Figure 4, the specific process of the tree growth simulation algorithm is:
步骤S21,计算环境地图内任意位置处枝条的光照强度和对应的光合速率,建立光照强度和光合速率的表达式;Step S21, calculate the light intensity and the corresponding photosynthetic rate of branches at any position in the environment map, and establish the expressions of light intensity and photosynthetic rate;
首先,利用光与各枝叶间的光照强度随两者之间距离的长短而改变的原理,在环境地图模型内遍寻各位置处的光照强度及对应的光合速率,即寻找目标函数;在坐标系中建立任意位置点(xi,yi)处枝条的光照强度表达式,该表达式可表示为:First, using the principle that the light intensity between the light and each branch and leaf changes with the distance between the two, search the light intensity and the corresponding photosynthetic rate at each position in the environment map model, that is, find the objective function; In the system, an expression of the light intensity of branches at any point ( xi , y ) is established, which can be expressed as:
其中,kl表示光照强度系数,(xT,yT)是目标位置的坐标,(xB,yB)是起始树芽(起始位置)的坐标。Among them, k l represents the light intensity coefficient, (x T , y T ) is the coordinate of the target position, and (x B , y B ) is the coordinate of the starting tree bud (starting position).
任意位置点(xi,yi)处枝条的光合速率可表示为:The photosynthetic rate of branches at any point ( xi ,y ) can be expressed as:
其中,α为光合作用中光响应曲线在光照强度为零时的斜率,即光响应曲线的初始斜率(初始量子效率),β为修正系数,PRmax是最大净光合速率,γ为初始量子效率与植物最大光合速率之比,即Rd是暗呼吸速率。α、PRmax和Rd这三个参数都用于控制光合速率大小的。Among them, α is the slope of the photoresponse curve in photosynthesis when the light intensity is zero, that is, the initial slope of the photoresponse curve (initial quantum efficiency), β is the correction coefficient, PR max is the maximum net photosynthetic rate, and γ is the initial quantum efficiency The ratio of the maximum photosynthetic rate of the plant, that is Rd is the dark respiration rate. The three parameters α, PR max and R d are used to control the photosynthetic rate.
步骤S22,计算在光照强度最大的位置处随机分枝的坐标位置;Step S22, calculating the coordinate position of the random branch at the position where the light intensity is maximum;
生物学实验证明,决定枝芽细胞分裂和生长的生长素信息不是每个细胞与生俱来就被赋予的,而是由于细胞生长系统从其环境中接受到了分裂生长的位置信息,根据这种信息,植物生长就表现出明显的向光性生长特点。Biological experiments have proved that the auxin information that determines the division and growth of branch bud cells is not inherently endowed to each cell, but because the cell growth system receives the location information of division and growth from its environment, according to this Information, plant growth will show obvious phototropic growth characteristics.
由于光照强度大的位置,树生长时进行光合速率快,生长速率快,此处生长素浓度往往是处于最佳生长素点附近,芽的生长素浓度与生长速率的关系处于一个变化的过程,生长素浓度太高或者太低都会对芽的生长速率产生很大的影响,所以最佳芽生长素浓度位置附近最容易首先产生分枝,即规定光照强度最大位置对应光合速率最大位置,也是最佳生长素浓度处,如图5所示。Due to the location of high light intensity, the photosynthetic rate is fast when the tree grows, and the growth rate is fast. Here, the auxin concentration is often near the optimal auxin point, and the relationship between the auxin concentration and the growth rate of the buds is in a changing process. Too high or too low auxin concentration will have a great impact on the growth rate of buds, so it is most likely to produce branches near the optimum bud auxin concentration position, that is, the position with the maximum light intensity corresponds to the maximum photosynthetic rate, which is also the most optimal position. Optimum auxin concentration, as shown in Figure 5.
根据上述原理,分枝表达式可表示为:According to the above principles, the branch expression can be expressed as:
其中,表示t+1代枝叶生长周期的任意一位置点i点的坐标位置;表示t代枝叶所感应到的光照强度的最强位置,即最佳生长素点的坐标位置,也就是向光产生分枝点的坐标位置;表示该点处向光方向的随机数,t表示分枝前该枝叶的生长周期,t+1表示分枝后该枝叶的生长周期。in, Indicates the coordinate position of any position point i point in the t+1 generation branch and leaf growth cycle; Indicates the strongest position of the light intensity sensed by the t-generation branches and leaves, that is, the coordinate position of the best auxin point, that is, the coordinate position of the branch point that generates light; Indicates the random number in the light direction at this point, t indicates the growth period of the branch before branching, and t+1 indicates the growth period of the branch after branching.
一旦新分支发芽时,新枝和旧枝合二为一,均为同一平面内的同一枝干。Once the new branch sprouts, the new branch and the old branch merge into one, the same branch in the same plane.
步骤S23,在模拟环境下寻优生长,确定最优路径。Step S23, optimize the growth in the simulated environment, and determine the optimal path.
植物在生长过程中,往往会受到许多影响,如自身顶端优势对侧枝的影响、自然灾害(火灾、雷击等)及人工作用(人工剪枝等)的影响,在此为了简单起见,一律将上述影响分为两种典型的情况:没有障碍物的情况、具有一些障碍的情况。During the growth process of plants, they are often affected by many influences, such as the influence of their own top advantages on side branches, natural disasters (fire, lightning strikes, etc.) and artificial effects (artificial pruning, etc.). Impacts are classified into two typical cases: the case without obstacles and the case with some obstacles.
树在生长过程中没有遇到障碍物,保持正常的向光生长;如果障碍物出现在生长方向上,则另一个方向变为生长方向;如果生长过程中没有可用的方向,则树停止分枝生长,将不会进行任何进一步的计算。障碍可能是首先出现的分支;首先出现的分支将首先生长;被分支阻塞的其他分支将决定是继续增长还是停止,这取决于障碍物在哪里。其具体的规则如下:The tree does not encounter obstacles during the growth process and maintains normal light-oriented growth; if an obstacle appears in the growth direction, another direction becomes the growth direction; if there is no usable direction during the growth process, the tree stops branching grow, no further calculations will be performed. The obstacle may be the first branch to appear; the first branch will grow first; other branches blocked by the branch will decide whether to continue growing or stop, depending on where the obstacle is. The specific rules are as follows:
枝条的顶芽(最优位置)在顶端优势作用下生长,是路径规划中没有遭遇障碍物模型,该模型可表示为:The terminal bud (optimal position) of the branch grows under the action of the top advantage, which is a model without encountering obstacles in path planning. The model can be expressed as:
其中,表示t+1代枝叶生长周期的任意一位置点i'(P'所对应的i)的坐标位置;表示t代枝叶所感应到的光照强度的最强位置,即最佳生长素点的坐标位置,也就是向光产生分枝点的坐标位置;是以为中心的邻域范围内t代生长周期的任意一位置点i的坐标位置;growth是权重,r是(0,1]之间的随机数。in, Indicates any point i'(P' The corresponding coordinate position of i); Indicates the strongest position of the light intensity sensed by the t-generation branches and leaves, that is, the coordinate position of the best auxin point, that is, the coordinate position of the branch point that generates light; so is the coordinate position of any position point i in the t-generation growth cycle within the neighborhood of the center; growth is the weight, and r is a random number between (0, 1].
由于上面的枝叶遮挡导致光合作用不足,在自然因素的作用下,树枝随机选择性转变生长方向,是路径规划中遭遇障碍物模型,可表示为:Due to the lack of photosynthesis caused by the occlusion of the branches and leaves above, under the action of natural factors, the branches randomly and selectively change the growth direction, which is a model of obstacles encountered in path planning, which can be expressed as:
其中,表示t+1代枝叶生长周期的任意一位置点i”的坐标位置;P(xmin,ymin)、P(xmax,ymax)分别是以为中心的邻域范围边界上的最优值点和最差值点;其中,r是(0,1]之间的随机数。in, Indicates the coordinate position of any point i” in the growth cycle of the t+1 generation of branches and leaves; P(x min , y min ) and P(x max , y max ) are respectively The optimal value point and the worst value point on the boundary of the neighborhood range centered at the center; where, r is a random number between (0, 1].
侧枝在向光生长过程中由于光合作用不足,生长素浓度不足以提供枝叶生长所需的能量,导致枝条停止生长,是路径规划中陷入障碍物模型,该模型可表示为:Due to insufficient photosynthesis and insufficient auxin concentration to provide the energy required for the growth of branches and leaves during the process of lateral branch growth toward the light, the branches stop growing. This is an obstacle model in path planning, which can be expressed as:
其中,表示t+1代枝叶生长周期的任意一位置点i”'的坐标位置;表示t代枝叶感应到的光照强度的最强位置,即最佳生长素点的坐标位置,也就是向光产生分枝点的坐标位置。in, Represents the coordinate position of any point i"' in the growth cycle of the t+1 generation of branches and leaves; Indicates the strongest position of the light intensity sensed by the t-generation branches and leaves, that is, the coordinate position of the best auxin point, that is, the coordinate position of the branch point that produces light.
针对模拟环境下寻优生长的三种不同模型,对该算法下的最优路径规划设计目标函数为:For three different models of optimal growth in the simulated environment, the optimal path planning design objective function under the algorithm is:
其中,μ1、μ2、μ3均为权值系数,用来调整寻找出一条最优路径。Among them, μ 1 , μ 2 , and μ 3 are weight coefficients, which are used to adjust and find an optimal path.
步骤S3,对机器人的折线路径进行平滑处理。Step S3, smoothing the polyline path of the robot.
步骤S3具体包括:采用三阶贝塞尔曲线进行路径平滑,根据平滑后的曲线有无避开障碍物,建立一个选择机制对这两种情况进行选择,使机器人行走路径最大程度上平滑。Step S3 specifically includes: using a third-order Bezier curve to smooth the path, and establishing a selection mechanism to select the two cases according to whether the smoothed curve avoids obstacles, so that the walking path of the robot is as smooth as possible.
如图6所示,路径平滑的具体过程如下:As shown in Figure 6, the specific process of path smoothing is as follows:
在路径寻优过程中,采用的蜂巢栅格法在一定程度上缓解机器人由于转弯而导致的安全性问题,但是考虑到机器人走平滑的曲线路径比走折线更好,采用三阶贝塞尔曲线(Bezier曲线)进行路径平滑,将折线路径变为光滑的曲线路径。In the process of path optimization, the honeycomb grid method used can alleviate the safety problems caused by the robot’s turning to a certain extent, but considering that the robot’s smooth curved path is better than that of a broken line, the third-order Bezier curve is used. (Bezier curve) for path smoothing, turning polyline paths into smooth curved paths.
n次Bezier曲线各点的参数方程表示为 The parameter equation of each point of the n-degree Bezier curve is expressed as
式中,又称作n阶的伯恩斯坦基底多项式,定义0!=1,t代表时间。点Pi称作贝塞尔曲线的控制点。In the formula, Also known as the n-order Bernstein basis polynomial, define 0! =1, t represents time. The point P i is called the control point of the Bezier curve.
由P0、P1、P2、P3四个点定义了三阶贝塞尔曲线,三阶Bezier曲线的参数形式为:The third-order Bezier curve is defined by four points P 0 , P 1 , P 2 , and P 3 , and the parameter form of the third-order Bezier curve is:
B(t)=P0(1-t)3+3P1t(1-t)2+3P2t2(1-t)+P3t3,t∈[0,1]。B(t)=P 0 (1-t) 3 +3P 1 t(1-t) 2 +3P 2 t 2 (1-t)+P 3 t 3 , t∈[0,1].
完整的最优路径可以看作多段三阶贝塞尔曲线拼接而成,为了保证分段参数曲线从一段到另一段平滑过渡,可以在曲线段的公共部分匹配一种参数连续性导数来保证参数连续性。The complete optimal path can be regarded as a splicing of multiple third-order Bezier curves. In order to ensure the smooth transition of the segmented parameter curve from one segment to another, a parameter continuity derivative can be matched in the common part of the curve segment to ensure that the parameter continuity.
0阶参数连续性,记作C0连续,可以简单地表示两段曲线相连。一阶参数连续性,记作C1连续,说明两个相邻曲线段的方程在相交处有相同的一阶导数(切矢)。二阶参数连续性,记作C2连续,是指两个曲线段在连接处有相同的一阶和二阶导数。The 0th-order parameter continuity, denoted as C0 continuity, can simply indicate that two curves are connected. First-order parameter continuity, denoted as C1 continuity, means that the equations of two adjacent curve segments have the same first-order derivative (tangent vector) at the intersection. The second-order parameter continuity, denoted as C2 continuity, means that two curve segments have the same first-order and second-order derivatives at the junction.
设有两段Bezier曲线Q1(t)和Q2(t),其特征多边形顶点分别为P0、P1、P2、P3及R0、R1、R2、R3。There are two sections of Bezier curves Q 1 (t) and Q 2 (t), whose characteristic polygon vertices are P 0 , P 1 , P 2 , P 3 and R 0 , R 1 , R 2 , R 3 respectively.
要求P3=R0,并要求两个曲线段在连接点P3(R0)处实现C1连续,则Q′1(1)=3(P3-P2),Q'2(0)=3(R1-R0),Q'2(0)=αQ′1(1),即(R1-R0)=α(P3-P2),其中α为比例因子。说明实现C1连续的条件是P2,P3(R0),R1在一条直线上,而且P2,R1在P3(R0)的两侧。Require P 3 =R 0 , and require two curve segments to achieve C1 continuity at the connection point P 3 (R 0 ), then Q′ 1 (1)=3(P 3 -P 2 ), Q’ 2 (0) =3(R 1 -R 0 ), Q' 2 (0)=αQ' 1 (1), ie (R 1 -R 0 )=α(P 3 -P 2 ), where α is a scaling factor. It shows that the condition for realizing C1 continuity is that P 2 , P 3 (R 0 ), R 1 are on a straight line, and P 2 , R 1 are on both sides of P 3 (R 0 ).
路径平滑的过程中会遇到两种情况,第一种是使用贝塞尔曲线后的路径仍在障碍物与折线路径之间,如图7所示,这时我们选择使用贝塞尔曲线后的路径;另一种情况是使用贝塞尔曲线后的路径正好穿过障碍物,如图8所示,这样就没有意义,所以遇到这种情况就放弃贝塞尔曲线规划的路径。There are two situations in the path smoothing process. The first one is that the path after using the Bezier curve is still between the obstacle and the polyline path, as shown in Figure 7. At this time, we choose to use the Bezier curve The path; another case is that the path after using the Bezier curve just passes through the obstacle, as shown in Figure 8, which is meaningless, so in this case, the path planned by the Bezier curve should be abandoned.
针对这两种情况,建立一个选择机制对这两种情况进行选择。In view of these two situations, a selection mechanism is established to select these two situations.
假设规划出的路径点到障碍物的最小距离为Lmin,设定路径点到障碍物的安全距离为Dsafe, Assuming that the planned minimum distance from the path point to the obstacle is L min , set the safe distance from the path point to the obstacle as D safe ,
式中:xi(t)和yi(t)是Bezier曲线规划后的路径点坐标;x0(i)和y0(i)是栅格地图中各障碍物的圆心坐标(本实施例中的障碍物为圆);R(i)是各障碍物的半径大小,t是Bezier曲线中的时间。In the formula: x i (t) and y i (t) are the path point coordinates after Bezier curve planning; x 0 (i) and y 0 (i) are the center coordinates of each obstacle in the grid map (the present embodiment The obstacles in are circles); R(i) is the radius of each obstacle, and t is the time in the Bezier curve.
当路径点与障碍物的最小距离大于或等于安全距离时,主要考虑Bezier曲线规划后的曲线路径段;当路径点与障碍物的最小距离小于安全距离时,为了避开障碍物,放弃Bezier曲线规划的路径,选择原始算法下的路径规划段。When the minimum distance between the path point and the obstacle is greater than or equal to the safety distance, the curved path segment planned by the Bezier curve is mainly considered; when the minimum distance between the path point and the obstacle is less than the safety distance, the Bezier curve is abandoned in order to avoid the obstacle For the planned path, select the path planning segment under the original algorithm.
经过实施例一所述的路径规划方法规划的最优路径如图9所示。The optimal path planned by the path planning method described in Embodiment 1 is shown in FIG. 9 .
实施例二Embodiment two
对本发明实施例一对应地,本发明实施例二提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:Corresponding to Embodiment 1 of the present invention, Embodiment 2 of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
步骤S1,采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型;Step S1, using the honeycomb grid method to construct the environment map for the robot to walk, and establish the environment map model;
步骤S2,对机器人的行走路径进行最优路径搜索,规划出一条最优路径;Step S2, searching for an optimal path for the walking path of the robot, and planning an optimal path;
步骤S3,对机器人的折线路径进行平滑处理。Step S3, smoothing the polyline path of the robot.
上述存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The above-mentioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, and other media capable of storing program codes.
上述关于计算机可读存储介质的具体限定可以参见实施例一,在此不再赘述。For the above specific limitations on the computer-readable storage medium, reference may be made to Embodiment 1, and details are not repeated here.
实施例三Embodiment three
对本发明实施例一对应地,本发明实施例三提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下步骤:Corresponding to Embodiment 1 of the present invention, Embodiment 3 of the present invention provides a computer device, including a memory, a processor, and a computer program stored in the memory and operable on the processor. When the processor executes the program, the computer program is implemented. The following steps:
步骤S1,采用蜂巢栅格法对机器人行走的环境地图进行构建,建立环境地图模型;Step S1, using the honeycomb grid method to construct the environment map for the robot to walk, and establish the environment map model;
步骤S2,对机器人的行走路径进行最优路径搜索,规划出一条最优路径;Step S2, searching for an optimal path for the walking path of the robot, and planning an optimal path;
步骤S3,对机器人的折线路径进行平滑处理。Step S3, smoothing the polyline path of the robot.
上述关于计算机设备的具体限定可以参见实施例一,在此不再赘述。For the above specific limitations on the computer device, reference may be made to Embodiment 1, which will not be repeated here.
本发明实施例与现有技术相比,优点在于:Compared with the prior art, the embodiments of the present invention have the following advantages:
(1)借鉴传统栅格法对环境进行划分的优势,同时消除传统栅格法对环境划分的缺陷,借用已有的蜂巢栅格模型重新规划,清晰的给出了每个蜂巢栅格中心坐标位置与栅格序号数的对应公式,将算法中机器人路径规划点与栅格位置对应起来。利用蜂巢栅格(正六边形栅格)的方法对环境地图进行划分,避免了传统栅格法中转角过大、有效性和安全性问题。(1) Learn from the advantages of the traditional grid method to divide the environment, and at the same time eliminate the defects of the traditional grid method to divide the environment, borrow the existing honeycomb grid model to re-plan, and clearly give the center coordinates of each honeycomb grid The corresponding formula of position and grid serial number corresponds to the robot path planning point in the algorithm and the grid position. The method of honeycomb grid (regular hexagonal grid) is used to divide the environmental map, which avoids the problems of too large corners, effectiveness and safety in the traditional grid method.
(2)利用树向光分枝生长的寻优原理,系统的建立模型,使用树生长模拟算法对移动机器人进行全局遍历式路径规划,寻找出一条从起点到终点的最优路径,使得该算法能够在传统仿生算法存在的全局路径规划上取得一定的效果。(2) Utilize the optimization principle of tree-to-light branch growth, establish a model of the system, use the tree growth simulation algorithm to carry out global traversal path planning for mobile robots, and find an optimal path from the starting point to the end point, so that the algorithm It can achieve a certain effect on the global path planning existing in the traditional bionic algorithm.
(3)传统机器人路径规划多采用栅格法构建环境地图,算法模型主要以模拟自然规律或者细菌、昆虫以及动物的生长生活方式为主的传统研究方法。本发明实施例在路径规划问题上,将蜂巢栅格法和以植物为研究对象的树生长模拟算法结合,发挥各部分的优点,从而从新的方面来探究机器人路径规划问题。(3) Traditional robot path planning mostly uses the grid method to construct environmental maps, and the algorithm model is mainly based on traditional research methods that simulate natural laws or the growth and lifestyle of bacteria, insects, and animals. In the path planning problem, the embodiment of the present invention combines the honeycomb grid method and the tree growth simulation algorithm with plants as the research object, and makes use of the advantages of each part, so as to explore the robot path planning problem from a new aspect.
在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。Those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
需要说明的是,本发明的说明书附图中的框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与获得机指令的组合来实现。It should be noted that, each block in the block diagrams and/or flowcharts in the drawings of the specification of the present invention, and the combination of blocks in the block diagrams and/or flowcharts, can be used to perform specified functions or actions. It may be implemented as a hardware-based system, or it may be implemented as a combination of special-purpose hardware and machine instructions.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. All of them should be covered by the scope of the claims and description of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711208457.1A CN107702723B (en) | 2017-11-27 | 2017-11-27 | A robot path planning method, storage medium and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711208457.1A CN107702723B (en) | 2017-11-27 | 2017-11-27 | A robot path planning method, storage medium and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107702723A true CN107702723A (en) | 2018-02-16 |
CN107702723B CN107702723B (en) | 2019-11-08 |
Family
ID=61181109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711208457.1A Active CN107702723B (en) | 2017-11-27 | 2017-11-27 | A robot path planning method, storage medium and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107702723B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109101017A (en) * | 2018-07-27 | 2018-12-28 | 江苏盛海智能科技有限公司 | A kind of unmanned vehicle tracks route planning method and terminal |
CN109129473A (en) * | 2018-08-07 | 2019-01-04 | 北京云迹科技有限公司 | One kind, which is cruised, method and cruises robot |
CN109434831A (en) * | 2018-11-12 | 2019-03-08 | 深圳前海达闼云端智能科技有限公司 | Robot operation method and device, robot, electronic device and readable medium |
CN109634304A (en) * | 2018-12-13 | 2019-04-16 | 中国科学院自动化研究所南京人工智能芯片创新研究院 | Unmanned plane during flying paths planning method, device and storage medium |
CN109974705A (en) * | 2019-03-08 | 2019-07-05 | 桂林电子科技大学 | A method and system for optimizing the cleaning path of a sweeping robot |
CN110045731A (en) * | 2019-03-26 | 2019-07-23 | 深圳先进技术研究院 | A kind of paths planning method, electronic device and computer readable storage medium |
CN110456789A (en) * | 2019-07-23 | 2019-11-15 | 中国矿业大学 | A full-coverage path planning method for cleaning robots |
CN110631601A (en) * | 2019-11-13 | 2019-12-31 | 中国电子科技集团公司第二十八研究所 | Path planning method based on non-display topological vector map |
CN110750095A (en) * | 2019-09-04 | 2020-02-04 | 北京洛必德科技有限公司 | Robot cluster motion control optimization method and system based on 5G communication |
CN110865642A (en) * | 2019-11-06 | 2020-03-06 | 天津大学 | A Path Planning Method Based on Mobile Robot |
CN111121750A (en) * | 2019-12-26 | 2020-05-08 | 广东博智林机器人有限公司 | Indoor path acquisition method and device |
CN111329398A (en) * | 2020-03-27 | 2020-06-26 | 上海高仙自动化科技发展有限公司 | Robot control method, robot, electronic device, and readable storage medium |
CN111399489A (en) * | 2018-12-14 | 2020-07-10 | 北京京东尚科信息技术有限公司 | Method and apparatus for generating information |
CN112099521A (en) * | 2020-10-09 | 2020-12-18 | 北京邮电大学 | Unmanned aerial vehicle path planning method and device |
US11079763B2 (en) | 2018-08-22 | 2021-08-03 | Pegatron Corporation | Trajectory planning method and system |
CN113503884A (en) * | 2021-04-13 | 2021-10-15 | 上海擎朗智能科技有限公司 | Path planning method, device, equipment and storage medium |
CN113848922A (en) * | 2021-09-29 | 2021-12-28 | 上海仙工智能科技有限公司 | Degenerate splicing method and device for tracks containing straight paths and storage medium thereof |
CN113934218A (en) * | 2021-11-16 | 2022-01-14 | 杭州云象商用机器有限公司 | Cleaning robot path planning method, device, equipment and storage medium |
WO2022121207A1 (en) * | 2020-12-10 | 2022-06-16 | 北京市商汤科技开发有限公司 | Trajectory planning method and apparatus, device, storage medium, and program product |
CN117308965A (en) * | 2023-11-28 | 2023-12-29 | 华南农业大学 | Harvester robot autonomous grain unloading path planning method based on sliding window algorithm |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106406320A (en) * | 2016-11-29 | 2017-02-15 | 重庆重智机器人研究院有限公司 | Robot path planning method and robot planning route |
-
2017
- 2017-11-27 CN CN201711208457.1A patent/CN107702723B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106406320A (en) * | 2016-11-29 | 2017-02-15 | 重庆重智机器人研究院有限公司 | Robot path planning method and robot planning route |
Non-Patent Citations (6)
Title |
---|
HUANG YIHUA ETAL.: "RFID Network Planning based on k-Coverage Using Plant Growth Simulation Algotithm", 《2012 8TH INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGY AND INFORMATION MANAGEMENT(NCM AND ICNIT)》 * |
JOON-WOO LEE ETAL.: "Improved Ant Colony Optimization Algorithm by Potential Field Concept for Optimal Path Planning", 《2008 8TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS》 * |
曾辰等: "一种蜂巢栅格下机器人路径规划的蚁群算法", 《机械科学与技术》 * |
李彤等: "求解整数规划的一种仿生类全局优化算法——模拟植物生长算法", 《系统工程理论与实践》 * |
王红君等: "基于平滑蚁群算法的机器人路径规划", 《燕山大学学报》 * |
王赟: "MiroSot足球机器人的路径规划研究", 《中国优秀硕士学位论文全文数据库•信息科技辑》 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109101017A (en) * | 2018-07-27 | 2018-12-28 | 江苏盛海智能科技有限公司 | A kind of unmanned vehicle tracks route planning method and terminal |
CN109129473A (en) * | 2018-08-07 | 2019-01-04 | 北京云迹科技有限公司 | One kind, which is cruised, method and cruises robot |
CN109129473B (en) * | 2018-08-07 | 2021-09-14 | 北京云迹科技有限公司 | Tour method and tour robot |
US11079763B2 (en) | 2018-08-22 | 2021-08-03 | Pegatron Corporation | Trajectory planning method and system |
CN109434831A (en) * | 2018-11-12 | 2019-03-08 | 深圳前海达闼云端智能科技有限公司 | Robot operation method and device, robot, electronic device and readable medium |
CN109634304A (en) * | 2018-12-13 | 2019-04-16 | 中国科学院自动化研究所南京人工智能芯片创新研究院 | Unmanned plane during flying paths planning method, device and storage medium |
CN109634304B (en) * | 2018-12-13 | 2022-07-15 | 中国科学院自动化研究所南京人工智能芯片创新研究院 | Unmanned aerial vehicle flight path planning method and device and storage medium |
CN111399489A (en) * | 2018-12-14 | 2020-07-10 | 北京京东尚科信息技术有限公司 | Method and apparatus for generating information |
CN111399489B (en) * | 2018-12-14 | 2023-08-04 | 北京京东乾石科技有限公司 | Method and device for generating information |
CN109974705A (en) * | 2019-03-08 | 2019-07-05 | 桂林电子科技大学 | A method and system for optimizing the cleaning path of a sweeping robot |
CN110045731A (en) * | 2019-03-26 | 2019-07-23 | 深圳先进技术研究院 | A kind of paths planning method, electronic device and computer readable storage medium |
CN110045731B (en) * | 2019-03-26 | 2022-04-12 | 深圳市中科晟达互联智能科技有限公司 | Path planning method, electronic device and computer readable storage medium |
CN110456789A (en) * | 2019-07-23 | 2019-11-15 | 中国矿业大学 | A full-coverage path planning method for cleaning robots |
CN110750095A (en) * | 2019-09-04 | 2020-02-04 | 北京洛必德科技有限公司 | Robot cluster motion control optimization method and system based on 5G communication |
CN110865642A (en) * | 2019-11-06 | 2020-03-06 | 天津大学 | A Path Planning Method Based on Mobile Robot |
CN110631601A (en) * | 2019-11-13 | 2019-12-31 | 中国电子科技集团公司第二十八研究所 | Path planning method based on non-display topological vector map |
CN110631601B (en) * | 2019-11-13 | 2021-04-27 | 中国电子科技集团公司第二十八研究所 | Path planning method based on non-display topological vector map |
CN111121750A (en) * | 2019-12-26 | 2020-05-08 | 广东博智林机器人有限公司 | Indoor path acquisition method and device |
CN111329398A (en) * | 2020-03-27 | 2020-06-26 | 上海高仙自动化科技发展有限公司 | Robot control method, robot, electronic device, and readable storage medium |
CN112099521A (en) * | 2020-10-09 | 2020-12-18 | 北京邮电大学 | Unmanned aerial vehicle path planning method and device |
WO2022121207A1 (en) * | 2020-12-10 | 2022-06-16 | 北京市商汤科技开发有限公司 | Trajectory planning method and apparatus, device, storage medium, and program product |
CN113503884B (en) * | 2021-04-13 | 2023-09-15 | 上海擎朗智能科技有限公司 | Path planning method, device, equipment and storage medium |
CN113503884A (en) * | 2021-04-13 | 2021-10-15 | 上海擎朗智能科技有限公司 | Path planning method, device, equipment and storage medium |
CN113848922A (en) * | 2021-09-29 | 2021-12-28 | 上海仙工智能科技有限公司 | Degenerate splicing method and device for tracks containing straight paths and storage medium thereof |
CN113848922B (en) * | 2021-09-29 | 2024-05-03 | 上海仙工智能科技有限公司 | Degenerate splicing method and device for tracks containing straight paths and storage medium thereof |
CN113934218B (en) * | 2021-11-16 | 2022-03-25 | 杭州云象商用机器有限公司 | Cleaning robot path planning method, device, equipment and storage medium |
CN113934218A (en) * | 2021-11-16 | 2022-01-14 | 杭州云象商用机器有限公司 | Cleaning robot path planning method, device, equipment and storage medium |
CN117308965A (en) * | 2023-11-28 | 2023-12-29 | 华南农业大学 | Harvester robot autonomous grain unloading path planning method based on sliding window algorithm |
CN117308965B (en) * | 2023-11-28 | 2024-03-12 | 华南农业大学 | Harvester robot autonomous grain unloading path planning method based on sliding window algorithm |
Also Published As
Publication number | Publication date |
---|---|
CN107702723B (en) | 2019-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107702723B (en) | A robot path planning method, storage medium and device | |
Nazarahari et al. | Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm | |
CN112650229B (en) | A Path Planning Method for Mobile Robots Based on Improved Ant Colony Algorithm | |
CN108664022B (en) | A robot path planning method and system based on topology map | |
CN109945881A (en) | A mobile robot path planning method based on ant colony algorithm | |
CN106843211A (en) | A kind of method for planning path for mobile robot based on improved adaptive GA-IAGA | |
CN109871021B (en) | Robot navigation method based on particle swarm optimization algorithm | |
Ahmed et al. | Multi-objective path planning using spline representation | |
CN113219989B (en) | Mobile robot path planning method based on improved butterfly optimization algorithm | |
CN115202394B (en) | Unmanned aerial vehicle full-coverage path planning method based on improved genetic algorithm | |
CN111580514B (en) | Mobile robot optimal path coverage method based on joint formation | |
CN104932494B (en) | The build mechanism of distribution of obstacles figure in a kind of probabilistic type room | |
CN113110520A (en) | Robot path planning method based on multiple intelligent optimization parallel algorithms | |
CN110181508A (en) | Underwater robot three-dimensional Route planner and system | |
CN107992040A (en) | The robot path planning method combined based on map grid with QPSO algorithms | |
Fang et al. | Intelligent obstacle avoidance path planning method for picking manipulator combined with artificial potential field method | |
CN112650246B (en) | Ship autonomous navigation method and device | |
Yu et al. | SOF-RRT*: An improved path planning algorithm using spatial offset sampling | |
Wu et al. | Real-time three-dimensional smooth path planning for unmanned aerial vehicles in completely unknown cluttered environments | |
CN116009527A (en) | Path Planning Algorithm Based on Dynamic Scene Structure Expansion Perception | |
CN111189455A (en) | Unmanned aerial vehicle route planning method and system based on combination of improved biophysical algorithm and Bessel function and storage medium | |
CN115826591B (en) | A Multi-target Path Planning Method Based on Neural Network Estimation of Path Cost | |
CN107390690A (en) | Merge the robot path planning method of chaos and elite backward learning | |
Zhang et al. | Research on complete coverage path planning for unmanned surface vessel | |
Xin et al. | Formation tracking and transformation control of nonholonomic AUVs based on improved SOM method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |