CN107699804A - 降低1500MPa薄板热成形钢氢致滞后开裂的方法 - Google Patents

降低1500MPa薄板热成形钢氢致滞后开裂的方法 Download PDF

Info

Publication number
CN107699804A
CN107699804A CN201710934696.9A CN201710934696A CN107699804A CN 107699804 A CN107699804 A CN 107699804A CN 201710934696 A CN201710934696 A CN 201710934696A CN 107699804 A CN107699804 A CN 107699804A
Authority
CN
China
Prior art keywords
hot forming
1500mpa
forming steel
temperature
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710934696.9A
Other languages
English (en)
Inventor
陈勇
胡宽辉
魏星
周少云
余力
祝洪川
陈明
陈寅
刘渊媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN201710934696.9A priority Critical patent/CN107699804A/zh
Publication of CN107699804A publication Critical patent/CN107699804A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种降低1500MPa薄板热成形钢氢致滞后开裂的方法,将1500MPa级热成形钢放入在带有氮气保护气氛的加热炉内加热到900~950℃时保温180~300s进行奥氏体化;然后置于带有控温装置的模具内进行冲压热处理成形,淬火冷却速度为20~40℃/s、并控制模具温度使钢板淬火温度在350~400℃之间温度下保温30~300秒,然后水淬至室温。通过在热成形过程中特殊的热处理工艺,使得最终获得的组织不是单一的马氏体而是马氏体和一定量的残余奥氏体,奥氏体含量在6~12%,既不降低材料的抗拉强度,又极大地提高了材料的延伸性,拥有更高的强塑积,并且还有较好的抗氢致滞后开裂的性能。

Description

降低1500MPa薄板热成形钢氢致滞后开裂的方法
技术领域
本发明属于热成形高强钢生产技术领域,具体涉及一种降低1500MPa薄板热成形钢氢致滞后开裂的方法。
背景技术
随着汽车行业的快速发展,轻量化和安全性成为汽车产业发展的主要方向。使用热成形钢是当前提髙汽车碰撞安全性最为有效的措施,也是轻量化的重要途径。目前应用最多的是低碳Mn-B系钢板,对应的欧洲牌号为22MnB5,淬火后其组织变为均匀的马氏体,强度达到1470MPa级,应用在A柱、B柱、前后保险杆、铰链加强板、车门防撞梁、中通道等部位,2013年全球的热成形构件产量达到4.5亿件。
然而,随着强度提高,钢的滞后开裂问题也随之出现,成为制约超高强钢应用与发展的一个重大问题。滞后开裂是材料在静止应力的作用下,经过一定时间后突然发生脆性破坏的一种现象,它是材料—环境—应力之间相互作用的结果。大量研究已经证实,钢的滞后开裂是材料和材料服役环境中的氢造成的,是氢致材质劣化的一种形态,尤其对强度大于1000MPa的超高强钢,其氢致滞后开裂敏感性更为显著。滞后开裂常常在材料所承受的外加应力水平显著低于其屈服强度时突然发生,具有不可预知性,往往导致较为严重的破坏和后果,因此超高强钢滞后开裂已经成为汽车轻量化必须解决的问题。
发明内容
本发明的目的就是要提供一种通过增加残余奥氏体来降低1500MPa薄板热成形钢氢致滞后开裂的方法。
为实现上述目的,本发明采用的技术方案是:降低1500MPa薄板热成形钢氢致滞后开裂的方法,1500MPa级热成形钢的化学元素成分及其重量百分比为:碳(C)0.21~0.25%、硅(Si)0.26~0.30%、锰(Mn)1.0~1.3%、磷(P)≤0.010%、硫(S)≤0.005%、酸溶铝(Als)0.015~0.060%、铬(Cr)0.25~0.30%、钛(Ti)0.026~0.030%、硼(B)0.003~0.004%、铌(Nb)0.026~0.030%、钒(V)0.26~0.030%、氮(N)≤0.005%,余量为铁和不可避免的杂质;
所述热处理方式为:将1500MPa级热成形钢放入在带有氮气保护气氛的加热炉内加热到900~950℃时保温180~300s进行奥氏体化;然后快速置于带有控温装置的模具内进行冲压热处理成形,冲压热处理成形时:淬火冷却速度为20~40℃/s、并控制模具温度使钢板淬火温度在350~400℃之间温度下保温30~300秒,然后水淬至室温,获得抗氢致滞后开裂的热成形钢。
进一步地,所述1500MPa级热成形钢的厚度为0.8~3.0mm。
进一步地,1500MPa级热成形钢的化学元素成分及其重量百分比为:碳0.24%、硅0.27%、锰1.02%、磷≤0.005%、硫≤0.005%、酸溶铝0.024%、铬0.26%、钛0.030%、硼0.0032%、铌0.026%、钒0.26%、氮0.003%%,余量为铁和不可避免的杂质;
所述热处理方式为:将1500MPa级热成形钢放入在带有氮气保护气氛的加热炉内加热到930℃时保温300s进行奥氏体化;然后快速置于带有控温装置的模具内进行冲压热处理成形,冲压热处理成形时:淬火冷却速度为30℃/s、并控制模具温度使钢板淬火温度在380~400℃之间温度下保温120~180秒,然后水淬至室温,获得抗氢致滞后开裂的热成形钢。
使用XRD衍射仪测得残余奥氏体含量为6~12%,该热处理方法获得的热成形钢具有优良的力学性能,抗拉强度达到1470~1550MPa、屈服强度为800~1000MPa、延伸率达到12~16%。
普通热成形钢的冲压方式为将钢放入在带有氮气保护气氛的加热炉内加热到900~950℃保温180~300s进行奥氏体化,然后快速置于带有冷却装置的模具内进行冲压成形,淬火冷却速度为20~40℃/s、直至室温,最终获得马氏体组织。而材料的抗拉强度为1470~1580MPa、屈服强度为1000~1200MPa、延伸率为6~8%。
将本发明热处理方法生产的热成形钢与普通方法生产的热成形钢进行氢致滞后开裂性能对比,在0.1mol/L的HCl中进行SSRT慢拉伸试验,拉伸应变速率1.0×10-5/s通过计算延伸率损失(氢脆指数I)来评价抗氢致滞后开裂性能,Iε值越小代表抗氢致滞后开裂性能越好。其中:εA—试样空气中拉伸时延伸率、εE—试样酸性介质中拉伸时延伸率。
普通方法生产的热成形钢和本发明热处理方法生产的热成形钢抗氢致滞后开裂性能对比见表1
对比材料 Iε
普通热成形钢 75%
本发明热成形钢 20~38%
与现有技术相比,本发明具有以下优点:本发明通过在热成形过程中特殊的热处理工艺,使得最终获得的组织不是单一的马氏体而是马氏体和一定量的残余奥氏体,奥氏体含量在6~12%,既不降低材料的抗拉强度,又极大地提高了材料的延伸性,拥有更高的强塑积,并且还有较好的抗氢致滞后开裂的性能,本发明既适用于采用普通冷轧热成形钢做原料,也适用于CSP产线生产的热成形钢做原料,相比普通热成形钢要有更好的应用前景和经济效益。
具体实施方式
下面结合实施例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
以下所有实施例(包括六个实施例和一个对比实施例)中1500MPa级热成形钢的化学元素成分及其重量百分比为:碳(C)0.24%、硅(Si)0.27%、锰(Mn)1.02%、磷(P)≤0.005%、硫(S)≤0.005%、酸溶铝(Als)0.024%、铬(Cr)0.26%、钛(Ti)0.030%、硼(B)0.0032%、铌(Nb)0.026%、钒(V)026%、氮(N)0.003%%,余量为铁和不可避免的杂质,热成形钢的厚度均为1.5mm。
热成形钢冲压热处理工艺见下表2
六个实施例和对比实施例对应的性能见表3
六个实施例和对比实施例对应的氢致滞后开裂敏感性见表4

Claims (3)

1.一种降低1500MPa薄板热成形钢氢致滞后开裂的方法,其特征在于:1500MPa级热成形钢的化学元素成分及其重量百分比为:碳0.21~0.25%、硅0.26~0.30%、锰1.0~1.3%、磷≤0.010%、硫≤0.005%、酸溶铝0.015~0.060%、铬0.25~0.30%、钛0.026~0.030%、硼0.003~0.004%、铌0.026~0.030%、钒0.26~0.030%、氮≤0.005%,余量为铁和不可避免的杂质;
所述热处理方式为:将1500MPa级热成形钢放入在带有氮气保护气氛的加热炉内加热到900~950℃时保温180~300s进行奥氏体化;然后置于带有控温装置的模具内进行冲压热处理成形,冲压热处理成形时:淬火冷却速度为20~40℃/s、并控制模具温度使钢板淬火温度在350~400℃之间温度下保温30~300秒,然后水淬至室温,获得抗氢致滞后开裂的热成形钢。
2.根据权利要求1所述降低1500MPa薄板热成形钢氢致滞后开裂的方法,其特征在于:所述1500MPa级热成形钢的厚度为0.8~3.0mm。
3.根据权利要求1或2所述降低1500MPa薄板热成形钢氢致滞后开裂的方法,其特征在于:所述1500MPa级热成形钢的化学元素成分及其重量百分比为:碳0.24%、硅0.27%、锰1.02%、磷≤0.005%、硫≤0.005%、酸溶铝0.024%、铬0.26%、钛0.030%、硼0.0032%、铌0.026%、钒0.26%、氮0.003%%,余量为铁和不可避免的杂质;
所述热处理方式为:将1500MPa级热成形钢放入在带有氮气保护气氛的加热炉内加热到930℃时保温300s进行奥氏体化;然后置于带有控温装置的模具内进行冲压热处理成形,冲压热处理成形时:淬火冷却速度为30℃/s、并控制模具温度使钢板淬火温度在380~400℃之间温度下保温120~180秒,然后水淬至室温,获得抗氢致滞后开裂的热成形钢。
CN201710934696.9A 2017-10-10 2017-10-10 降低1500MPa薄板热成形钢氢致滞后开裂的方法 Pending CN107699804A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710934696.9A CN107699804A (zh) 2017-10-10 2017-10-10 降低1500MPa薄板热成形钢氢致滞后开裂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710934696.9A CN107699804A (zh) 2017-10-10 2017-10-10 降低1500MPa薄板热成形钢氢致滞后开裂的方法

Publications (1)

Publication Number Publication Date
CN107699804A true CN107699804A (zh) 2018-02-16

Family

ID=61184799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710934696.9A Pending CN107699804A (zh) 2017-10-10 2017-10-10 降低1500MPa薄板热成形钢氢致滞后开裂的方法

Country Status (1)

Country Link
CN (1) CN107699804A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754099A (zh) * 2018-06-27 2018-11-06 武汉钢铁有限公司 降低1700MPa级热成形钢氢致滞后开裂敏感性的热处理方法
CN108796374A (zh) * 2018-06-27 2018-11-13 武汉钢铁有限公司 降低1300MPa级热成形钢氢致滞后开裂敏感性的热处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100209A (ja) * 2005-01-28 2007-04-19 Kobe Steel Ltd 耐水素脆化特性に優れた高強度ばね用鋼
CN101270449A (zh) * 2008-05-21 2008-09-24 钢铁研究总院 一种高强度热成型马氏体钢
CN101275200A (zh) * 2008-05-21 2008-10-01 钢铁研究总院 一种热成型马氏体钢
WO2015107608A1 (ja) * 2014-01-17 2015-07-23 新日鐵住金株式会社 マルテンサイト系Cr含有鋼及び油井用鋼管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100209A (ja) * 2005-01-28 2007-04-19 Kobe Steel Ltd 耐水素脆化特性に優れた高強度ばね用鋼
CN101270449A (zh) * 2008-05-21 2008-09-24 钢铁研究总院 一种高强度热成型马氏体钢
CN101275200A (zh) * 2008-05-21 2008-10-01 钢铁研究总院 一种热成型马氏体钢
WO2015107608A1 (ja) * 2014-01-17 2015-07-23 新日鐵住金株式会社 マルテンサイト系Cr含有鋼及び油井用鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEPING LIU: ""Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process"", 《SCRIPTA MATERIALIA》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754099A (zh) * 2018-06-27 2018-11-06 武汉钢铁有限公司 降低1700MPa级热成形钢氢致滞后开裂敏感性的热处理方法
CN108796374A (zh) * 2018-06-27 2018-11-13 武汉钢铁有限公司 降低1300MPa级热成形钢氢致滞后开裂敏感性的热处理方法

Similar Documents

Publication Publication Date Title
US6544354B1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
CN108374127A (zh) 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
CN108018503A (zh) 一种层状超细晶双相铁素体/马氏体钢及其制备方法
CN109252107B (zh) 一种高平直度超高强钢的生产方法
CN107012398B (zh) 一种铌微合金化trip钢及其制备方法
CN107619993A (zh) 屈服强度750MPa级冷轧马氏体钢板及其制造方法
EP3354756A1 (en) Online-controlled seamless steel tube cooling process and seamless steel tube manufacturing method with effective grain refinement
US20180147614A1 (en) Press hardened steel with increased toughness and method for production
CN107502824A (zh) 降低1500MPa级热成形钢氢致滞后开裂敏感性的热处理方法
CN113846266A (zh) 一种高塑韧性屈服强度1300MPa级调质钢板的生产方法
CN106222544A (zh) 环形锻件及其热处理方法
CN106929755A (zh) 一种用于生产低温热冲压汽车零部件的钢板及其制造方法和用途
CN110079743A (zh) 一种1500MPa级低氢致延迟开裂敏感性热成形钢及生产方法
US20210017617A1 (en) Method for generating metallic components having customised component properties
EP0674720B1 (en) Cold formed high strength steel parts
CN112981277A (zh) 一种超高强度中碳纳米贝氏体钢的制备方法
CN107699804A (zh) 降低1500MPa薄板热成形钢氢致滞后开裂的方法
CN106498297A (zh) 精密冲压汽车座椅调节器齿盘用冷轧钢板及其制造方法
CN104195429A (zh) 低屈强比低裂纹敏感性q550cf调质钢及生产方法
Tisza Hot forming of boron alloyed Manganese steels
CN117488201A (zh) 高断裂应变热冲压成形构件、热冲压用钢板及热冲压工艺
Neugebauer et al. Hot sheet metal forming: The formulation of graded component characteristics based on strategic temperature management for tool-based and incremental forming operations
US4295902A (en) Method of manufacturing rolled steel products with high elastic limit
CN108796374A (zh) 降低1300MPa级热成形钢氢致滞后开裂敏感性的热处理方法
CN105039851B (zh) 钛合金化tam钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216