CN107696886A - 一种蓄电池快速充放电控制方法及其应用 - Google Patents

一种蓄电池快速充放电控制方法及其应用 Download PDF

Info

Publication number
CN107696886A
CN107696886A CN201710720642.2A CN201710720642A CN107696886A CN 107696886 A CN107696886 A CN 107696886A CN 201710720642 A CN201710720642 A CN 201710720642A CN 107696886 A CN107696886 A CN 107696886A
Authority
CN
China
Prior art keywords
battery
control
control method
current
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710720642.2A
Other languages
English (en)
Other versions
CN107696886B (zh
Inventor
朱磊
汪伟
王锐
何忠祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Original Assignee
Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC filed Critical Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Priority to CN201710720642.2A priority Critical patent/CN107696886B/zh
Publication of CN107696886A publication Critical patent/CN107696886A/zh
Application granted granted Critical
Publication of CN107696886B publication Critical patent/CN107696886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • H02J7/0077
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种蓄电池快速充放电控制方法,该方法采用分阶段变结构控制,根据电流跟踪状态选择不同的控制结构,并设置平滑过渡阶段,实现蓄电池充放电的快速响应,可应用于各类蓄电池测试仪及充放电装置;还公开了应用于数字芯片安装在电压变换装置中,安装在蓄电池测试仪中,安装在蓄电池充电设备中以及安装在电动汽车中。

Description

一种蓄电池快速充放电控制方法及其应用
技术领域
本发明属于电力电子设备及其控制技术领域,具体涉及一种蓄电池快速充放电控制方法,可提高蓄电池充放电的动态性能,以及其应用于电动汽车、混合动力汽车及其它交通工具蓄电池的测试设备及充放电设备。
背景技术
在电动车辆、船舶推进等领域,交流电机通常以蓄电池作为电源。蓄电池在研发、测试、生产和使用的各个环节中,都需要进行充放电的操作。充电时的电源和放电时的负载电压往往与蓄电池的电压不同,且在充放电的不同阶段,需要的充放电电压也不同。
为满足上述需求,双向DC/DC作为一种经典的电力电子装置,广泛应用于蓄电测试仪、电池管理、充电桩等蓄电池充放电设备。双向DC/DC的功能通过硬件电路与控制软件相结合才能实现,其所采用的控制方法对充放电的性能有重要影响。
为了满足负载快速变化的需求,蓄电池充放电装置也需要有快速响应的特性。在快速响应的同时,还需要保持较小的超调量和纹波。这对电路设计和控制技术提出很高的要求。
使用双向DC/DC给蓄电池充放电时,对电流响应的速度、超调量和纹波都有较高的要求。除电路参数外,控制策略对控制性能也有很大影响。常规的控制策略往往不能在保证较小超调量和纹波的前提下,实现快速电流响应。
发明内容
针对以上技术问题,本发明的主要目的是提出一种蓄电池快速充放电控制方法。
本发明解决其技术问题所采用的技术方案是:一种蓄电池快速充放电控制方法,采用并联的两层控制结构用于不同的控制状态,并设有平滑过渡阶段;
位于外层控制结构为功率或电压控制的开环控制,通过调节电流实现功率或电压的跟踪或限幅,按恒电流上升率控制;
位于内层控制结构根据电流误差状态,采用不同控制结构,通过调节占空比实现电流的跟踪;
当电流误差大于Δi时,采用开环控制结构,直据根据电流上升率的要求,计算控制量u,叠加Vout后,进行PWM调制;
当电流误差小于Δi时,采用闭环控制结构,电流参考值与反馈值相减后,经PI调节器比例积分调节,得到控制量u,叠加Vout后,进行PWM调制;
由开环控制结构转换到闭环控制结构时,设置平滑过度阶段,所述的平滑过渡阶段按等积分面积和PI相结合的方式控制,以实现蓄电池充放电的快速响应。
本发明的目的之二是提供一种上述控制方法的应用,用于数字芯片的控制算法,所述的数字芯片安装在电压变换装置中,所述的电压变换装置使用MOSFET、IGBT、IGCT等器件实现电能的变换,其输入侧或输出侧与蓄电池相连。
进一步,所述的电压变换装置安装在蓄电池测试仪中,对蓄电池进行充电、放电测试。
进一步,所述的电压变换装置安装在蓄电池充电设备中,对蓄电池进行充电操作。
进一步,所述的电压变换装置安装在电动汽车中,所述的电动汽车采用蓄电池作为储能装置,所述的蓄电池通过一台电压变换装置与车上其它设备相连。
本发明的有益效果是:本控制方法采用分阶段变结构控制,根据电流跟踪状态选择不同的控制结构,并设置平滑过渡阶段,可加快蓄电池充放电时电流响应速度,能应用于各类蓄电池测试仪及充放电装置。
附图说明
图1是本发明蓄电池充放电的原理示意图;
图2是本发明开环控制结构示意图;
图3是本发明闭环控制结构示意图;
图4是本发明过渡阶段示意图;
图5是本发明等积分面积过渡函数示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施案例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
参照图1所示,本发明公开了一种蓄电池快速充放电控制方法,使用了两种控制结构用于不同的控制状态,并设有过渡阶段。第一种控制结构采用开环控制,按恒电流上升率控制,不需要电流反馈;第二种控制结构根据电流误差状态,采用不同控制结构;过渡阶段按等积分面积和PI相结合的方式控制,特点如下:
1,分两个层次进行控制,外层为功率或电压控制,通过调节电流实现功率或电压的跟踪或限幅;内层为电流控制,通过调节占空比实现电流的跟踪。
2,当电流误差大于Δi时,采用开环控制结构;当电流误差小于Δi时,采用闭环控制结构;两层控制结构之间切换时,设过渡阶段。
3,开环控制结构:直据根据电流上升率的要求,计算控制量u,叠加Vout后,进行PWM调制,如图2所示。
4,闭环控制结构:电流参考值与反馈值相减后,经PI调节器比例积分调节,得到控制量u,叠加Vout后,进行PWM调制,如图3所示。
5,过渡阶段:开环控制结构与闭环控制结构并联,如图4所示。其中设置了过渡函数,按照等积分面积原则进行计算,如图5所示。
实施例2
一种电压变换装置,使用MOSFET、IGBT、IGCT等器件实现电能的变换,其输入侧或输出侧与蓄电池相连,使用数字芯片作为控制算法的载体,其控制算法中采用了本发明所述的控制方法。
实施例3
一种蓄电池测试仪,包含至少一台实施例2所述的电压变换装置,可以对蓄电池进行充电、放电测试,该蓄电池测试仪的控制算法中采用了本发明所述的控制方法。
实施例4
一种蓄电池充电设备,包含至少一台实施例2所述的电压变换装置,可以对蓄电池进行充电操作,该蓄电池充电设备控制算法中采用了本发明所述的控制方法。
实施例5
一种电动汽车,采用蓄电池作为储能装置,蓄电池通过一台电压变换装置与车上其它设备相连,该电压变换装置采用了本发明所述的控制方法进行控制。
本文中所描述的具体实施例仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (5)

1.一种蓄电池快速充放电控制方法,其特征在于,采用并联的两层控制结构用于不同的控制状态,并设有平滑过渡阶段;
位于外层控制结构为功率或电压控制的开环控制,通过调节电流实现功率或电压的跟踪或限幅,按恒电流上升率控制;
位于内层控制结构根据电流误差状态,采用不同控制结构,通过调节占空比实现电流的跟踪;
当电流误差大于Δi时,采用开环控制结构,直据根据电流上升率的要求,计算控制量u,叠加Vout后,进行PWM调制;
当电流误差小于Δi时,采用闭环控制结构,电流参考值与反馈值相减后,经PI调节器比例积分调节,得到控制量u,叠加Vout后,进行PWM调制;
由开环控制结构转换到闭环控制结构时,设置平滑过度阶段,所述的平滑过渡阶段按等积分面积和PI相结合的方式控制,以实现蓄电池充放电的快速响应。
2.一种如权利要求1所述蓄电池快速充放电控制方法的应用,其特征在于,用于数字芯片的控制算法,所述的数字芯片安装在电压变换装置中,所述的电压变换装置使用MOSFET、IGBT、IGCT等器件实现电能的变换,其输入侧或输出侧与蓄电池相连。
3.根据权利要求2所述的控制方法的应用,其特征在于,所述的电压变换装置安装在蓄电池测试仪中,对蓄电池进行充电、放电测试。
4.根据权利要求2所述的控制方法的应用,其特征在于,所述的电压变换装置安装在蓄电池充电设备中,对蓄电池进行充电操作。
5.根据权利要求2所述的控制方法的应用,其特征在于,所述的电压变换装置安装在电动汽车中,所述的电动汽车采用蓄电池作为储能装置,所述的蓄电池通过一台电压变换装置与车上其它设备相连。
CN201710720642.2A 2017-08-21 2017-08-21 一种蓄电池快速充放电控制方法及其应用 Active CN107696886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710720642.2A CN107696886B (zh) 2017-08-21 2017-08-21 一种蓄电池快速充放电控制方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710720642.2A CN107696886B (zh) 2017-08-21 2017-08-21 一种蓄电池快速充放电控制方法及其应用

Publications (2)

Publication Number Publication Date
CN107696886A true CN107696886A (zh) 2018-02-16
CN107696886B CN107696886B (zh) 2019-07-16

Family

ID=61169752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710720642.2A Active CN107696886B (zh) 2017-08-21 2017-08-21 一种蓄电池快速充放电控制方法及其应用

Country Status (1)

Country Link
CN (1) CN107696886B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380619A (zh) * 2019-07-12 2019-10-25 深圳市赛格瑞电子有限公司 一种直流转换电路及其控制方法、直流转换装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403547A (zh) * 2010-09-16 2012-04-04 扬州天华光电科技有限公司 一种蓄电池的智能充放电方法
CN103973105A (zh) * 2013-12-10 2014-08-06 国家电网公司 一种大功率双向dc/dc变换器高动态性能控制方法
CN105656022A (zh) * 2016-03-14 2016-06-08 上海电力学院 一种分布式光储直流供电系统非线性微分平滑控制方法
CN105826997A (zh) * 2016-05-20 2016-08-03 西安交通大学 一种用于蓄电池全范围充电的闭环控制方法
CN106463989A (zh) * 2014-06-20 2017-02-22 Ioxus公司 引擎启动与电池支持模块
CN206226052U (zh) * 2016-10-14 2017-06-06 海南大学 一种混动车用42v/12v双层直流转换充电装置
CN206370776U (zh) * 2016-12-08 2017-08-01 深圳市华芯邦科技有限公司 混合型直流电能变换装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403547A (zh) * 2010-09-16 2012-04-04 扬州天华光电科技有限公司 一种蓄电池的智能充放电方法
CN103973105A (zh) * 2013-12-10 2014-08-06 国家电网公司 一种大功率双向dc/dc变换器高动态性能控制方法
CN106463989A (zh) * 2014-06-20 2017-02-22 Ioxus公司 引擎启动与电池支持模块
CN105656022A (zh) * 2016-03-14 2016-06-08 上海电力学院 一种分布式光储直流供电系统非线性微分平滑控制方法
CN105826997A (zh) * 2016-05-20 2016-08-03 西安交通大学 一种用于蓄电池全范围充电的闭环控制方法
CN206226052U (zh) * 2016-10-14 2017-06-06 海南大学 一种混动车用42v/12v双层直流转换充电装置
CN206370776U (zh) * 2016-12-08 2017-08-01 深圳市华芯邦科技有限公司 混合型直流电能变换装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380619A (zh) * 2019-07-12 2019-10-25 深圳市赛格瑞电子有限公司 一种直流转换电路及其控制方法、直流转换装置
CN110380619B (zh) * 2019-07-12 2023-09-29 深圳市赛格瑞电子有限公司 一种直流转换电路及其控制方法、直流转换装置

Also Published As

Publication number Publication date
CN107696886B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
Evzelman et al. Active balancing system for electric vehicles with incorporated low-voltage bus
Quraan et al. Design and control of modular multilevel converters for battery electric vehicles
Tashakor et al. A bidirectional battery charger with modular integrated charge equalization circuit
Zeng et al. An isolated three-port bidirectional DC–DC converter for photovoltaic systems with energy storage
Kisacikoglu et al. Single-phase on-board bidirectional PEV charger for V2G reactive power operation
Mukherjee et al. Control of second-life hybrid battery energy storage system based on modular boost-multilevel buck converter
Dusmez et al. A compact and integrated multifunctional power electronic interface for plug-in electric vehicles
Mestrallet et al. Multiphase interleaved converter for lithium battery active balancing
Costinett et al. Active balancing system for electric vehicles with incorporated low voltage bus
US8203294B2 (en) Electric energy storage integrated within or proximate to electrically driven flight control actuators
Kacetl et al. Design and analysis of modular multilevel reconfigurable battery converters for variable bus voltage powertrains
Liu et al. Electronic power transformer with supercapacitors storage energy system
Pham et al. High-efficiency active cell-to-cell balancing circuit for Lithium-Ion battery modules using LLC resonant converter
Sun et al. A unified modeling and control of a multi-functional current source-typed converter for V2G application
Badawy et al. Model predictive control for multi-port modular multilevel converters in electric vehicles enabling HESDs
Oriti et al. Battery management system with cell equalizer for multi-cell battery packs
Ruddell et al. A novel wireless converter topology for dynamic EV charging
Koraddi et al. Analysis of different cell balancing techniques
Zheng et al. Multiport power management method with partial power processing in a mv solid-state transformer for pv, storage, and fast-charging ev integration
Viana et al. Auxiliary power module elimination in evs using dual inverter drivetrain
Liu et al. Multiple input bidirectional dc/dc converter for energy supervision in fuel cell electric vehicles
CN107696886A (zh) 一种蓄电池快速充放电控制方法及其应用
Bellache et al. Hybrid Electric Boat based on variable speed Diesel Generator and lithium-battery-using frequency approach for energy management
Siangsanoh et al. Hybrid fuel cell/supercapacitor using a series converter
Wang et al. Energy recovery and utilization efficiency improvement for motor-driven system using dynamic energy distribution method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant