CN107696033B - 一种基于视觉测量的空间机械臂轨迹滚动规划方法 - Google Patents

一种基于视觉测量的空间机械臂轨迹滚动规划方法 Download PDF

Info

Publication number
CN107696033B
CN107696033B CN201710839487.6A CN201710839487A CN107696033B CN 107696033 B CN107696033 B CN 107696033B CN 201710839487 A CN201710839487 A CN 201710839487A CN 107696033 B CN107696033 B CN 107696033B
Authority
CN
China
Prior art keywords
space manipulator
joint
pose
coordinate system
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710839487.6A
Other languages
English (en)
Other versions
CN107696033A (zh
Inventor
徐拴锋
魏春岭
何英姿
朱志斌
唐强
张军
周扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201710839487.6A priority Critical patent/CN107696033B/zh
Publication of CN107696033A publication Critical patent/CN107696033A/zh
Application granted granted Critical
Publication of CN107696033B publication Critical patent/CN107696033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明一种基于视觉测量的空间机械臂轨迹规划方法,鉴于视觉敏感器测量数据更新周期与底层插补周期相差很大,首先基于视觉敏感器测量信息进行上层规划,然后基于上层规划的结果进行电机层面的下层规划,空间机械臂轨迹规划在这两个时间尺度交替滚动进行,不仅可以使空间机械臂在视觉敏感器测量信息引导之下运动至期望构型,而且能保证空间机械臂运动连续平稳,以便为视觉敏感器稳定成像创造有利条件,从而提高空间操作任务的成功率。

Description

一种基于视觉测量的空间机械臂轨迹滚动规划方法
技术领域
本发明属于空间机器人在轨维修维护领域,涉及一种基于视觉测量的空间机械臂运行轨迹的滚动规划方法。
背景技术
在轨服务通常由配备有机械臂的追踪航天器(称之为空间机械臂系统)来完成。空间机械臂在视觉敏感器导引下实现对目标航天器的抓捕,并进行相应操作任务。机械臂轨迹的底层规划周期的时间尺度在亚毫秒级。然而,受制于目前星上图像处理硬件水平,视觉敏感器从采集目标图像到解算出目标相对于视觉敏感器坐标系的位置和姿态,通常需要几百毫秒左右的时间。机械臂底层轨迹规划周期与视觉敏感器位姿解算周期的不匹配会造成机械臂运动速度不连续,从而导致追踪航天器姿态抖动,影响视觉敏感器的成像质量,进而影响空间操作任务的成败。因此,在机械臂底层规划周期与视觉敏感器相对位姿解算周期不匹配的情况下,迫切需要一种能够实现空间机械臂运动连续平稳的轨迹规划方法。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提供一种基于视觉测量的空间机械臂轨迹滚动规划方法,解决了空间机械臂底层轨迹规划周期与视觉敏感器位姿解算周期不匹配情况下的运动不平稳连续问题。
本发明的技术方案是:一种基于视觉测量的空间机械臂轨迹滚动规划方法,步骤如下:
1)将视觉敏感器获取的目标位姿表示在空间机械臂基座航天器坐标系中;
2)获取空间机械臂末端执行器的位姿偏差;
3)对空间机械臂运动轨迹进行以视觉敏感器位姿解算周期为时间尺度的粗规划;计算获得视觉敏感器的相邻两个位姿解算周期之间的关节速度,以及在视觉敏感器下一采样周期的关节位置;
4)对空间机械臂运动轨迹进行以关节电机插补周期为时间尺度的细规划;计算获得关节电机在视觉敏感器位姿解算周期之间的关节速度和关节位置。
所述步骤(1)的具体方法为:
根据姿态敏感器给出的基座航天器在惯性系中的姿态θ,将视觉敏感器测量得到的目标位姿表示在空间机械臂基座航天器坐标系中,记为pt和Rt,即pt表示目标在空间机械臂基座航天器坐标系中的位置,Rt表示目标坐标系相对于空间机械臂基座航天器坐标系的姿态矩阵;将空间机械臂末端执行器坐标系原点在空间机械臂基座航天器坐标系中的位置记为pm,将末端执行器坐标系相对于空间机械臂基座航天器坐标系的姿态矩阵记为Rm
所述获取空间机械臂末端执行器的位姿偏差的具体方法为:
计算得到空间机械臂末端执行器的位置误差Δp=pm-pt,姿态误差矩阵
Figure BDA0001410387750000021
以ΔR对应的四元数的矢量部分表示空间机械臂末端执行器的姿态误差Δε,则空间机械臂末端执行器的位姿误差记为Δx=[ΔpΔε]T;根据当前时刻tk空间机械臂基座航天器在惯性系中的姿态θ和机械臂各关节位置q,得到空间机械臂相对于空间机械臂基座航天器坐标系的雅克比矩阵;角标k为自然数。
所述步骤(3)的具体过程为:
空间机械臂在视觉敏感器下一采样时刻tk+1=tk+ΔT前的关节速度为
Figure BDA0001410387750000022
其中,
Figure BDA0001410387750000023
为目标的实际运动速度,包括线速度与角速度;ΔT为视觉敏感器的位姿数据更新周期;Λ为正定对称矩阵;位姿误差反馈系数
Figure BDA0001410387750000024
其中t表示时间,T为机械臂末端执行器从初始位姿运动到目标位姿的时间规划,[]表示向下取整;上标+表示经典违逆;
空间机械臂各关节在时刻tk+1的关节位置为
Figure BDA0001410387750000031
在时刻tk+1,空间机械臂关节位置由下式近似给出
Figure BDA0001410387750000032
其中,q(tk)为空间机械臂在时刻tk的关节位置;
采用以下方法计算视觉敏感器的相邻两个位姿解算周期之间的关节速度
Figure BDA0001410387750000033
Figure BDA0001410387750000034
Figure BDA0001410387750000035
其中,N=[T/ΔT]为两个周期之间的路径点个数,[]表示向下取整,
Figure BDA0001410387750000036
Figure BDA0001410387750000037
分别为起始点和结束点对应的关节速度,
Figure BDA0001410387750000038
为第k个路径点对应的关节速度,
Figure BDA0001410387750000039
给出[tk-1,tk]时段内的轨迹斜率。
所述计算获得关节电机在视觉敏感器位姿解算周期之间的关节速度和关节位置的具体过程为:
根据空间机械臂在时刻tk和tk+1的关节位置q(tk)和q(tk+1),在时刻tk和tk+1的关节速度
Figure BDA00014103877500000310
Figure BDA00014103877500000311
以及各关节从初始位置q(tk)运动到末了位置q(tk+1)的时间ΔT,进行底层插补,插补周期为Δt。
所述底层插补选择梯形规划算法、S形规划算法、带抛物线过渡的梯形规划算法、多项式规划算法以及样条规划算法。
本发明与现有技术相比的优点在于:
(1)本发明公开的规划算法分为两个层次,上层规划为底层规划提供约束条件,两个层次的规划相互独立,可以分别采取不同的规划算法,灵活性强;
(2)本发明公开的规划算法引入了位姿误差反馈系数的概念,可以使机械臂运动更加平稳,从而为视觉敏感器成像创造了有利条件;
(3)本发明公开的规划算法可扩展应用于视觉敏感器位姿解算周期变化的情况,适应性强。
附图说明
图1为试验流程框图;
图2为试验全程的机械臂末端三轴位置误差曲线;
图3为试验最后30s的机械臂末端三轴位置误差曲线;
图4为试验全程的机械臂末端坐标系的误差四元数变化曲线;
图5为试验最后30s的机械臂末端坐标系的误差四元数变化曲线。
具体实施方式
基于搭建的空间非合作目标抓捕操作地面试验系统,验证本发明所公开的滚动规划算法,机械臂采用串联结构,末端测量设备为手眼双目相机。考虑到安全性,机械臂开始操作前,关闭其基座卫星平台的姿轨控系统,成为自由漂浮空间机械臂。当目标星可抓捕部位处于视觉敏感器视场中,且敏感器能够测量得到可抓捕部位的相对位姿时,空间机械臂进入视觉导引模式。由相机测量目标星上可抓捕部位在相机坐标系中的相对期望位姿,然后进行上层规划得到机械臂在手眼双目相机下一采样时刻的关节位置和关节速度,接着进行底层规划得到电机运动的位置速度,从而控制机械臂末端移动到目标可抓捕部位,完成对目标航天器的捕获。
本发明公开了一种基于视觉测量的空间机械臂轨迹滚动规划方法,步骤如下:
一种基于视觉测量的空间机械臂轨迹滚动规划方法,其特征在于步骤如下:
1)将视觉敏感器获取的目标位姿表示在空间机械臂基座航天器坐标系中。根据姿态敏感器给出的基座航天器在惯性系中的姿态θ,将视觉敏感器测量得到的目标位姿表示在空间机械臂基座航天器坐标系(即卫星本体系)中,记为pt和Rt,即pt表示目标在空间机械臂基座航天器坐标系中的位置,Rt表示目标坐标系相对于空间机械臂基座航天器坐标系的姿态矩阵;将空间机械臂末端执行器坐标系原点在空间机械臂基座航天器坐标系中的位置记为pm,将末端执行器坐标系相对于空间机械臂基座航天器坐标系的姿态矩阵记为Rm
2)获取空间机械臂末端执行器的位姿偏差。计算得到空间机械臂末端执行器的位置误差Δp=pm-pt,姿态误差矩阵
Figure BDA0001410387750000051
以ΔR对应的四元数的矢量部分表示空间机械臂末端执行器的姿态误差Δε,则空间机械臂末端执行器的位姿误差记为Δx=[Δp Δε]T;根据当前时刻tk空间机械臂基座航天器在惯性系中的姿态θ和机械臂各关节位置q,得到空间机械臂相对于空间机械臂基座航天器坐标系的雅克比矩阵J(θ,q);角标k为自然数;
3)对空间机械臂运动轨迹进行以视觉敏感器位姿解算周期为时间尺度的粗规划;计算获得视觉敏感器的相邻两个位姿解算周期之间的关节速度,以及在视觉敏感器下一采样周期的关节位置,具体为:
空间机械臂在视觉敏感器下一采样时刻tk+1=tk+ΔT前的关节速度为
Figure BDA0001410387750000052
其中,
Figure BDA0001410387750000053
为目标的实际运动速度,包括线速度与角速度;ΔT为视觉敏感器的位姿数据更新周期;Λ为正定对称矩阵;位姿误差反馈系数其中t表示时间,T为机械臂末端执行器从初始位姿运动到目标位姿的时间规划,[]表示向下取整;上标+表示经典违逆;
空间机械臂各关节在时刻tk+1的关节位置为
Figure BDA0001410387750000055
在时刻tk+1,空间机械臂关节位置可由下式近似给出
Figure BDA0001410387750000056
其中,q(tk)为空间机械臂在时刻tk的关节位置;
采用以下方法计算视觉敏感器的相邻两个位姿解算周期之间的关节速度
Figure BDA0001410387750000061
Figure BDA0001410387750000062
Figure BDA0001410387750000063
其中,N=[T/ΔT]为两个周期之间的路径点个数,[]表示向下取整,
Figure BDA0001410387750000064
Figure BDA0001410387750000065
分别为起始点和结束点对应的关节速度,
Figure BDA0001410387750000066
为第k个路径点对应的关节速度,
Figure BDA0001410387750000067
给出[tk-1,tk]时段内的轨迹斜率;
(4)对空间机械臂运动轨迹进行以关节电机插补周期为时间尺度的细规划;计算获得关节电机在视觉敏感器位姿解算周期之间的关节速度和关节位置,具体为:
根据空间机械臂在时刻tk和tk+1的关节位置q(tk)和q(tk+1),在时刻tk和tk+1的关节速度
Figure BDA0001410387750000068
Figure BDA0001410387750000069
以及各关节从初始位置q(tk)运动到末了位置q(tk+1)的时间ΔT,进行底层插补,插补周期为Δt(通常ΔtΔT);根据实际需要,底层插补算法可以选择梯形规划算法、S形规划算法、带抛物线过渡的梯形规划算法、多项式规划算法以及样条规划算法。
本发明方法实施例所涉及的试验系统包括一部固定基座六自由度机械臂,机械臂末端安装双目手眼相机,为机械臂的抓捕操作提供测量信息。
图1为试验流程框图。试验开始前,机械臂处于某预先定义的构型(即零位构型),当手眼双目相机能够稳定获取目标星上待抓捕典型部位的位姿后,试验开始。首先,将手眼双目相机的测得的典型部位位姿表示在机械臂坐标系0中,进行上层规划,得到机械臂在相机下一采样时刻的关节位置和速度;然后,以上层规划结果为约束条件,进行底层规划,得到电机运动的位置速度。
图2和图3分别为试验全程和试验最后30s的机械臂末端三轴位置误差曲线。由图2可知,当时间大于67s后,三轴位置误差均在5mm以内。由图3可知,当时间大于133s后,三轴位置误差均在2mm以内,符合位置容差要求。由图2和图3可以看出,机械臂末端三轴位置误差收敛较快,且机械臂运动平稳。
图4和图5分别给出了试验全程和试验最后30s的机械臂末端坐标系误差四元数变化曲线。由图4可知,在58s后,误差四元数快速收敛。由图5可知,当时间大于133s后,误差四元数均在0.0021以内,符合姿态容差要求。由图4和图5可以看出,机械臂末端坐标系误差四元数收敛较快,且机械臂末端姿态运动平稳。物理仿真试验结果表明,本发明提出的基于手眼双目相机测量信息的空间机械臂轨迹滚动规划方法能够使机械臂运动较为平稳,并有效地提高空间操作任务的成功率。本发明的主要技术内容可应用于在空间机器人在轨维修维护任务,行星表面探测机器人机械臂抓取操作任务等。
本发明未详细说明部分属本领域技术人员公知常识。

Claims (1)

1.一种基于视觉测量的空间机械臂轨迹滚动规划方法,其特征在于步骤如下:
1)将视觉敏感器获取的目标位姿表示在空间机械臂基座航天器坐标系中;具体为:
根据姿态敏感器给出的空间机械臂基座航天器在惯性系中的姿态θ,将视觉敏感器测量得到的目标位姿表示在空间机械臂基座航天器坐标系中,记为pt和Rt,即pt表示目标在空间机械臂基座航天器坐标系中的位置,Rt表示目标坐标系相对于空间机械臂基座航天器坐标系的姿态矩阵;将空间机械臂末端执行器坐标系原点在空间机械臂基座航天器坐标系中的位置记为pm,将末端执行器坐标系相对于空间机械臂基座航天器坐标系的姿态矩阵记为Rm
2)获取空间机械臂末端执行器的位姿偏差;
所述获取空间机械臂末端执行器的位姿偏差的具体方法为:
计算得到空间机械臂末端执行器的位置误差Δp=pm-pt,姿态误差矩阵
Figure FDA0002322834960000011
以ΔR对应的四元数的矢量部分表示空间机械臂末端执行器的姿态误差Δε,则空间机械臂末端执行器的位姿误差记为Δx=[Δp Δε]T;根据当前时刻tk空间机械臂基座航天器在惯性系中的姿态θ和空间机械臂各关节位置q,得到空间机械臂相对于空间机械臂基座航天器坐标系的雅克比矩阵J(θ,q);角标k为自然数;
3)对空间机械臂运动轨迹进行以视觉敏感器位姿解算周期为时间尺度的粗规划;计算获得空间机械臂在视觉敏感器的相邻两个位姿解算周期之间的关节速度,以及空间机械臂在视觉敏感器下一采样周期的关节位置;具体过程为:
空间机械臂在视觉敏感器下一采样时刻tk+1=tk+ΔT前的关节速度为
Figure FDA0002322834960000012
其中,
Figure FDA0002322834960000021
为目标的实际运动速度,包括线速度与角速度;ΔT为视觉敏感器的位姿数据更新周期;Λ为正定对称矩阵;位姿误差反馈系数
Figure FDA0002322834960000022
其中t表示时间,T为机械臂末端执行器从初始位姿运动到目标位姿的时间规划,[]表示向下取整;上标+表示经典伪逆;
空间机械臂各关节在时刻tk+1的关节位置为
Figure FDA0002322834960000023
在时刻tk+1,空间机械臂关节位置由下式近似给出
Figure FDA0002322834960000024
其中,q(tk)为空间机械臂在时刻tk的关节位置;
采用以下方法计算空间机械臂在视觉敏感器的相邻两个位姿解算周期之间的关节速度
Figure FDA0002322834960000025
Figure FDA0002322834960000026
Figure FDA0002322834960000027
其中,N=[T/ΔT]为两个周期之间的路径点个数,[]表示向下取整,
Figure FDA0002322834960000028
Figure FDA0002322834960000029
分别为起始点和结束点对应的关节速度,
Figure FDA00023228349600000210
为第k个路径点对应的关节速度,
Figure FDA00023228349600000211
给出[tk-1,tk]时段内的轨迹斜率;
4)对空间机械臂运动轨迹进行以关节电机插补周期为时间尺度的细规划;计算获得关节电机在视觉敏感器位姿解算周期之间的关节速度和关节位置;
所述计算获得关节电机在视觉敏感器位姿解算周期之间的关节速度和关节位置的具体过程为:
根据空间机械臂在时刻tk和tk+1的关节位置q(tk)和q(tk+1),在时刻tk和tk+1的关节速度
Figure FDA0002322834960000031
Figure FDA0002322834960000032
以及各关节从初始位置q(tk)运动到末了位置q(tk+1)的时间ΔT,进行底层插补,插补周期为Δt。
CN201710839487.6A 2017-09-18 2017-09-18 一种基于视觉测量的空间机械臂轨迹滚动规划方法 Active CN107696033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710839487.6A CN107696033B (zh) 2017-09-18 2017-09-18 一种基于视觉测量的空间机械臂轨迹滚动规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710839487.6A CN107696033B (zh) 2017-09-18 2017-09-18 一种基于视觉测量的空间机械臂轨迹滚动规划方法

Publications (2)

Publication Number Publication Date
CN107696033A CN107696033A (zh) 2018-02-16
CN107696033B true CN107696033B (zh) 2020-04-10

Family

ID=61172785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710839487.6A Active CN107696033B (zh) 2017-09-18 2017-09-18 一种基于视觉测量的空间机械臂轨迹滚动规划方法

Country Status (1)

Country Link
CN (1) CN107696033B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109227538A (zh) * 2018-07-13 2019-01-18 哈尔滨工业大学(深圳) 一种基于视觉的柔性机械臂的定位控制方法及系统
CN109254589B (zh) * 2018-11-23 2020-05-29 北京理工大学 带可动相机探测器的姿态机动规划方法
CN111590567B (zh) * 2020-05-12 2021-12-07 北京控制工程研究所 一种基于Omega手柄的空间机械臂遥操作规划方法
CN114310915B (zh) * 2022-02-16 2022-09-09 哈尔滨工业大学 基于视觉反馈的空间机械臂对接末端工具轨迹规划方法
CN115008468B (zh) * 2022-07-04 2024-09-03 中国科学院沈阳自动化研究所 一种机械臂姿态速度规划控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602968A (en) * 1994-05-02 1997-02-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Task space angular velocity blending for real-time trajectory generation
CN101402199B (zh) * 2008-10-20 2011-01-26 北京理工大学 基于视觉的手眼式低伺服精度机器人抓取移动目标的方法
CN101726296B (zh) * 2009-12-22 2013-10-09 哈尔滨工业大学 空间机器人视觉测量、路径规划、gnc一体化仿真系统
CN103009389B (zh) * 2012-11-30 2015-07-08 北京控制工程研究所 一种冗余空间机械臂在轨抓捕的轨迹规划方法
CN106114910B (zh) * 2016-06-15 2019-01-01 湖北航天技术研究院总体设计所 一种航天器飞行轨道滚动时域控制方法
CN106651949B (zh) * 2016-10-17 2020-05-15 中国人民解放军63920部队 一种基于仿真的空间机械臂抓捕目标遥操作方法及系统
CN107145640B (zh) * 2017-04-12 2020-11-06 西北工业大学 中性浮力实验中漂浮基座与机械臂的动态标度规划方法
CN107030702B (zh) * 2017-06-02 2019-04-23 华中科技大学 一种机械臂的轨迹规划方法

Also Published As

Publication number Publication date
CN107696033A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107696033B (zh) 一种基于视觉测量的空间机械臂轨迹滚动规划方法
CN107363813B (zh) 一种基于可穿戴设备的桌面工业机器人示教系统和方法
CN110125936B (zh) 一种空间机器人的地面实验验证系统
Fishman et al. Dynamic grasping with a" soft" drone: From theory to practice
Aghili A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics
CN107921626B (zh) 用于控制机器人操纵的系统和方法
US8473101B2 (en) Coordinated action robotic system and related methods
JP5114019B2 (ja) エフェクタの軌道を制御するための方法
CN109606753A (zh) 一种空间双臂机器人协同抓捕目标的控制方法
CN106864776B (zh) 一种基于对接环的捕获目标卫星的方法与系统
JP2016198828A (ja) ロボット制御方法、ロボット装置、プログラム及び記録媒体
CN107621266B (zh) 基于特征点跟踪的空间非合作目标相对导航方法
Melchiorre et al. Collison avoidance using point cloud data fusion from multiple depth sensors: a practical approach
US9193069B2 (en) Control method for controlling a robot and control system employing such a method
Li et al. Integrating vision, haptics and proprioception into a feedback controller for in-hand manipulation of unknown objects
Aghili Fault-tolerant and adaptive visual servoing for capturing moving objects
Rollinson et al. State estimation for snake robots
CN114111772B (zh) 一种基于数据手套的水下机器人软体作业手位置跟踪方法
Pfanne et al. EKF-based in-hand object localization from joint position and torque measurements
Lan et al. Action synchronization between human and UAV robotic arms for remote operation
CN110722547B (zh) 模型未知动态场景下移动机器人视觉镇定
Gu et al. Dexterous obstacle-avoidance motion control of Rope Driven Snake Manipulator based on the bionic path following
Aghili Automated rendezvous & docking (AR&D) without impact using a reliable 3D vision system
Choi et al. Encoderless gimbal calibration of dynamic multi-camera clusters
Shi et al. Study on intelligent visual servoing of space robot for cooperative target capturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant