CN107688709B - 一种片上网络NoC的寿命优化映射方法 - Google Patents

一种片上网络NoC的寿命优化映射方法 Download PDF

Info

Publication number
CN107688709B
CN107688709B CN201710772536.9A CN201710772536A CN107688709B CN 107688709 B CN107688709 B CN 107688709B CN 201710772536 A CN201710772536 A CN 201710772536A CN 107688709 B CN107688709 B CN 107688709B
Authority
CN
China
Prior art keywords
node
network
service life
mapping
chip noc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710772536.9A
Other languages
English (en)
Other versions
CN107688709A (zh
Inventor
陈姝燏
姜书艳
武琼
黄乐天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710772536.9A priority Critical patent/CN107688709B/zh
Publication of CN107688709A publication Critical patent/CN107688709A/zh
Application granted granted Critical
Publication of CN107688709B publication Critical patent/CN107688709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明公开了一种片上网络NoC的寿命优化映射方法,包括以下步骤:S1.首节点选择:在目标应用程序的映射开始之前,基于片上网络NoC中各节点的空闲邻节点数和对应的区域预算寿命,确定映射首节点;S2.映射策略优化,将目标应用程序看作一组通信任务,从首节点开始,对目标应用程序所包含的通信任务进行映射,并在映射过程中,避开片上网络NoC中老化严重的链路。本发明提供了一种片上网络NoC的寿命优化映射方法,平衡了片上网络NoC的磨损,延长了片上网络NoC的服务时间。

Description

一种片上网络NoC的寿命优化映射方法
技术领域
本发明涉及片上网络,特别是涉及一种片上网络NoC的寿命优化映射方法。
背景技术
片上网络(network-on-chip,NoC)的核心思想是将计算机网络的技术引入到芯片设计中,从体系结构上彻底解决片内通信的瓶颈问题。随着技术进步,集成电路工艺的发展,芯片的集成度越来越高,各种新型嵌入式系统越来越多,原有的单核处理器已无法满足嵌入式系统对于高性能高使用频率的要求;因此,片上多核系统成为了理想的选择;片上多核系统是将多个处理器或者功能模块集成到一个芯片上,因其在处理性能、功耗、可靠性等方面的优势被广泛地应用。随着多核系统规模的扩大,原有的总线型或者点对点型的通信架构已经不能满足系统上的通信需求,存在延迟、通信性能瓶颈以及设计效率问题。而片上网络作为一种新型的通信架构,因为其高可扩展性、低功耗、高可靠性、高带宽等诸多优点。
伴随着进一步缩小亚微米技术,芯片尺寸大幅度减小,晶体管的快速老化已经成为片上网络的主要关注问题之一;由深亚微米技术发展带来的另一个问题是,设计中不得不重视通信的可靠性问题,而晶体管老化对通信可靠性造成了巨大负面影响,考虑到片上网络域中的映射算法,可能经常选择一些路由器/链路进行映射,而其他路由器/链路未被充分利用。因此,高利用率的组件可能比其他低利用率的老化故障速度更快,导致相对于核与网络断开。
发明内容
本发明的目的在于克服现有技术的不足,提供一种片上网络NoC的寿命优化映射方法,以平衡片上网络NoC的磨损,延长片上网络NoC的服务时间。
本发明的目的是通过以下技术方案来实现的:一种片上网络NoC的寿命优化映射方法,包括以下步骤:
S1.首节点选择:在目标应用程序的映射开始之前,基于片上网络NoC中各节点的空闲邻节点数和对应的区域预算寿命,确定映射首节点;具体地,所述步骤S1包括以下子步骤:S101.计算片上网络NoC中各节点的空闲邻节点数;S102.根据计算结果,确定空闲邻节点数的最大值;S103.判断片上网络NoC中具有最大空闲邻节点数的目标节点是否唯一;若是,将目标节点作为映射首节点;若否,进入步骤S104;S104.定位最大空闲邻节点数所对应的各个目标节点,分别以每一个目标节点作为中心形成方形区域;S105.计算各个方形区域的寿命预算;S106.选择具有寿命预算最大值的方形区域,将其对应的目标节点作为映射首节点。
S2.映射策略优化,将目标应用程序看作一组通信任务,从首节点开始,对目标应用程序所包含的通信任务进行映射,并在映射过程中,避开片上网络NoC中老化严重的链路。具体地,所述步骤S2包括以下子步骤:S201.将目标应用程序看作一组通信任务;S202.从首节点开始,对目标应用程序所包含的通信任务进行映射;S203.在每个通信任务的映射过程中,遍历片上网络NoC每个节点上所有通信流的最坏寿命指标,获取各节点的寿命指标表,选择寿命指标最大的节点作为映射节点。
优选地,所述步骤S104中形成的方形区域,至少包含目标应用程序所需的映射节点数。
其中,所述步骤S105中,方形区域的寿命预算包括以下子步骤:
第一步,计算方形区域中各条链路的寿命预算LBi
式中,n表示方形区域内的链路数目;ri为第i条链路正常故障率;r(i)为第i条链路实际故障率;
第二步,将方形区域中各链路的寿命预算求和,作为方形区域的寿命预算PLB:
其中,链路实际故障率r(i)的计算方式如下:
其中,Q为电线的活化能,j(t)为电流,kTt为电线温度,并且
C,W和H分别是电线的电容,宽度和厚度,f是时钟频率,Vdd是工作电压,p是路由器活动率。
优选地,所述步骤S203包括以下子步骤:
第一步,给定有向图G=(V,A),V表示节点,A表示路径,设源节点s到目的节点d的通信流为Fs,d,在源节点s到目的节点d之间存在多条链路;
第二步,利用老化最严重的链路来衡量通信流的Fs,d老化:计算通信流Fs,d的寿命预算最小值,作为通信流Fs,d的最坏寿命指标FLBs,d
第三步,遍历片上网络NoC每个节点上所有通信流的最坏寿命指标,获取各节点的寿命指标表:
FELBm=min{FLBs,m,FLBm,d};
FELBm为片上网络NoC上任一节点m的最坏寿命指标;
第四步,选择FELBm最大的节点作为最佳节点进行映射,从而避开片上网络NoC中老化严重的链路。
本发明的有益效果是:本发明在确定首节点时,在具有最大空闲邻节点数的前提下,考虑了以各节点为中心形成的方形区域的寿命预算;并在进行通信任务的映射过程中,避开了片上网络NoC中老化严重的链路,平衡了片上网络NoC的磨损,延长了片上网络NoC的服务时间,实现了片上网络基于映射方法的寿命优化。
附图说明
图1为本发明的方法流程图;
图2为本发明的寿命优化映射方法与传统NN、CoNA、WeNA、CASqA算法的最小MTTF比较示意图;
图3为本发明的寿命优化映射方法与传统NN、CoNA、WeNA、CASqA算法的MTTF平均值比较示意图;
图4为本发明的寿命优化映射方法与传统NN、CoNA、WeNA、CASqA算法的MTTF方差比较示意图;
图5为本发明的寿命优化映射方法与传统NN,CoNA,WeNA、CASqA算法的平均延迟比较示意图;
图6为本发明的寿命优化映射方法与传统NN、CoNA、WeNA、CASqA算法的平均加权曼哈顿距离比较示意图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
如图1所示,一种片上网络NoC的寿命优化映射方法,包括以下步骤:
S1.首节点选择:在目标应用程序的映射开始之前,基于片上网络NoC中各节点的空闲邻节点数和对应的区域预算寿命,确定映射首节点;具体地,所述步骤S1包括以下子步骤:S101.计算片上网络NoC中各节点的空闲邻节点数;S102.根据计算结果,确定空闲邻节点数的最大值;S103.判断片上网络NoC中具有最大空闲邻节点数的目标节点是否唯一;若是,将目标节点作为映射首节点;若否,进入步骤S104;S104.定位最大空闲邻节点数所对应的各个目标节点,分别以每一个目标节点作为中心形成方形区域;S105.计算各个方形区域的寿命预算;S106.选择具有寿命预算最大值的方形区域,将其对应的目标节点作为映射首节点。
S2.映射策略优化,将目标应用程序看作一组通信任务,从首节点开始,对目标应用程序所包含的通信任务进行映射,并在映射过程中,避开片上网络NoC中老化严重的链路。具体地,所述步骤S2包括以下子步骤:S201.将目标应用程序看作一组通信任务;S202.从首节点开始,对目标应用程序所包含的通信任务进行映射;S203.在每个通信任务的映射过程中,遍历片上网络NoC每个节点上所有通信流的最坏寿命指标,获取各节点的寿命指标表,选择寿命指标最大的节点作为映射节点。
在本申请的实施例中,所述步骤S104中形成的方形区域,至少包含目标应用程序所需的映射节点数。
其中,所述步骤S105中,方形区域的寿命预算包括以下子步骤:
第一步,计算方形区域中各条链路的寿命预算LBi
式中,n表示方形区域内的链路数目;ri为第i条链路正常故障率;r(i)为第i条链路实际故障率;
第二步,将方形区域中各链路的寿命预算求和,作为方形区域的寿命预算PLB:
其中,链路实际故障率r(i)的计算方式如下:
其中,Q为电线的活化能,j(t)为电流,kTt为电线温度,并且
C,W和H分别是电线的电容,宽度和厚度,f是时钟频率,Vdd是工作电压,p是路由器活动率。
在本申请的实施例中,所述步骤S203包括以下子步骤:
第一步,给定有向图G=(V,A),V表示节点,A表示路径,设源节点s到目的节点d的通信流为Fs,d,在源节点s到目的节点d之间存在多条链路;
第二步,利用老化最严重的链路来衡量通信流的Fs,d老化:计算通信流Fs,d的寿命预算最小值,作为通信流Fs,d的最坏寿命指标FLBs,d
第三步,遍历片上网络NoC每个节点上所有通信流的最坏寿命指标,获取各节点的寿命指标表:
FELBm=min{FLBs,m,FLBm,d};
FELBm为片上网络NoC上任一节点m的最坏寿命指标;
第四步,选择FELBm最大的节点作为最佳节点进行映射。
为验证本发明的效果,进行仿真实验,仿真实验在一个开源的NoC多核仿真器上执行,使用TGFF工具生成具有4到20个任务的两千组应用程序,其中在6到14个数据包之间随机选择通信量;我们采用电子迁移作为故障模型,并在我们的实验中每1000个周期内更新映射表和寿命预算;以下参数用于计算平均无故障时间(MTTF)和寿命预算(LB)度量:A=1(A是与系统结构相关的常数),C=268fF/mm;Vdd=1.5V,W=0.6μm;H=0.6μm,环境温度为45℃。在实验中,对寿命优化映射方法(简称LaNA)与传统NN,CoNA,WeNA、CASqA进行了比较;
如图2所示,为本发明的寿命优化映射方法与传统NN、CoNA、WeNA、CASqA算法的最小MTTF比较示意图;具有较小MTTF(平均无故障时间)的链路磨损快于具有较高值的那些链路,NoC中使用最小的MTTF来表示整体的MTTF;从图2可见,本申请的寿命优化映射方法(LaNA)在最小MTTF指标上,相比于NN、CoNA、WeNA、CASqA均有较大改善。
实验中,我们把片上网络作为一个整体,计算片上网络中所有链路MTTF(平均无故障时间)的平均值和方差,如图3所示,为本发明的寿命优化映射方法(LaNA)与传统NN、CoNA、WeNA、CASqA算法的MTTF平均值比较示意图,从图3可见,寿命优化映射方法(LaNA)的平均寿命相比较于算法NN、CoNA、WeNA和CASqA分别提高12.3%,13.5%,12.8%和11.7%。如图4所示,为本发明的寿命优化映射方法(LaNA)与传统NN、CoNA、WeNA、CASqA算法的MTTF方差比较示意图;寿命分布不平衡可能意味着一些链路老化比其他更快。这极大地影响了整个NOC的性能;另一方面,寿命分布越平衡,系统可靠性越高;从图4可知,与NN、CoNA、WeNA和CASqA相比较,该映射方法降低了平均无故障时间的方差36.8%,28.8%,29.9%和39.1%,意味着寿命分布相较于上述四种算法更加均衡,系统可靠性更高。
如图5所示,为本发明的寿命优化映射方法(LaNA)与传统NN,CoNA,WeNA、CASqA算法的平均延迟比较示意图,与NN,CoNA和CASqA算法相比较,本申请的寿命优化映射方法(LaNA)平均延迟降低了8.5个周期,0.6周期和3.1周期。如图6所示,为本发明的寿命优化映射方法(LaNA)与传统NN、CoNA、WeNA、CASqA算法的平均加权曼哈顿距离(AWMD)比较示意图,AWMD值越小,意味着功耗越小,从图中可见,LaNA算法的AWMD小于NN、CoNA和CASqA算法,接近WeNA算法。

Claims (5)

1.一种片上网络NoC的寿命优化映射方法,其特征在于:包括以下步骤:
S1.首节点选择:在目标应用程序的映射开始之前,基于片上网络NoC中各节点的空闲邻节点数和对应的区域预算寿命,确定映射首节点;所述步骤S1包括:
S101.计算片上网络NoC中各节点的空闲邻节点数;
S102.根据计算结果,确定空闲邻节点数的最大值;
S103.判断片上网络NoC中具有最大空闲邻节点数的目标节点是否唯一;
若是,将目标节点作为映射首节点;
若否,进入步骤S104;
S104.定位最大空闲邻节点数所对应的各个目标节点,分别以每一个目标节点作为中心形成方形区域;
S105.计算各个方形区域的寿命预算;
S106.选择具有寿命预算最大值的方形区域,将其对应的目标节点作为映射首节点;
S2.映射策略优化,将目标应用程序看作一组通信任务,从首节点开始,对目标应用程序所包含的通信任务进行映射,并在映射过程中,避开片上网络NoC中老化严重的链路;
所述步骤S2包括以下子步骤:
S201.将目标应用程序看作一组通信任务;
S202.从首节点开始,对目标应用程序所包含的通信任务进行映射;
S203.在每个通信任务的映射过程中,遍历片上网络NoC每个节点上所有通信流的最坏寿命指标,获取各节点的寿命指标表,选择寿命指标最大的节点作为映射节点。
2.根据权利要求1所述的一种片上网络NoC的寿命优化映射方法,其特征在于:所述步骤S104中形成的方形区域,至少包含目标应用程序所需的映射节点数。
3.根据权利要求1所述的一种片上网络NoC的寿命优化映射方法,其特征在于:所述步骤S105中,方形区域的寿命预算包括以下子步骤:
第一步,计算方形区域中各条链路的寿命预算LBi
式中,n表示方形区域内的链路数目;ri为第i条链路正常故障率;r(i)为第i条链路实际故障率;
第二步,将方形区域中各链路的寿命预算求和,作为方形区域的寿命预算PLB:
4.根据权利要求3所述的一种片上网络NoC的寿命优化映射方法,其特征在于:链路实际故障率r(i)的计算方式如下:
其中,Q为电线的活化能,j(t)为电流,kTt为电线温度,并且
C,W和H分别是电线的电容,宽度和厚度,f是时钟频率,Vdd是工作电压,p是路由器活动率。
5.根据权利要求1所述的一种片上网络NoC的寿命优化映射方法,其特征在于:所述步骤S203包括以下子步骤:
第一步,给定有向图G=(V,A),V表示节点,A表示路径,设源节点s到目的节点d的通信流为Fs,d,在源节点s到目的节点d之间存在多条链路;
第二步,利用老化最严重的链路来衡量通信流的Fs,d老化:计算通信流Fs,d的寿命预算最小值,作为通信流Fs,d的最坏寿命指标FLBs,d
第三步,遍历片上网络NoC每个节点上所有通信流的最坏寿命指标,获取各节点的寿命指标表:
FELBm=min{FLBs,m,FLBm,d};
FELBm为片上网络NoC上任一节点m的最坏寿命指标;
第四步,选择FELBm最大的节点作为最佳节点进行映射,从而避开片上网络NoC中老化严重的链路。
CN201710772536.9A 2017-08-31 2017-08-31 一种片上网络NoC的寿命优化映射方法 Active CN107688709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710772536.9A CN107688709B (zh) 2017-08-31 2017-08-31 一种片上网络NoC的寿命优化映射方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710772536.9A CN107688709B (zh) 2017-08-31 2017-08-31 一种片上网络NoC的寿命优化映射方法

Publications (2)

Publication Number Publication Date
CN107688709A CN107688709A (zh) 2018-02-13
CN107688709B true CN107688709B (zh) 2019-12-03

Family

ID=61155082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710772536.9A Active CN107688709B (zh) 2017-08-31 2017-08-31 一种片上网络NoC的寿命优化映射方法

Country Status (1)

Country Link
CN (1) CN107688709B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114816739B (zh) * 2022-04-13 2023-04-07 电子科技大学 针对负载均衡的片上网络增量任务映射方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834780B (zh) * 2010-01-28 2014-04-16 武汉理工大学 片上网络的拓扑结构的映射优化方法
CN101834797A (zh) * 2010-05-06 2010-09-15 复旦大学 一种针对片上网络的低复杂度和可扩展的容错路由算法
CN102571608B (zh) * 2012-02-29 2015-01-07 浙江工商大学 一种面向片上网络的永久故障容错路由控制方法
US8934377B2 (en) * 2013-03-11 2015-01-13 Netspeed Systems Reconfigurable NoC for customizing traffic and optimizing performance after NoC synthesis
CN103248566B (zh) * 2013-04-24 2016-04-13 复旦大学 一种应用于片上网络的基于错误阻挡模型的容错方法和结构
KR102285481B1 (ko) * 2015-04-09 2021-08-02 에스케이하이닉스 주식회사 NoC 반도체 장치의 태스크 매핑 방법

Also Published As

Publication number Publication date
CN107688709A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
Fiandrino et al. Performance and energy efficiency metrics for communication systems of cloud computing data centers
Varasteh et al. Holu: Power-aware and delay-constrained VNF placement and chaining
Cheng et al. Virtual network embedding through topology-aware node ranking
Wang et al. Virtual network embedding by exploiting topological information
Feng et al. An alternating direction method approach to cloud traffic management
Bambrik A survey on cloud computing simulation and modeling
Wang et al. Achieving energy efficiency in data centers using an artificial intelligence abstraction model
Xie et al. $\text {E}^{3} $ MC: Improving Energy Efficiency via Elastic Multi-Controller SDN in Data Center Networks
Li et al. Willow: Saving data center network energy for network-limited flows
Rui et al. Petri net-based reliability assessment and migration optimization strategy of SFC
Wiesner et al. Leaf: Simulating large energy-aware fog computing environments
CN104104621A (zh) 一种基于非线性降维的虚拟网络资源动态自适应调节方法
Liu et al. AAMcon: an adaptively distributed SDN controller in data center networks
Nguyen et al. Hierarchical distributed-memory multi-leader mpi-allreduce for deep learning workloads
Khalili et al. A reliability-aware multi-application mapping technique in networks-on-chip
CN107688709B (zh) 一种片上网络NoC的寿命优化映射方法
Sadegh et al. A two-phase virtual machine placement policy for data-intensive applications in cloud
Wang et al. A general framework for performance guaranteed green data center networking
Fan et al. Node Essentiality Assessment and Distributed Collaborative Virtual Network Embedding in Datacenters
Xie et al. Distributed power saving for large-scale software-defined data center networks
Fang et al. Exploring heterogeneous NoC design space in heterogeneous GPU-CPU architectures
KR101784499B1 (ko) 전압-주파수-구역 방식의 네트워크 온 칩의 고장 감내 라우팅 설계 장치 및 방법과 이를 적용한 전압-주파수-구역 방식의 네트워크 온 칩
Zhu et al. Energy-Efficient Graph Reinforced vNFC Deployment in Elastic Optical Inter-DC Networks
Nguyen et al. On the feasibility of hybrid electrical/optical switch architecture for large-scale training of distributed deep learning
Pu et al. SDCUP: software-defined-control based erasure-coded collaborative data update mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant