CN107686941A - 一种焊接性能优良的风电塔筒用钢板及其生产方法 - Google Patents

一种焊接性能优良的风电塔筒用钢板及其生产方法 Download PDF

Info

Publication number
CN107686941A
CN107686941A CN201710686323.4A CN201710686323A CN107686941A CN 107686941 A CN107686941 A CN 107686941A CN 201710686323 A CN201710686323 A CN 201710686323A CN 107686941 A CN107686941 A CN 107686941A
Authority
CN
China
Prior art keywords
steel plate
power tower
welding performance
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710686323.4A
Other languages
English (en)
Inventor
邓建军
赵文忠
李�杰
赵喜伟
龙杰
刘利香
王青
刘丹
付振坡
袁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyang Iron and Steel Co Ltd
Original Assignee
Wuyang Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyang Iron and Steel Co Ltd filed Critical Wuyang Iron and Steel Co Ltd
Priority to CN201710686323.4A priority Critical patent/CN107686941A/zh
Publication of CN107686941A publication Critical patent/CN107686941A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wind Motors (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种焊接性能优良的风电塔筒用钢板及其生产方法,所述钢板的化学成分组成及质量百分含量为:C:0.05~0.10%,Si:0.25~0.45%,Mn:1.20~1.70%,P≤0.018%,S≤0.005%,Nb:0.025~0.045%,V:0.025~0.045%,Al:0.020~0.050%,其余为Fe和其它不可避免的杂质;生产方法包括炼钢、连铸、轧制工序。本发明通过合理的化学成分设计,采用炼钢、连铸及控轧工艺,使钢板的综合性能良好,屈服强度≥345MPa,抗拉强度470‑630MPa,‑40℃纵向冲击功≥27J,满足用户对风电塔筒用钢板优良焊接性能的要求,应用前景广阔。

Description

一种焊接性能优良的风电塔筒用钢板及其生产方法
技术领域
本发明属于冶金技术领域,具体涉及一种焊接性能优良的风电塔筒用钢板及其生产方法。
背景技术
风能是一种清洁、安全、低碳环保的可再生能源,利用风能发电对环境无污染,具有良好的环保效益和生态效益,对环保要求越来越严的今天,发展风能对我国清洁能源的发展具有重要意义。目前,国内风电产业技术已经比较成熟,风电塔筒广泛应用在沿海、高山、平原等各个风能充足的地方,但是由于地质、环境的限制,以及四季的交替变化,导致风电塔筒的使用环境较为恶劣,因此要求风电塔筒所用钢板,要有较高的使用性能,风电塔筒绝大数都是采用分节连接,每节都是利用钢板焊接卷制成筒状,然后将每个筒节焊接在一起,由于风电塔筒的使用环境决定了所有焊接处都不能存在缺陷,焊接时都是采用自动焊接机进行焊接,这都要求钢板必须有优良的焊接性能。为了满足风电塔筒用钢优良的焊接性能以及其它工艺性能,设计了一种焊接性能优良风电塔筒用钢,通过对炼钢、连铸、轧制控制,得到了一种内部组织均匀,焊接性能优良,强韧性匹配好,性能稳定的风电塔筒用钢。
发明内容
本发明要解决的技术问题是提供一种焊接性能优良的风电塔筒用钢板;本发明还提供了一种焊接性能优良的风电塔筒用钢板的生产方法。
为解决上述技术问题,本发明采用的技术方案是:一种焊接性能优良的风电塔筒用钢板,所述钢板的化学成分组成及质量百分含量为:C:0.05~0.10%,Si:0.25~0.45%,Mn:1.20~1.70%,P≤0.018%,S≤0.005%,Nb:0.025~0.045%,V:0.025~0.045%,Al:0.020~0.050%,其余为Fe和其它不可避免的杂质。
本发明所述钢板厚度为30~60mm,钢板组织为铁素体和珠光体。
本发明所述钢板屈服强度≥345MPa,抗拉强度470-630MPa,V型纵向-40℃冲击功≥27J。
本发明还提供了一种焊接性能优良的风电塔筒用钢板的生产方法,所述方法包括炼钢、连铸、轧制工序;所述连铸工序连铸坯的化学成分组成及质量百分含量为:C:0.05~0.10%,Si:0.25~0.45%,Mn:1.20~1.70%,P≤0.018%,S≤0.005%,Nb:0.025~0.045%,V:0.025~0.045%,Al:0.020~0.050%,其余为Fe和其它不可避免的杂质;所述轧制工序采用Ⅱ型控轧轧制工艺。
本发明所述炼钢工序,经过转炉冶炼的钢水送入LF精炼炉精炼,在LF精炼过程中,全程吹氩良好,总精炼时间≥40min,白渣保持时间≥25min。
本发明所述炼钢工序,LF炉精炼完毕后,将钢水送入VD炉进行真空脱气处理,真空度≤66.7Pa,真空保持时间≥15min,真空破坏后软吹8-10min,使夹杂物能够充分上浮,同时喂入0.5-1.0kg/t钢水的钙线进行钙处理,催使夹杂物上浮。
本发明所述连铸工序,利用330mm断面连铸机,结晶器液面采用自动控制,要求波动范围±3mm,过热度控制在15-30℃,强化凝固末端应用强冷技术,浇铸成大断面高内部质量的连铸坯。
本发明所述轧制工序,连铸坯在连续炉加热,炉温T<600℃时,加热速度≤150℃/h;炉温在600℃≤T≤1200℃时,加热速度≤300℃/h;最高加热温度1260℃,均热段温度1220-1240℃,总加热系数≥1min/mm。
本发明所述轧制工序,采用Ⅱ型控轧轧制工艺,Ⅰ阶段开轧温度1050-1150℃,采用大压下轧制,晾钢厚度为h+50mm,h为成品钢板厚度;Ⅱ阶段开轧温度850-900℃,终轧温度800-850℃。
本发明所述轧制工序,采用高冷速高返红工艺,钢板轧制后快速冷却,返红温度600-650℃。
本发明设计思路:
本发明通过合理的化学成分设计,在炼钢过程中通过精炼白渣控制,VD过程中通过钙处理和合理的软吹工艺,连铸过程中采用大断面和强化凝固末端强冷技术,浇铸成大断面高内部质量的连铸坯,轧制时采用Ⅱ型控轧轧制工艺,加上快冷高返红工艺,得到连铸坯成材规格30-60mm。本发明的交货状态为控轧,通过采用合理的化学成分设计,炼钢、连铸、轧制、轧后强冷工艺得到的焊接性能优良的风电塔筒用钢板,具有良好的内部组织均匀性和良好的冲击韧性,可以应用于各种地方的风电塔筒上。
其中,各化学成分及含量在本发明中的作用是:
C:0.05~0.10%,碳对钢的各种性能都有明显的影响,特别是钢的强度、冲击韧性、焊接性能。碳含量过低会使钢的强度低,也会增大冶炼难度,碳含量过高,使钢的冲击韧性降低,焊接性能也大幅度降低。
Si:0.25~0.45%,硅是炼钢过程中主要的还原剂和脱氧剂,在镇静钢中都含有一定量的硅,硅能显著提高钢的弹性极限、屈服点和抗拉强度,但是Si含量超过0.5%时,会造成钢的韧性下降,同时降低钢的焊接性能。
Mn:1.20~1.70%,锰的成本低廉,且是良好的脱氧剂和脱硫剂,能增加钢的韧性、强度、硬度,提高钢的淬透性,改善钢的热加工性能;但锰含量过高,会降低钢的抗腐蚀能力和焊接性能。
P≤0.018%,在一般情况下,磷是钢中有害元素,增加钢的冷脆性,降低塑性,使焊接性能变坏,在控制成本合理的情况下,尽量降低磷含量。
S≤0.005%,硫也是钢中的有害元素,增加钢的热脆性,降低钢的延展性和韧性,在锻造和轧制时容易产生裂纹,但是硫能增加钢的易切削性能,除非有特殊要求,在经济效益下应尽量降低钢中硫的含量。
Nb:0.025~0.045%,铌能促进钢显微组织的晶粒细化,同时提高强度和韧性,铌可在控轧过程中通过抑制奥氏体再结晶有效的细化显微组织,并通过析出强化提高钢淬透性,降低钢的过热敏感性及回火脆性,改善焊接性能。
V:0.025~0.045%,钒是钢的良好脱氧剂,在钢中能细化晶粒,提高钢的强度和韧性,钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。
Al:0.020~0.050%,铝是钢中常用的脱氧剂,钢中加入少量的铝,可细化晶粒,提高冲击韧性。铝还具有抗氧化性和抗腐蚀性能,铝含量过高影响钢的热加工性能、焊接性能和切削加工性能。
本发明焊接性能优良的风电塔筒用钢板力学性能检测标准参考GB/T1591-2008。
采用上述技术方案所产生的有益效果在于:1、本发明焊接性能优良的风电塔筒用钢板化学成分设计合理,钢板内部组织均匀,加入的贵金属少,成本低,市场竞争力强。2、本发明采用LF、VD、钙处理及软吹工艺减少钢水产生的内生夹杂。3、本发明利用连铸坯成材提高金属收得率,大幅度降低生产成本。4、本发明通过合理的控轧工艺,使钢板具体良好的综合性能,满足用户对风电塔筒用钢的高要求,应用前景广阔。5、本发明生产钢板内部组织均匀致密,组织为铁素体和珠光体。6、本发明生产钢板强韧性匹配良好,屈服强度≥3450MPa,抗拉强度470-630MPa,-40℃纵向冲击功≥27J。7、本发明的钢板钢质更纯净,杂质含量低P≤0.018%,S≤0.005%。8、本发明钢板的厚度规格是30-60mm。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明。
实施例1
本实施例焊接性能优良的风电塔筒用钢板厚度30mm,其化学成分组成及质量百分含量为:C:0.10%,Si:0.25%,Mn:1.20%,P:0.015%,S:0.003%,Nb:0.035%,V:0.025%,Al:0.030%,其余为Fe和其它不可避免的杂质。
本实施例焊接性能优良的风电塔筒用钢板的生产方法包括炼钢、连铸、轧制工序,具体工艺步骤如下所述:
(1)炼钢工序:将初炼炉冶炼的钢水送入LF精炼炉进行精炼,在LF精炼过程中,全程吹氩良好,总精炼时间45min,白渣保持时间25min;精炼完毕后,将钢水送入VD炉进行真空脱气处理,真空度60Pa,真空保持时间16min,真空破坏后软吹8min,使夹杂物能够充分上浮,同时喂入0.5kg/t钢水的钙线进行钙处理,催使夹杂物上浮;
(2)连铸工序:利用330mm断面连铸机,结晶器液面采用自动控制,波动范围±3mm,中间包过热度为16℃,强化凝固末端应用强冷技术,浇铸成大断面高内部质量的连铸坯;
(3)轧制工序:连铸坯在连续炉加热,炉温为550℃,加热速度为150℃/h;最高加热温度1260℃,均热段温度1220℃,总加热系数1.1min/mm;
采用Ⅱ型控轧轧制工艺,Ⅰ阶段开轧温度1050℃,采用大压下轧制,晾钢厚度80mm,Ⅱ阶段开轧温度860℃,终轧温度830℃;
(4)采用高冷速高返红工艺,钢板轧制后快速冷却,然后等待返红温度升高,返红温度控制在600℃。
冷却后得到的钢板组织为铁素体和珠光体,钢板屈服强度360MPa,抗拉强度470MPa,V型纵向-40℃冲击功36J,所生产的风电塔筒用钢板焊接性能优良,强度高、冲击韧性和高温拉伸性能良好,组织均匀,性能稳定。
实施例2
本实施例焊接性能优良的风电塔筒用钢板厚度60mm,其化学成分组成及质量百分含量为:C:0.05%,Si:0.35%,Mn:1.70%,P:0.018%,S:0.005%,Nb:0.025%,V:0.045%,Al:0.020%,其余为Fe和其它不可避免的杂质。
本实施例焊接性能优良的风电塔筒用钢板的生产方法包括炼钢、连铸、轧制工序,具体工艺步骤如下所述:
(1)炼钢工序:将初炼炉冶炼的钢水送入LF精炼炉进行精炼,在LF精炼过程中,全程吹氩良好,总精炼时间40min,白渣保持时间30min;精炼完毕后,将钢水送入VD炉进行真空脱气处理,真空度66.7Pa,真空保持时间15min,真空破坏后软吹9min,使夹杂物能够充分上浮,同时喂入0.8kg/t钢水的钙线进行钙处理,催使夹杂物上浮;
(2)连铸工序:利用330mm断面连铸机,结晶器液面采用自动控制,波动范围±3mm,中间包过热度为15℃,强化凝固末端应用强冷技术,浇铸成大断面高内部质量的连铸坯;
(3)轧制工序:连铸坯在连续炉加热,炉温为600℃,加热速度为240℃/h;最高加热温度1260℃,均热段温度1240℃,总加热系数1.0min/mm;
采用Ⅱ型控轧轧制工艺,Ⅰ阶段开轧温度1070℃,采用大压下轧制,晾钢厚度110mm,Ⅱ阶段开轧温度900℃,终轧温度850℃;
(4)采用高冷速高返红工艺,钢板轧制后快速冷却,然后等待返红温度升高,返红温度控制在650℃。
冷却后得到的钢板组织为铁素体和珠光体,钢板屈服强度345MPa,抗拉强度606MPa,V型纵向-40℃冲击功27J,所生产的风电塔筒用钢板焊接性能优良,强度高、冲击韧性和高温拉伸性能良好,组织均匀,性能稳定。
实施例3
本实施例焊接性能优良的风电塔筒用钢板厚度38mm,其化学成分组成及质量百分含量为:C:0.08%,Si:0.45%,Mn:1.50%,P:0.013%,S:0.002%,Nb:0.045%,V:0.035%,Al:0.050%,其余为Fe和其它不可避免的杂质。
本实施例焊接性能优良的风电塔筒用钢板的生产方法包括炼钢、连铸、轧制工序,具体工艺步骤如下所述:
(1)炼钢工序:将初炼炉冶炼的钢水送入LF精炼炉进行精炼,在LF精炼过程中,全程吹氩良好,总精炼时间50min,白渣保持时间35min;精炼完毕后,将钢水送入VD炉进行真空脱气处理,真空度50Pa,真空保持时间17min,真空破坏后软吹10min,使夹杂物能够充分上浮,同时喂入1.0kg/t钢水的钙线进行钙处理,催使夹杂物上浮;
(2)连铸工序:利用330mm断面连铸机,结晶器液面采用自动控制,波动范围±3mm,中间包过热度为30℃,强化凝固末端应用强冷技术,浇铸成大断面高内部质量的连铸坯;
(3)轧制工序:连铸坯在连续炉加热,炉温为1200℃,加热速度为300℃/h;最高加热温度1260℃,均热段温度1230℃,总加热系数1.2min/mm;
采用Ⅱ型控轧轧制工艺,Ⅰ阶段开轧温度1150℃,采用大压下轧制,晾钢厚度88mm,Ⅱ阶段开轧温度850℃,终轧温度800℃;
(4)采用高冷速高返红工艺,钢板轧制后快速冷却,然后等待返红温度升高,返红温度控制在630℃。
冷却后得到的钢板组织为铁素体和珠光体,钢板屈服强度400MPa,抗拉强度630MPa,V型纵向-40℃冲击功60J,所生产的风电塔筒用钢板焊接性能优良,强度高、冲击韧性和高温拉伸性能良好,组织均匀,性能稳定。
实施例4
本实施例焊接性能优良的风电塔筒用钢板厚度45mm,其化学成分组成及质量百分含量为:C:0.10%,Si:0.40%,Mn:1.40%,P:0.016%,S:0.003%,Nb:0.030%,V:0.035%,Al:0.040%,其余为Fe和其它不可避免的杂质。
本实施例焊接性能优良的风电塔筒用钢板的生产方法包括炼钢、连铸、轧制工序,具体工艺步骤如下所述:
(1)炼钢工序:将初炼炉冶炼的钢水送入LF精炼炉进行精炼,在LF精炼过程中,全程吹氩良好,总精炼时间46min,白渣保持时间31min;精炼完毕后,将钢水送入VD炉进行真空脱气处理,真空度62Pa,真空保持时间18min,真空破坏后软吹10min,使夹杂物能够充分上浮,同时喂入0.7kg/t钢水的钙线进行钙处理,催使夹杂物上浮;
(2)连铸工序:利用330mm断面连铸机,结晶器液面采用自动控制,波动范围±3mm,中间包过热度为25℃,强化凝固末端应用强冷技术,浇铸成大断面高内部质量的连铸坯;
(3)轧制工序:连铸坯在连续炉加热,炉温为900℃,加热速度为280℃/h;最高加热温度1260℃,均热段温度1240℃,总加热系数1.2min/mm;
采用Ⅱ型控轧轧制工艺,Ⅰ阶段开轧温度1100℃,采用大压下轧制,晾钢厚度95mm,Ⅱ阶段开轧温度870℃,终轧温度830℃;
(4)采用高冷速高返红工艺,钢板轧制后快速冷却,然后等待返红温度升高,返红温度控制在640℃。
冷却后得到的钢板组织为铁素体和珠光体,钢板屈服强度420MPa,抗拉强度610MPa,V型纵向-40℃冲击功55J,所生产的风电塔筒用钢板焊接性能优良,强度高、冲击韧性和高温拉伸性能良好,组织均匀,性能稳定。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种焊接性能优良的风电塔筒用钢板,其特征在于,所述钢板的化学成分组成及质量百分含量为:C:0.05~0.10%,Si:0.25~0.45%,Mn:1.20~1.70%,P≤0.018%,S≤0.005%,Nb:0.025~0.045%,V:0.025~0.045%,Al:0.020~0.050%,其余为Fe和其它不可避免的杂质。
2.根据权利要求1所述的一种焊接性能优良的风电塔筒用钢板,其特征在于,所述钢板厚度为30~60mm,钢板组织为铁素体和珠光体。
3.根据权利要求1所述的一种焊接性能优良的风电塔筒用钢板,其特征在于,所述钢板屈服强度≥345MPa,抗拉强度470-630MPa,V型纵向-40℃冲击功≥27J。
4.基于权利要求1-3任意一项所述的一种焊接性能优良的风电塔筒用钢板的生产方法,其特征在于,所述方法包括炼钢、连铸、轧制工序;所述连铸工序连铸坯的化学成分组成及质量百分含量为:C:0.05~0.10%,Si:0.25~0.45%,Mn:1.20~1.70%,P≤0.018%,S≤0.005%,Nb:0.025~0.045%,V:0.025~0.045%,Al:0.020~0.050%,其余为Fe和其它不可避免的杂质;所述轧制工序采用Ⅱ型控轧轧制工艺。
5.根据权利要求4所述的一种焊接性能优良的风电塔筒用钢板的生产方法,其特征在于,所述炼钢工序,经过转炉冶炼的钢水送入LF精炼炉精炼,在LF精炼过程中,全程吹氩,总精炼时间≥40min,白渣保持时间≥25min。
6.根据权利要求4所述的一种焊接性能优良的风电塔筒用钢板的生产方法,其特征在于,所述炼钢工序,LF炉精炼完毕后,将钢水送入VD炉进行真空脱气处理,真空度≤66.7Pa,真空保持时间≥15min,真空破坏后软吹8-10min,使夹杂物能够充分上浮,同时喂入0.5-1.0kg/t钢水的钙线进行钙处理,催使夹杂物上浮。
7.根据权利要求4-6任意一项所述的一种焊接性能优良的风电塔筒用钢板的生产方法,其特征在于,所述连铸工序,利用330mm断面连铸机,结晶器液面采用自动控制,要求波动范围±3mm,过热度控制在15-30℃。
8.根据权利要求4-6任意一项所述的一种焊接性能优良的风电塔筒用钢板的生产方法,其特征在于,所述轧制工序,连铸坯在连续炉加热,炉温T<600℃时,加热速度≤150℃/h;炉温在600℃≤T≤1200℃时,加热速度≤300℃/h;最高加热温度1260℃,均热段温度1220-1240℃,总加热系数≥1min/mm。
9.根据权利要求4-6任意一项所述的一种焊接性能优良的风电塔筒用钢板的生产方法,其特征在于,所述轧制工序,采用Ⅱ型控轧轧制工艺,Ⅰ阶段开轧温度1050-1150℃,晾钢厚度为h+50mm,所述h为成品钢板厚度;Ⅱ阶段开轧温度850-900℃,终轧温度800-850℃。
10.根据权利要求4-6任意一项所述的一种焊接性能优良的风电塔筒用钢板的生产方法,其特征在于,所述轧制工序,采用高冷速高返红工艺,钢板轧制后快速冷却,返红温度600-650℃。
CN201710686323.4A 2017-08-11 2017-08-11 一种焊接性能优良的风电塔筒用钢板及其生产方法 Pending CN107686941A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710686323.4A CN107686941A (zh) 2017-08-11 2017-08-11 一种焊接性能优良的风电塔筒用钢板及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710686323.4A CN107686941A (zh) 2017-08-11 2017-08-11 一种焊接性能优良的风电塔筒用钢板及其生产方法

Publications (1)

Publication Number Publication Date
CN107686941A true CN107686941A (zh) 2018-02-13

Family

ID=61153211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710686323.4A Pending CN107686941A (zh) 2017-08-11 2017-08-11 一种焊接性能优良的风电塔筒用钢板及其生产方法

Country Status (1)

Country Link
CN (1) CN107686941A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097684A (zh) * 2018-08-30 2018-12-28 舞阳钢铁有限责任公司 一种焊接结构用sm490a钢板及其生产方法
CN109266962A (zh) * 2018-09-30 2019-01-25 舞阳钢铁有限责任公司 一种耐腐蚀性风电塔筒用钢板及其生产方法
WO2019184310A1 (zh) * 2018-03-26 2019-10-03 南京钢铁股份有限公司 一种海上可焊接结构用s460g2+m钢板及其生产方法
CN110565017A (zh) * 2019-09-20 2019-12-13 舞阳钢铁有限责任公司 一种连铸和电渣成材的核电飞轮用钢板及其冶炼方法
CN113406291A (zh) * 2021-06-29 2021-09-17 西安热工研究院有限公司 一种风电塔用结构钢板的质量验证方法
CN114635074A (zh) * 2022-03-04 2022-06-17 包头钢铁(集团)有限责任公司 一种80~100mm厚风电用钢板的生产方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947917A (zh) * 2017-04-28 2017-07-14 舞阳钢铁有限责任公司 一种低合金高强度超厚钢板s420nl及其生产方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947917A (zh) * 2017-04-28 2017-07-14 舞阳钢铁有限责任公司 一种低合金高强度超厚钢板s420nl及其生产方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019184310A1 (zh) * 2018-03-26 2019-10-03 南京钢铁股份有限公司 一种海上可焊接结构用s460g2+m钢板及其生产方法
CN109097684A (zh) * 2018-08-30 2018-12-28 舞阳钢铁有限责任公司 一种焊接结构用sm490a钢板及其生产方法
CN109266962A (zh) * 2018-09-30 2019-01-25 舞阳钢铁有限责任公司 一种耐腐蚀性风电塔筒用钢板及其生产方法
CN110565017A (zh) * 2019-09-20 2019-12-13 舞阳钢铁有限责任公司 一种连铸和电渣成材的核电飞轮用钢板及其冶炼方法
CN113406291A (zh) * 2021-06-29 2021-09-17 西安热工研究院有限公司 一种风电塔用结构钢板的质量验证方法
CN114635074A (zh) * 2022-03-04 2022-06-17 包头钢铁(集团)有限责任公司 一种80~100mm厚风电用钢板的生产方法

Similar Documents

Publication Publication Date Title
CN104711488B (zh) 大厚度f690级海洋工程用高强钢板及其生产方法
CN107686941A (zh) 一种焊接性能优良的风电塔筒用钢板及其生产方法
CN105506494B (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN107475620B (zh) 低温压力容器用调质型A537Cl2钢板及其生产方法
CN102912221B (zh) 一种大厚度高层建筑用结构钢板及其生产方法
CN106947917B (zh) 一种低合金高强度超厚钢板s420nl及其生产方法
CN107937803B (zh) 一种具有低温冲击韧性耐磨钢板及其制备方法
CN105543669B (zh) 一种厚规格和窄硬度区间耐磨钢板及其制备方法
CN103031498A (zh) 低压缩比特厚超高强应变时效的海洋工程钢板的制造方法
CN102080185A (zh) 一种大厚度结构用高强度调质钢板及其生产方法
CN106544597A (zh) 超薄超宽核电承压设备用钢板及其制造方法
CN107177795A (zh) 一种高韧性高塑性压力容器储罐用钢板及其生产方法
CN107675086B (zh) 一种800MPa级工程车用热轧结构钢及其生产方法
CN102653845A (zh) 一种lpg船储罐用钢板及其生产方法
CN107299279A (zh) 一种100mm厚410HB级耐磨钢板及其制备方法
CN105908086A (zh) 一种低压缩比特厚低合金钢板及其制造方法
CN102888560A (zh) 一种大厚度海洋工程用调质高强度钢板及其生产方法
CN107937807A (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN110358973A (zh) 一种低成本s420nl低温韧性钢板及制造方法
CN107326304A (zh) 一种TMCP型屈服500MPa级桥梁钢板及生产方法
CN109930075A (zh) 一种装甲用防弹钢板及其制造方法
CN106834946A (zh) 大厚度保高温抗拉强度钢板SA299GrB及其制备方法
CN108385027A (zh) 一种控轧型e级船体结构用钢板及其生产方法
CN104388838B (zh) 超低温压力容器用5Ni钢板及其生产方法
CN115927952A (zh) 一种690MPa级抗氢致延迟断裂的低焊接裂纹敏感性调质钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180213

RJ01 Rejection of invention patent application after publication