CN1076867A - 植入式人工肺 - Google Patents

植入式人工肺 Download PDF

Info

Publication number
CN1076867A
CN1076867A CN 92102391 CN92102391A CN1076867A CN 1076867 A CN1076867 A CN 1076867A CN 92102391 CN92102391 CN 92102391 CN 92102391 A CN92102391 A CN 92102391A CN 1076867 A CN1076867 A CN 1076867A
Authority
CN
China
Prior art keywords
blood
silica gel
artificial
bag
human body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 92102391
Other languages
English (en)
Inventor
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN 92102391 priority Critical patent/CN1076867A/zh
Publication of CN1076867A publication Critical patent/CN1076867A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

植入式人工肺,一种用于医疗上原位植入病人的 胸腔内,以永久替代人体肺呼吸功能的人工脏器。
本发明主要由体内放置的弹性塑料储血袋(1)、 袋内充填的硅胶毛细管网(5),以及管网内循环的富 氧人造血(9)所构成。肺循环血液流经储血袋(1),在 硅胶毛细管外的众多网眼中低阻力流动,O2及CO2 通过硅胶半透膜,与毛细管内的富氧人造血进行液膜 式弥散交换,使人体静脉血氧合成动脉化血;同时人 造血(9)不断经体外的膜式氧合器(11)循环,完成二 次气体交换。

Description

本发明是关于由弹性塑料储血袋,袋内充填的硅胶毛细管网,以及管网内循环的富氧人造血所构成的液膜式人工肺,用于医疗上植入慢性呼吸衰竭病人的胸腔内,以便永久替代人体肺的呼吸功能。
人体肺的生理功能是进行气体交换,即从体外吸入氧气(O2),通过肺泡进入肺循环的毛细血管网,使静脉血氧合成动脉化血;同时将人体代谢所产生的二氧化碳(CO2)呼出体外。在慢性呼吸衰竭的病人,由于各种慢性肺部疾患致呼吸功能丧失贻尽,发生难治性低氧血症和高碳酸血症。此时病人的肺实质已遭受严重的不可逆损害,既使通过开放呼吸道持续高浓度给氧,甚至人工呼吸机正压通气治疗,也无助于肺泡与肺毛细血管网之间的气体交换,抢救无效者屡见不鲜。对这类病人可以施行异体肺移值,但移植肺的免疫排斥、供体来源等棘手问题难以解决,严重限制了移植手术的应用价值。而目前的各种膜式人工肺,必须通过体外循环装置与病人的血液进行气体交换,由于存在体积庞大、结构复杂,需血泵辅助加压,血球破坏严重,体液丧失明显等致命弱点,无法植入病人体内,只能临时放置于床旁,供急性呼吸衰竭的短期抢救使用。
本发明的目的,是为了提供一种能够长期埋藏于病人胸腔内,血循环阻力低,气体交换率高,结构简单,并发症少,符合人体肺的解剖生理特点,可以永久替代其呼吸功能的植入式人工脏器。
本发明的构思在于,根据人体肺及肺循环的解剖、生理特点,设计一种可固定于胸腔内的塑料储血袋,作为一个贮存回心血液的密闭弹性容器,其入口、出口分别与病人的肺动脉和肺静脉相连。储血袋内充填由近万根硅胶毛细管平行编织成的多层疏松网状结构,利用人体心脏自身提供的泵动力,驱使血液在毛细管外的众多网状缝隙中低阻力流动;同时在硅胶毛细管内,灌注由全氟碳化合物乳剂配制成的人造血,作为运输O2及CO2的中间载体,经管道回路与放置在体外的膜式氧合器相通,并由附加的滚压泵推动人造血在硅胶毛细管网内循环。由于含有人造血的硅胶毛细管网完全浸浴在储血袋内的人体血液中,根据气体弥散原理,薄层的硅胶毛细管壁构成一种气体半透膜,允许毛细管内外的O2及CO2分子依靠各自的压力梯度同时反向透过,在相互逆向流动的人造血与人体血之间进行气体交换。即来自于体外膜式氧合器的人造血携带大量氧气,经硅胶半透膜O2进入毛细管外氧分压较低的静脉血,使之不断氧合成动脉化血;而病人血液中张力较高的CO2,则同时弥散到硅胶毛细管内,由人造血输送到体外的氧合器排出。如此循环不已,从而永久替代人体肺的呼吸功能,实现本发明。
下面结合附图,对本发明作进一步地详细说明。
图1是本发明的正面剖视图。
图2是本发明的侧面剖视图。
图3是本发明的使用示意图。
如图1、图2,本发明的形状仿造人体生理肺,表面为一层密闭的塑料储血袋(1),作为人体肺循环中贮存回心血液的一个容器,其实际体积比静息呼吸时的左肺稍小,袋内的有效储血容积约500~750ml。塑料袋由医用高分子材料构成,植入胸腔后应随胸廓的呼吸运动伸展和回缩,故要求选择富有弹性的聚醚聚氨酯或硅橡胶作为外膜。为了防止血液凝固及血栓形成,储血袋内面可贴衬一层血容性好、表面光洁的抗凝血薄膜,如经明胶生物化处理或加入肝素共聚而得的嵌段聚氨酯,内外两层紧密地粘合在一起组成弹性复合膜。在储血袋(1)的上端内侧贴前胸处,为来自于右心的静脉血的入口(2);而下端外侧贴后背处,开有两个血液出口(3),出入口管径应保证人工肺的血流量为3.0~5.0升/分。在储血袋(1)的外壁四周,均匀地分布十几个挂环(4),用于穿针挂线固定人工肺。
在储血袋(1)的内部空间,沿血流方向与纵切面平行,充填数十层重叠在一起的硅胶毛细管网(5)。每层毛细管网的外形尺寸一致,形状如园钝的斜边三角形,由近百根硅胶毛细管纵横交叉地平行编织,疏松地织成一张满布孔眼的筛状网巾,致密度自上而下逐渐递增,网状缝隙(即网眼)的大小应编织为多种规格。然后按网眼由大到小的顺序,从前至后依次将数十张不同规格的硅胶毛细管网整齐地重叠,层与层之间加一只空心的硅胶垫圈,使之保持一定间距,再用室温硫化型硅橡胶(RTV)相互紧密地粘合成一体。在众多硅胶毛细管两端的共同开口处,分别汇合形成三个膨大的管腔,即入口管(6)、集合管(7)和出口管(8)。以斜边三角形的周边为界,将这些管腔与储血袋(1)严密隔绝,可以耐受2个大气压力而不致于破裂;并在三个顶点处彼此封闭,使每个管腔只与相应一端的众多毛细管开口连通,从而构成硅胶毛细管网的密闭回路:入口管(6)→纵向毛细管网(5)→集合管(7)→横向毛细管网(5)→出口管(8)。
制造硅胶毛细管的材料,可以选用透气性能良好的高纯度硅橡胶,其中以不含二氧化硅的聚酯增强型硅胶较好。经过挤压加工成外径约1000um、壁厚300um左右的毛细管。管壁的厚度应适中,既要保持良好的透气性能,又能承受较大的压力而不致于破裂;管壁上的微孔直径应小于2.0um,只允许分子量在100道尔顿以下的小分子物质通过。管壁外表面应非常园滑,并进行肝素化涂层处理。或者选择同一管径的多孔质聚四氟乙烯、聚丙烯等空心纤维,在其满布微孔的管壁表面牢固地涂布一层硅胶超薄膜,构成硅胶复合膜毛细管,具有更好的气体弥散度。至于本发明所用硅胶毛细管的具体数目、网眼大小及重叠层次,一方面要求足够的气体交换,使硅胶毛细管网的总膜面积达到3.0~4.0平方米,满足人工肺的通气量接近血流量4.0升/分;另一方面又要避免增加肺循环的阻力,使储血袋入口处的平均压力低于30.0mmHg(4.00kpa),有效血流量超过3.0升/分,从而保持人工肺通气/血流比率的正常(即
Figure 92102391X_IMG2
/
Figure 92102391X_IMG3
=0.7~1.3)。防止因硅胶毛细管数目偏少、通气不足引起 /
Figure 92102391X_IMG5
值降低,或者人工肺阻力增大、血流量减少造成的
Figure 92102391X_IMG6
/
Figure 92102391X_IMG7
值升高。
在硅胶毛细管网(5)的所有管腔内,预先注入富含氧气的人造血液(9),通过其密闭的管道回路(6)~(8)不断循环,人造血与人体血保持完全隔绝。人造血(9)由全氟碳化合物(FC)乳剂构成,类似人体血所含血红旦白(Hb)的运载作用,能够迅速、大量地可逆性吸收并释放O2和CO2,随着人造血的循环运输气体。常用的全氟碳化合物有全氟三丁胺(FC-43)、全氟丁基四氢呋喃(FC-75)、全氟萘烷(FDC)等,乳化剂可选择聚环氧乙烷(F68),乳剂中FC所占的体积比可超过20%。乳化微粒的直径应大于2.0um,使之不能通过微孔透气膜进入人体血,以免对人体带来付作用。人造血液(9)中应含有K+、Na+、Cl-等电解质,其配制浓度与人体血浆的成份完全一致,保持人造血与人体血的渗透压相等,防止水份及电解质在两种液体之间转移。
人造血循环避免了血液凝固及血球破坏等棘手问题,在透气膜和回路管道的材料选择上勿需顾及抗凝性能,并且能永久耐受滚动泵的反复挤压。为了防止人工肺凝血,应在人造血(9)中加入适量的肝素及/或前列腺素E1,抗凝剂透过硅胶毛细管壁,持续、微量地渗透到管外的人体血液中,使硅胶毛细管网(5)始终保持局部肝素化。一旦储血袋(1)内有血栓形成,通过由疏到密数十层排列的硅胶毛细管网(5),可以被完全滤过并溶解,防止血栓进入全身动脉系统造成栓塞症。硅胶毛细管网(5)及其密闭回路(6)~(8),必须与储血袋(1)彻底隔绝,以免相互贯通造成人体血漏出或人造血流失。如果怀疑管道网路有破损,可在人造血(9)中加入放射性跟踪元素,进行人体血的同位素扫描;或者通过肉眼观察乳白色人造血的颜色变化判断之。
本发明的植入方法是,对各种慢性肺部疾患已遭致呼吸衰竭者,开胸行单侧全肺叶切除手术,保留对侧相对有功能的人体肺。如果双肺病变均严重,则摘除病人的左、右全部肺叶,在双侧胸腔分别放置两个储血袋(1)。用血液或平衡盐液预先注入储血袋(1),彻底驱尽袋内的空气。然后将储血袋(1)原位植入一侧胸腔内,经挂环(4)缝合固定于胸膜上。再通过一段人造血管,把入口(2)、出口(3)分别与病人的肺动脉和肺静脉相吻合,使人体血液流经储血袋(1)进行肺循环。在连接肺动脉的人造血管内,应安置较大孔径的过滤器,以阻止回心血液中的脱落血栓进入人工肺。人造血的入口管(6)和出口管(8),通过一根双腔的聚氨酯延长管,经膈肌穿过胸腔,皮下潜行至上腹部露出皮肤表面,与体外的便携式人工肺相连。
体外人工肺由现有的滚压泵(10)、膜式氧合器(11)、贮液器(12)以及可充电直流电源构成,一体化封装于一只小型手提箱内,便于随身携带。滚压泵(10)为直流电机驱动,挤压管道推动硅胶毛细管网(5)内的人造血不断循环,可以随意调节马达转速改变人造血的流速。膜式氧合器(11)与现有技术完全一致,应尽量选择透气性能最佳的半透膜,而不考虑抗凝血问题,如微孔聚丙烯、微孔聚四氟乙烯、微孔乙基纤维素、微孔聚烷基砜等进行超薄膜涂层所构成的复合透气膜。将透气薄膜制作成长条的扁带状密封袋,袋内流通人造血。空心袋子可宽可窄,宽的可直接摺叠为风琴样式,如用窄袋子则应编织成多层网状结构。从硅胶毛细管网(5)流到体外的人造血,经过氧合袋子与膜外的周围空气进行气体交换。贮液器(12)用于储存并随时补充人造血,必要时作为鼓泡室吹入加压氧气,使人造血(9)鼓泡得到二次氧合。
参照图3具体地说,随着病人右心室和左心房的节律性博动,氧含量低的回心静脉血经肺动脉-入口(2)泵入储血袋(1)内,在众多硅胶毛细管外的网状缝隙中交错流动;并借助胸廓的呼吸起伏,带动固定于胸壁上的储血袋(1)扩张及弹性回缩,促进袋内的血液灌流,发挥“胸泵”的辅助循环作用。由于人体血在硅胶毛细管外的疏松网眼中流通,设计上保证了肺循环的低阻、低压这一生理特性,使人工肺的循环阻力总是明显低于对侧保留的人体肺,大量肺循环血液流经人工肺,从而避免病变人体肺分流较多所致的通气血流比例失调(Qs/QT升高)。
在心泵及胸泵的共同作用下,流经储血袋(1)的人体血呈脉冲式搏动,并不断受到混合力的振荡,在纵横交错的多层网眼中穿来流去,形成极不规则的涡流及二次流,使人体血与硅胶毛细管壁充分接触,提高血气交换率。血液中的O2、CO2分子依照各自的压力梯度,弥散通过众多的硅胶管半透膜,与毛细管网(5)内反向流动的人造血(9)不断进行气体交换。人造血(9)中的富氧进入人体血,O2与红血球内的血红旦白结合,使之氧合成鲜红的动脉化血;人体血中含量较高的CO2则同时弥散到人造血(9)。
由于硅胶毛细管网(5)完全浸泡在人体血中,O2及CO2分子通过硅胶半透膜,在毛细管内外的人造血与人体血之间进行液-液相气体交换,即“液体式呼吸”。故而气体不直接与人体血液接触,避免了气体栓塞、血球溶解等严重并发症。且两种液相的交界面不可能发生水份蒸发,不会在硅胶毛细管壁上凝结形成水珠膜,从而防止长期使用人工肺导致体液的大量丧失,克服因水凝膜严重妨碍血气交换能力的缺陷。
充分氧合后的人体血PO2升高(>10.70KPa)、PCO2降低(<6.00KPa),血液通过出口(3)-肺静脉回到左心房,再由左心室射入全身大循环。而携带了较多CO2的低氧人造血(9),经出口管(8)由滚压泵(10)输送到体外的膜式氧合器(11),与周围空气再次进行气体交换,向大气中摄取O2、排出CO2,氧合后的富氧人造血经入口管(6)重新回到体内,在硅胶毛细管网(5)内反复循环,周而复始完成人工肺的呼吸替代功能。
鉴于自然界大气中的氧含量仅占21%,在人体耗氧量增加的情况下,体外膜式氧合器(11)从周围空气中摄取的O2可能不够,难以维持人造血(9)的较高氧浓度。人工肺氧合不足致使动脉血氧分压下降,不能满足机体的需要。此时可附加一个小型高压氧气瓶或氧浓缩装置,将氧气引入膜式氧合器(11)或/和贮液器(12),提高人造血(9)的氧含量。更为恰当的方法是采用化学供氧法,即将较高浓度的医用过氧化氢(双氢水、H2O2)溶液,经贮液器(12)加入人造血(9)中。当双氢水流经体内的硅胶毛细管网(5)时,被人体血含有的过氧化氢酶迅速分解:
2H2O2(过氧化氢酶)/() 2[O]+2H2O+46,200卡热
分解后产生的新生态氧[O]很活跃,立即与人体红血球中的Hb结合使之氧合。由于人体血中的过氧化氢酶分子量较大,难以透过硅胶毛细管壁发挥催化作用,为此可在人造血中加入适量的过氧化氢固相酶(即将人造的过氧化氢酶包埋“微胶囊”内制得),促使过氧化氢充分水解。浓度为3%的过氧化氢溶液,每1.0ml可释放出O2约10ml。如果每天往人造血(9)中加入60%双氧水500ml,则可向人体提供约100升氧气,满足一般情况下全天的1/3需氧量。同时H2O2在分解过程中会产生较高的热量,使人造血(9)的温度升高,加速O2及CO2分子的弥散运动,提高血气交换率;产生的大量H2O,可以弥补体外膜式氧合器(11)每天的水份丧失,防止长期使用造成机体脱水和人造血浓缩。双氧水作为一种医用消毒剂,本身还具有强效的杀菌作用,可以使人造血(9)保持无菌,防止人工肺感染。为了随时调节过氧化氢的加入量,可在塑料滴管上附装一个可调速输液泵,借以按需式控制双氧水的滴入速度。
为了使动脉血氧分压(PaO2)及二氧化碳分压(PaCO2)动态恒定,满足机体在静息或活动状态下的不同生理需要,本发明可在储血袋内接近出口(3)处,各埋藏一根去除了恒温水浴外套的Clark氏氧电极和Severinghaus氏二氧化碳电极。两根电极直接浸浴在氧合后的人体血液中,分别用于持续监测PaO2及PaCO2的瞬间变化,实时显示血气读数并声光报警。然后通过体外的微电脑,反馈性调节滚压泵或输液泵的转速,动态改变人造血(9)的循环流速或/和过氧化氢液的输入速度,达到自动控制的目的。例如人体在运动时耗氧量增加、PaO2下降,此时通过加快过氧化氢的滴入速度,使人造血的氧含量上升,从而提高人体血的PaO2。如果机体缺O2的同时伴有CO2潴留(即PaO2↓、PaCO2↑,称之为Ⅱ型呼吸衰竭),应增加滚压泵的转速,加快人造血(9)在硅胶毛细管网(5)与体外膜式氧合器(11)之间的循环,提高血气交换效率,使PaO2升高的同时排出过多的CO2,从而保持PaO2、PaCO2稳定在正常范围。如果病人的呼吸功能尚有部份代偿,保留之人体肺可以排出足够多的CO2,血气监测仅为单纯的低氧血症,而不伴有高碳酸血症,则可用较高浓度的双氧水全部替代不断循环的人造血(9),充入硅胶毛细管网(5)后,暂时关闭入口管(6)及出口管(8),脱离体外附属的人工肺一体化手提箱,使病人短时间内完全获得身体自由。
本发明适用于因各种严重肺部疾患所致的慢性呼吸衰竭,即肺功能衰竭的病人。例如慢性支气管炎、支气管哮喘、阻塞性肺气肿、支气管扩张、慢性纤维空洞型肺结核、慢性肺脓疡、尘肺、支气管肺癌、肺结节病、弥漫性肺间质纤维化、大块肺栓塞、先天性肺发育不全等。本发明也适用于因重症肌无力、永久性高位截瘫、严重胸廓畸形等肺外原因所致的呼吸衰竭。对于各种慢性阻塞性肺病引起的肺动脉高压及肺源性心脏病,先天性心脏病继发的肺动脉高压症,或者原发性肺动脉高压症,用低循环阻力的本发明代替一侧严重病变的人体肺,大部份肺循环血液流经人工肺,还可使病人的平均肺动脉压显著下降,右心阻力负荷明显减轻,顽固的充血性心力衰竭得以纠正。
如果接受本发明植入的病人同时伴有严重的心律失常,可以在胸腔内的储血袋(1)上附装一只按需式永久起搏器,自动进行心外膜人工起搏或电复律治疗,保持心脏有规律的整齐跳动。对于同时伴有肾功能衰竭者,可在体外的人造血循环回路中串联一个空心纤维器型人工肾,进行间接的血液透析治疗。
此外,对于急性呼吸衰竭的病人,如成人呼吸窘迫综合征、急性肺水肿、大面积肺炎、急性下呼吸道梗阻或严重胸部外伤等,经现有的人工呼吸机正压通气治疗仍无效者,可选择病人的外周动脉与静脉血管穿刺置管,建立紧急的循环回路。然后将本发明的储血袋(1)临时串接于体外的血路中,利用动-静脉压力差驱使人体血在袋内自然流动,与本发明的人造血不断进行气体交换,既可迅速改善严重的低氧血症,又可避免人体血直接流经体外循环的滚动泵遭受挤压破坏,发挥体外膜氧合(ECMO)的辅助治疗作用;还可选用某一肢体或器官的动-静脉血路进行局部灌流治疗。

Claims (10)

1、一种用于医疗上永久替代人体肺呼吸功能的植入式人工肺,其特征在于一个放置到体内的弹性塑料储血袋(1)之内部,充填有数十层重叠在一起的硅胶毛细管网(5);管网内不断流动着富氧人造血(9),通过其密闭的管道回路,经体外的膜式氧合器(11)反复循环。可以原位植入慢性呼吸衰竭病人的胸腔内,引导肺循环血液流经储血袋(1),在硅胶毛细管外的众多网眼中低阻力流动,使O2及CO2透过硅胶半透膜,与毛细管内的富氧人造血进行液膜式弥散交换。
2、如权利要求1所述的塑料储血袋(1),其特征是由外层的聚醚聚氨酯作为基膜,内衬经过明胶或肝素化处理的嵌段聚氨酯所组成的复合膜,构成一个完全密闭的塑料袋,具有良好的弹性和生物相容性。
3、如权利要求2所述的塑料储血袋(1),其特征是由挂环(4)缝合固定于胸腔内,入口(2)及出口(3)分别与病人的肺动脉和肺静脉相连,利用人体自身心脏及“胸泵”提供的动力,推动回心血液经过储血袋(1)不断循环。
4、如权利要求2或3所述的塑料储血袋(1),其特征是袋内充填数十层重叠在一起的硅胶毛细管网(5),人体血液在硅胶毛细管外的众多网眼中交错流动。
5、如权利要求1所述的硅胶毛细管网(5),其特征是由近百根硅胶毛细管纵横交叉,平行编织成上疏下密的网状结构,网眼的大小分别制成多种规格。
6、如权利要求5所述的硅胶毛细管网(5),其特征是按照网眼从大到小的顺序,将数十层同样形状的网巾重叠粘合在一起,组成一个肺循环的血液滤过器。
7、如权利要求5或6所述的硅胶毛细管网(5),其特征是静脉血液通过众多的疏松网眼低阻力流动,而人造血液在硅胶毛细管内的密闭网路中反向循环,保持人体肺循环低压力、高容量的生理特性。
8、如权利要求1所述的富氧人造血(9),其特征是注入硅胶毛细管网(5)的所有管腔内,随着人造血的循环运输O2及CO2
9、如权利要求8所述的富氧人造血(9),其特征是由滚压泵(10)推动,通过其密闭的管道回路(6)~(8),在袋内的硅胶毛细管网(5)与体外的膜式氧合器(11)之间反复循环,不断进行二次气体交换。
10、如权利要求8或9所述的富氧人造血(9),其特征是经贮液器(12),在高体积比的全氟碳化合物乳剂中,按需地加入过氧化氢、过氧化氢固相酶、肝素及前列腺素E1等药物,使人造血具有很高的氧含量和抗凝血性能。
CN 92102391 1992-04-04 1992-04-04 植入式人工肺 Pending CN1076867A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 92102391 CN1076867A (zh) 1992-04-04 1992-04-04 植入式人工肺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 92102391 CN1076867A (zh) 1992-04-04 1992-04-04 植入式人工肺

Publications (1)

Publication Number Publication Date
CN1076867A true CN1076867A (zh) 1993-10-06

Family

ID=4939618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 92102391 Pending CN1076867A (zh) 1992-04-04 1992-04-04 植入式人工肺

Country Status (1)

Country Link
CN (1) CN1076867A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106620914A (zh) * 2016-10-20 2017-05-10 董兰田 体外循环人造肺
CN107073196A (zh) * 2014-11-19 2017-08-18 马里兰大学,巴尔的摩 人工肺系统及其使用的方法
CN107281571A (zh) * 2016-04-05 2017-10-24 裴嘉阳 一种膜式氧气交换装置
CN109010039A (zh) * 2018-09-05 2018-12-18 郑州久昌电子科技股份有限公司 一种血液运输设备
CN111494741A (zh) * 2020-05-25 2020-08-07 清华大学 一种用于体外循环的人工肺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073196A (zh) * 2014-11-19 2017-08-18 马里兰大学,巴尔的摩 人工肺系统及其使用的方法
CN112933320A (zh) * 2014-11-19 2021-06-11 马里兰大学,巴尔的摩 人工肺系统及其使用的方法
CN112933320B (zh) * 2014-11-19 2024-05-03 马里兰大学,巴尔的摩 人工肺系统及其使用的方法
CN107281571A (zh) * 2016-04-05 2017-10-24 裴嘉阳 一种膜式氧气交换装置
CN106620914A (zh) * 2016-10-20 2017-05-10 董兰田 体外循环人造肺
CN109010039A (zh) * 2018-09-05 2018-12-18 郑州久昌电子科技股份有限公司 一种血液运输设备
CN111494741A (zh) * 2020-05-25 2020-08-07 清华大学 一种用于体外循环的人工肺

Similar Documents

Publication Publication Date Title
US11785938B2 (en) Perfusion loop assembly for an ex-vivo liver perfusion and a liver chamber assembly
US8409502B2 (en) Methods, apparatuses, and applications for compliant membrane blood gas exchangers
US7122151B2 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US6217826B1 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
DE69827266T2 (de) System für die minimal invasive chirurgie mit vakuumunterstützter venöser drainage
Ranucci et al. Normothermic perfusion and lung function after cardiopulmonary bypass: effects in pulmonary risk patients
Galletti Cardiopulmonary bypass: a historical perspective
CN1076867A (zh) 植入式人工肺
Annesini et al. Blood oxygenators and artificial lungs
Federspiel et al. Temporary support of the lungs-the artificial lung
CN1093005A (zh) 一体化囊状人工心肺泵
Neville Extracorporeal circulation
JPH02213356A (ja) 流体処理装置
Wiese Membranes for Artificial Lung and Gas Exchange Applications
Williams et al. Similarity of clinical and laboratory results obtained with microporous Teflon membrane oxygenator and bubble-film hybrid oxygenator
Drinker et al. Engineering aspects of ECMO technology
Ronco et al. Principles of peritoneal dialysis and its application in acute renal failure
Mortensen Afterword: Bottom–Line Status Report: CAN Current Trends in Membrane Gas Transfer Technology Lead to an Implantable Intrathoracic Artificial Lung?
Awad et al. Cardiopulmonary dynamics during pumpless arteriovenous bypass for respiratory assistance
Colton Pierre M. Galletti
Mylonas et al. Minimally invasive extracorporeal circulation in cardiac surgery
Kim et al. STUDY ON THE DESIGNING OF THE INTRAVENOUS OXYGENATOR
WEISS et al. Extracorporeal circulation in cardiac surgery
De Somer et al. D-901 neonatal oxygenator: a new perspective
Nakano et al. Study on optimization of heat exchanger for oxygenator using multi-objective genetic algorithm (MOGA)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication