CN107677266A - Based on the theoretical Star navigation system system of spin low-angle tracking and its calculation method - Google Patents

Based on the theoretical Star navigation system system of spin low-angle tracking and its calculation method Download PDF

Info

Publication number
CN107677266A
CN107677266A CN201710782835.0A CN201710782835A CN107677266A CN 107677266 A CN107677266 A CN 107677266A CN 201710782835 A CN201710782835 A CN 201710782835A CN 107677266 A CN107677266 A CN 107677266A
Authority
CN
China
Prior art keywords
nbsp
msub
mrow
math
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710782835.0A
Other languages
Chinese (zh)
Other versions
CN107677266B (en
Inventor
陈应天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710782835.0A priority Critical patent/CN107677266B/en
Publication of CN107677266A publication Critical patent/CN107677266A/en
Application granted granted Critical
Publication of CN107677266B publication Critical patent/CN107677266B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/02Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Abstract

The present invention relates to Star navigation system technical field, and in particular to a kind of based on the theoretical Star navigation system system of spin low-angle tracking and its astronomical calculation method.A kind of Star navigation system of the present invention based on new proposition is theoretical, pass through the low-angle tracking formula that accurately spins, solved using two-parameter measurement, the tracking of single star and equation with many unknowns group, posture and position to carrier synchronize measurement, its speed and the relatively existing Star navigation system technology of precision have great raising, solve that low precision, processing speed existing for traditional Star navigation system technology be slow and the technical problem of measurement unification substantially.Neoteric astronomical Star navigation system system may be constructed the instruments such as aircraft navigation instrument, stabilized platform with different quantity and form families, the navigation application served under different condition.

Description

Starlight navigation system based on spin-elevation tracking theory and resolving method thereof
Technical Field
The invention relates to the technical field of starlight navigation, in particular to a starlight navigation system based on a spin-elevation tracking theory and an astronomical resolving method thereof.
Background
Starlight navigation is an autonomous navigation technology with strong anti-interference performance, strong concealment, high reliability and high precision, and is an orientation and positioning method which is developed by people at first in the field of seagoing due to the requirement of long-distance navigation.
The starlight navigation system based on the principle of the sextant for measuring the elevation angle is composed of simple devices such as a handheld sextant, compasses, an astronomical compass, an astronomical clock and the like in the initial stage, not only can measure the posture of a carrier, but also can confirm the position of the carrier through double-star measurement by using methods such as a contour circle and the like. The modern astronomical starlight navigation system based on the principle of the 'height difference method' is composed of a photoelectric sextant, tracking equipment, an inertial platform and the like, and can automatically search and track stars and solve the posture and position of a carrier. The star sensor developed in the second half of the last century is the biggest breakthrough in improving the attitude measurement precision of an aircraft in the field of starlight navigation, the astronomical starlight navigation based on multi-star vector positioning is a photoelectric camera system with large view field and short focal length, and after the photoelectric camera system is matched with a photomultiplier and other precision devices, the measurement of various attitude angles can reach the precision of several angle seconds, so that the star sensor is the highest in the attitude measurement precision of all navigation equipment.
Despite the above-mentioned leap development, the conventional starlight navigation technology still has the following disadvantages due to the limitation of the basic theory of astronomical tracking:
1. the measuring technology based on the sextant is mainly used for measuring single parameters of the height angle, so that the calculation process of a calculation program is very complicated and redundant, and the measurement precision is difficult to greatly improve. Generally, the position precision of starlight navigation can only reach several kilometers, and the starlight navigation method is basically not suitable for the requirements of modern aircrafts;
2. the measurement time is long, the traditional positioning and orientation process of starlight navigation needs 1-2 minutes, and even if a photoelectric technology is used, the measurement time needs about 15 seconds, so that the limitation of the long measurement time on the precision of dynamic guidance of an aircraft is quite serious, and even if the star sensor has very good dynamic characteristics, the processing speed of resolving is greatly influenced because a star map library is too large and the image identification and contrast speed is slow;
3. at present, the star sensor which is most outstanding in the star navigation is developed, the function of the star sensor can only be limited to the measurement of the attitude of a carrier instead of the measurement of the position, and the star navigation system which can synchronously and accurately measure the attitude and the position is still blank at home and abroad at present.
Disclosure of Invention
Aiming at the technical problems of the traditional starlight navigation technology, the invention provides a new solution.
The invention relates to a new starlight navigation system based on spin-elevation tracking theory, as shown in figure 1, the system comprises a plane reflector (1), a starlight condensing system (9), a position sensor (3), a negative feedback electronic system and an angle sensor (6, 7), wherein:
(i) the plane reflector (1) is used for collecting starlight and reflecting the starlight to the central axis of the starlight focusing system (9) through the tracking driving mechanisms (4, 5),
(ii) the starlight condensing system (9) is used for focusing the starlight to enable the light intensity of the collected starlight to reach the density suitable for the detection of the position sensor (3),
(iii) the position sensor (3) is used for photoelectric conversion, changes the position of the light spot on the position sensor and converts the light spot into an electric signal,
(iv) the negative feedback electronic system amplifies the electric signals and feeds the amplified electric signals back to the tracking driving mechanisms (4 and 5) of the plane reflecting mirror (1) to enable light spots positioned on the position sensor (3) to be stationary at the central part of the position sensor (3),
(v) the angle sensors (6, 7) are used for reading the data of the spin angle and the elevation angle of the plane mirror (1) when the light spot is still at the central part of the position sensor (3), and guiding the data into an electronic computer system loaded with a spin-elevation angle tracking formula for calculation, and the calculated data is used for the starlight navigation.
Preferably, the system comprises a plane mirror (1) having a self-rotating axis and an elevation axis, the self-rotating axis being directed towards a central portion of the position sensor (3).
Preferably, the system comprises a starlight condensing system (9) comprising a color filter (8), a document (c)Y.T.Chen et al., Off-axis aberration correction surface in solar energy application, Solar Energy 80 (2006) 268-271) The high-order reflector (2) or a system which is composed of a color filter (14), a Schmidt compensation sheet (12) and a condenser lens (13) in figure 2 and can greatly reduce the aberration of the starlight spot and adjust the light intensity to be suitable for the density detected by the position sensor (3).
Preferably, after the system tracks a specific star and forms a negative feedback tracking mode, one of the methods for the system to solve any two parameters of the attitude and the position of the system is as follows: at a certain moment in time, spin angle data are obtained by the angle sensors (6, 7) shown in fig. 1Elevation angle dataBy the formula (1) and the formula (2), or the formula equivalent to the formula (1) and the formula (2),
wherein ,
solve the posture (target angle) of itselfAnd facing angle) Or the position (latitude) of itselfAnd longitude) Or target angleFacing angleLatitude and longitudeLongitude, longitudeAny two of the four parameters.
Preferably, after the system tracks a specific star and forms a negative feedback tracking mode, when the system itself is stationary in an celestial coordinate system or the moving speed of the system is much less than the linear velocity of the earth surface generated by the rotation of the earth, one of the methods for calculating the attitude and position of the system itself is as follows: at time t1And time t2The spin angle data and the elevation angle data obtained by the angle sensors (6, 7) are respectivelyAndby formula (3), formula (4), formula (5) and formula (6), or a formula equivalent to formula (3), formula (4), formula (5) and formula (6),
and ,
and
wherein ,
for the rotation speed of the earth, the posture (target angle) of the system is calculated when the system is still in an celestial coordinate system or the movement speed of the system is far less than the linear speed of the earth surface generated by rotationAnd facing angle) And at t1Location of time of day (latitude)And longitude)。
Preferably, the astronomical star navigation system fixed to a moving carrier consists of two said systems having the same target angle, different facing angles and respective facing angles (b: (b))) Angle of course with the carrier () The method comprises the following steps that a specific geometric relation exists between the star bodies, after a specific star body is tracked and a negative feedback tracking form is formed, when the moving carrier is in a high-speed moving state, one of the methods for calculating the posture and the position of the moving carrier is as follows: at a certain time, the spin angle data and the elevation angle data obtained by the respective angle sensors are respectivelyAndby formula (7), formula (8), formula (9), and formula (10), or a formula equivalent to formula (7), formula (8), formula (9), and formula (10),
and ,
and
wherein ,
respectively two system orientation anglesCourse angle of the same moving carrierThe attitude (pitch angle) of the motion carrier itself is solved by the geometric function between the twoAnd course angle) And the position (latitude) of the moving carrier itselfAnd longitude)。
Preferably, the astronomical star navigation system fixed to a moving carrier consists of two said systems having the same orientation angle, different target angles, and respective target angles (b) Pitch angle with moving carrier () Presence characterDetermining the geometric relationship, and after tracking a specific star and forming a negative feedback tracking form, when the moving carrier is in a high-speed moving state, one of the methods for resolving the attitude and the position of the moving carrier is as follows: at a certain time, the spin angle data and the elevation angle data obtained by the respective angle sensors are respectivelyAndby formula (11), formula (12), formula (13), and formula (14), or by formulae equivalent to formula (11), formula (12), formula (13), and formula (14),
and ,
and
wherein ,
respectively two system target anglesPitch angle of co-moving carrierThe attitude (pitch angle) of the motion carrier itself is solved by the geometric function between the twoAnd course angle) And the position (latitude) of the moving carrier itselfAnd longitude)。
Drawings
Figure 1 is a schematic diagram of a spin-elevation starlight tracking system,
in the figure: a high-order reflection condenser lens 2 position sensor 3 of a plane reflector 1, an elevation axis motor 4, a spin axis motor 5, an absolute elevation angle sensor (or an encoder) 6, an absolute spin sensor (or an encoder) 7, a color filter 8 and a starlight condensing system 9.
Figure 2 is a schematic diagram of a specific design of a spin-elevation star tracker in an example embodiment,
in the figure:
a plane mirror 10, a window glass 11, a spherical aberration compensating plate 12, a condenser lens 13, a color filter 14, a position sensor 15, a spin angle sensor 16, a spin axis motor 17, a spin rotation bearing block 18, and a spin rotation bearing block 19.
Figure 3 is a schematic diagram of an aircraft navigator composed of two spin-elevation star light tracking systems in an example embodiment,
in the figure:
the tracking system 20 the tracking system 21 fixes the platen 22 and the roll axis of rotation 23 and the fiber optic angular displacement sensor 24.
Figure 4 is a schematic diagram of a stabilized platform consisting of two spin-elevation star-light tracking systems in an example embodiment,
in the figure:
tracking system 25 tracking system 26 fixes plate 27 fixed plate 28.
Detailed Description
The invention discloses a star light tracking system based on a spin-elevation angle tracking theory, which consists of a plane reflector, a star light condensing system, a position sensor, an angle sensor and an electronic device forming a negative feedback tracking mode. The spin-elevation starlight tracking system can be combined in different forms to realize various scientific applications, including but not limited to, a non-inertial astronomical stable platform, an astronomical starlight navigator for synchronously measuring the attitude and the position of a carrier, and the like; the spin-elevation star light tracking system can also be combined with other inertial gyroscopes and optical gyroscopes to form an astronomical star light navigator with different functions.
Specific examples of applications are:
(1) design of spin-elevation star tracking system:
fig. 2 shows a specific design of the star tracker described herein, in which the optical system is an arrangement of coaxial devices, the axis of the optical system is the spin axis of the plane mirror 10, the optical system is stably fixed inside a metal housing with a length of about 400mm, and the incident light is projected onto the plane mirror 10 which can perform spin and elevation motions through the window glass 11. The star light condensing system consists of 3 main components, namely a spherical aberration compensating plate 12, a condensing lens 13 and a color filter 14, wherein aberration is a main source of system error for a high-precision optical system, although a spin-tracking mode is used, the aberration of the spherical lens needs to be corrected through a Schmidt compensating plate (12), the color filter (14) is mainly used for adjusting light intensity, and an infrared cut-off plate can be used for removing heat possibly generated on a position sensor 15. The light passing through the star light condenser system is focused on the position sensor 15, and its negative feedback control loop has been illustrated in the schematic diagram of fig. 1. 16 is a spin angle sensor, if possible, the sensor can use a high-digit single-turn absolute encoder with the identification precision reaching an angular second level, so that the identification precision reaches the angular second level, and generally, an encoder of 18-20 bits is available; if the precision requirement is not high, a 14-16 bit encoder can also be used. A spin axis motor 17 and two rotating bearing mounts for the spin axis 18, 19, bearings of special construction and materials may be used if desired to accommodate the harsh operating environment of a potential navigation space. Preferably, when the accuracy of the angular sensor reaches the order of arc seconds, the accuracy of the star tracker can also reach the order of arc seconds. Preferably, the negative feedback system and the computing system are designed to be very fast, and a direction and position procedure of the system does not exceed one second, which is a big step forward than that of the existing astronomical star tracking system.
(2) Aircraft navigator combined with the same optical fiber angular displacement sensor:
fig. 3 shows an example of an application of the star tracker of the present invention to an aircraft navigator, in which two systems 20 and 21 form an angle of 60 ° and are firmly mounted on a fixed plate 22, the center line of the 60 ° angle is aligned with the flight direction of the aircraft, the roll axis 23 of the fixed plate 22 is parallel to the flight direction, the roll angle is measured by a concentrically disposed optical fiber angular displacement sensor 24, and a rotary motor (not shown) of the roll axis 23 receives a negative feedback signal from the angular displacement sensor 24 to realize a fixed platform with a zero roll angle.
In such a design, its constraint equation is represented by the following formula:
substituting the relation of the formula (15) into the quaternary simultaneous equations of the formula (7) to the formula (10) can solve the attitude angle and the position of the aircraft.
(3) A local astronomical stable platform consisting of two systems:
the use of stabilized platforms is not limited to use in navigators, which have wide application in many fields, including, but not limited to, the use of devices to accurately track the local platform of an aircraft; a local platform for precise emission of laser or radar waves; a platform for mounting on a floating airship for directional transmission of signals; for turrets on bumpy vessels, small launchers, etc. Using two spin-elevation tracking systems, a local astronomical stabilized platform can be constructed, the schematic diagram of which is shown in fig. 4.
Two spin-elevation star tracker systems 25 and 26 are fixed on a plate 27, their spin axes are perpendicular to each other, and the data obtained by the two perpendicular tracker systems must be mutually irrelevant, so when the two systems are aligned with each otherSpin angle of system 25 during satellite trackingElevation angleSum of spin angles with system 26Elevation angleAre independent from each other, and because they are located at the same local position, the position parameters are known data; preferably, when they track the same star at the local location, the respective spin and elevation angle data and the local longitude and declination position coordinates are input into equations (1) and (2) to obtain angle-oriented and target angle data, respectively, and the target angle obtained by system 25The difference from the theoretical value is used to control the pitch motion of the plate 27 in the x-direction, the target angle obtained by the system 26The difference from the theoretical value is used to control the roll movement of the plate 28 in the y-direction, so that the stationary plate 27 becomes a stable platform with the star as the reference frame under the control of the systems 25, 26. The angle-oriented data acquired by the two systems should be perpendicular to each other, thereby being used as a criterion for whether the stable platform works normally.

Claims (7)

1. A starlight navigation system based on new spin-elevation tracking theory is characterized in that the system comprises a plane reflector (1), a starlight condensing system (9), a position sensor (3), a negative feedback electronic system and an angle sensor (6, 7), wherein,
the plane reflector (1) is used for collecting starlight and reflecting the starlight to the central axis of the starlight focusing system (9) through the tracking driving mechanisms (4, 5),
the starlight condensing system (9) is used for focusing the starlight to enable the light intensity of the collected starlight to reach the density suitable for the detection of the position sensor (3),
the position sensor (3) is used for photoelectric conversion, changes the position of the light spot on the position sensor and converts the light spot into an electric signal,
the negative feedback electronic system amplifies the electric signals and feeds the amplified electric signals back to the tracking driving mechanisms (4 and 5) of the plane reflecting mirror (1) to enable light spots positioned on the position sensor (3) to be stationary at the central part of the position sensor (3),
the angle sensors (6, 7) are used for reading the data of the spin angle and the elevation angle of the plane mirror (1) when the light spot is still at the central part of the position sensor (3), and guiding the data into an electronic computer system loaded with a spin-elevation angle tracking formula for calculation, and the calculated data is used for the starlight navigation.
2. A system as claimed in claim 1, characterized in that the system comprises a plane mirror (1) having a self-rotating axis and an elevation axis, the self-rotating axis being directed towards the central part of the position sensor (3).
3. A system according to claim 1, characterized in that the system comprises a starlight concentrating system (9) comprising a high order mirror (2) defined by a color filter (8), by the literature (y.t. chen et al, Off-axis reflection surface illumination Energy application, Solar Energy 80 (2006) 268) or a system of a color filter (14), a Schmidt compensator (12), a condenser lens (13) capable of greatly reducing the aberration of the starlight spot and adjusting the light intensity to a density suitable for detection by the position sensor (3).
4. A system as claimed in claim 1, wherein after the system tracks a specific star and forms a negative feedback tracking mode, one of the solutions of the system to any two parameters of the attitude and the position of the system is: at a certain pointAt one instant, spin angle data obtained by the angle sensors (6, 7) shown in FIG. 1<math display = 'block'> <mrow> <mi>&amp;rho;</mi> </mrow></math>Elevation angle data<math display = 'block'> <mrow> <mi>&amp;theta;</mi> </mrow></math>By the formula (1) and the formula (2), or the formula equivalent to the formula (1) and the formula (2),
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mi>&amp;beta;</mi> <mi>&amp;rho;</mi> <mo>=</mo> <mi>&amp;delta;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> <mo>&amp;minus;</mo> <mi>&amp;phiv;</mi> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>1</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;lambda;</mi> <mi>&amp;phiv;</mi> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mo>&amp;minus;</mo> <mi>&amp;beta;</mi> <mi>&amp;rho;</mi> <mo>=</mo> <mo>&amp;minus;</mo> <mi>&amp;Phi;</mi> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>2</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
wherein ,
<math display = 'block'> <mrow> <mi>&amp;beta;</mi> <mo>=</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;minus;</mo> <mi>&amp;theta;</mi> </mrow></math>
solve the posture (target angle) of itself<math display = 'block'> <mrow> <mi>&amp;lambda;</mi> </mrow></math>And facing angle<math display = 'block'> <mrow> <mi>&amp;phiv;</mi> </mrow></math>) Or the position (latitude) of itself<math display = 'block'> <mrow> <mi>&amp;Phi;</mi> </mrow></math>And longitude<math display = 'block'> <mrow> <mi>&amp;omega;</mi> </mrow></math>) Or target angle<math display = 'block'> <mrow> <mi>&amp;lambda;</mi> </mrow></math>Facing angle<math display = 'block'> <mrow> <mi>&amp;phiv;</mi> </mrow></math>Latitude and longitude<math display = 'block'> <mrow> <mi>&amp;Phi;</mi> </mrow></math>Longitude, longitude<math display = 'block'> <mrow> <mi>&amp;omega;</mi> </mrow></math>Any two of the four parameters.
5. A system as claimed in claim 1, wherein after tracking a specific star and forming a negative feedback tracking mode, when the system itself is still in the celestial coordinate system or its motion speed is much less than the linear velocity of the earth's surface generated by the rotation of the earth, one of the methods for solving the attitude and position of the system itself is: at time t1And time t2The spin angle data and the elevation angle data obtained by the angle sensors (6, 7) are respectively<math display = 'block'> <mrow> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow></math>And<math display = 'block'> <mrow> <msub> <mi>&amp;rho;</mi> <mn>2</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> </mrow></math>by formula (3), formula (4), formula (5) and formula (6), or with formula (3), formula (4), formula (6)5) A formula equivalent to formula (6),
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>&amp;delta;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> <mo>&amp;minus;</mo> <mi>&amp;phiv;</mi> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>3</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;lambda;</mi> <mi>&amp;phiv;</mi> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mo>&amp;minus;</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>&amp;minus;</mo> <mi>&amp;Phi;</mi> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>4</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable></math>
and ,
<math display = 'block'> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;minus;</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> </mrow></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>&amp;delta;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> <mo>&amp;minus;</mo> <mi>&amp;phiv;</mi> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>5</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;lambda;</mi> <mi>&amp;phiv;</mi> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mo>&amp;minus;</mo> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>&amp;minus;</mo> <mi>&amp;Phi;</mi> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>6</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable></math>
and
<math display = 'block'> <mrow> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;minus;</mo> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> </mrow></math>
wherein ,
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>&amp;omega;</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>&amp;omega;</mi> <mo>+</mo> <mi>&amp;Omega;</mi> <mfenced open = '(' close = ')'> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&amp;minus;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mfenced> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mrow> <mi>&amp;Omega;</mi> </mrow></math>for the rotation speed of the earth, the system is solved when the system is still in an celestial coordinate system or the movement speed of the system is far less than the earth generated by rotationAttitude of the system itself (target angle) at surface linear velocity<math display = 'block'> <mrow> <mi>&amp;lambda;</mi> </mrow></math>And facing angle<math display = 'block'> <mrow> <mi>&amp;phiv;</mi> </mrow></math>) And at t1Location of time of day (latitude)<math display = 'block'> <mrow> <mi>&amp;Phi;</mi> </mrow></math>And longitude<math display = 'block'> <mrow> <mi>&amp;omega;</mi> </mrow></math>)。
6. A system according to claim 1, wherein the astronomical navigation system fixed to a moving carrier is composed of two said systems having the same target angle, different orientation angles and respective orientation angles: (<math display = 'block'> <mrow> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> </mrow></math>) Angle of course with the carrier (<math display = 'block'> <mrow> <mi>&amp;phiv;</mi> </mrow></math>) The method comprises the following steps that a specific geometric relation exists between the star bodies, after a specific star body is tracked and a negative feedback tracking form is formed, when the moving carrier is in a high-speed moving state, one of the methods for calculating the posture and the position of the moving carrier is as follows: at a certain time, the spin angle data and the elevation angle data obtained by the respective angle sensors are respectively<math display = 'block'> <mrow> <msub> <mi>&amp;rho;</mi> <mn>3</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> </mrow></math>And<math display = 'block'> <mrow> <msub> <mi>&amp;rho;</mi> <mn>4</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;theta;</mi> <mn>4</mn> </msub> </mrow></math>by formula (7), formula (8), formula (9), and formula (10), or a formula equivalent to formula (7), formula (8), formula (9), and formula (10),
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;beta;</mi> <mn>3</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>&amp;delta;</mi> <mfenced open = '(' close = ')'> <mrow> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> <mi>&amp;Phi;</mi> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> <mo>&amp;minus;</mo> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>7</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;lambda;</mi> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mo>&amp;minus;</mo> <msub> <mi>&amp;beta;</mi> <mn>3</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>&amp;minus;</mo> <mi>&amp;Phi;</mi> <mi>&amp;delta;</mi> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> <mi>&amp;Phi;</mi> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>8</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
and ,
<math display = 'block'> <mrow> <msub> <mi>&amp;beta;</mi> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;minus;</mo> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> </mrow></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;beta;</mi> <mn>4</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>4</mn> </msub> <mo>=</mo> <mi>&amp;delta;</mi> <mfenced open = '(' close = ')'> <mrow> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> <mi>&amp;Phi;</mi> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> <mo>&amp;minus;</mo> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> <mi>&amp;lambda;</mi> <mi>&amp;Phi;</mi> </mrow> </mfenced> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>9</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;lambda;</mi> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mo>&amp;minus;</mo> <msub> <mi>&amp;beta;</mi> <mn>4</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>4</mn> </msub> <mo>=</mo> <mo>&amp;minus;</mo> <mi>&amp;Phi;</mi> <mi>&amp;delta;</mi> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> <mi>&amp;Phi;</mi> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>10</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
and
<math display = 'block'> <mrow> <msub> <mi>&amp;beta;</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;minus;</mo> <msub> <mi>&amp;theta;</mi> <mn>4</mn> </msub> </mrow></math>
wherein ,
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>f</mi> <mfenced open = '(' close = ')'> <mi>&amp;phiv;</mi> </mfenced> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> <mo>=</mo> <mi>g</mi> <mfenced open = '(' close = ')'> <mi>&amp;phiv;</mi> </mfenced> </mtd> </mtr> </mtable></math>
respectively two system orientation angles<math display = 'block'> <mrow> <msub> <mi>&amp;phiv;</mi> <mn>3</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;phiv;</mi> <mn>4</mn> </msub> </mrow></math>Course angle of the same moving carrier<math display = 'block'> <mrow> <mi>&amp;phiv;</mi> </mrow></math>The attitude (pitch angle) of the motion carrier itself is solved by the geometric function between the two<math display = 'block'> <mrow> <mi>&amp;lambda;</mi> </mrow></math>And course angle<math display = 'block'> <mrow> <mi>&amp;phiv;</mi> </mrow></math>) And the position (latitude) of the moving carrier itself<math display = 'block'> <mrow> <mi>&amp;Phi;</mi> </mrow></math>And longitude<math display = 'block'> <mrow> <mi>&amp;omega;</mi> </mrow></math>)。
7. A system according to claim 1, wherein the astronomical navigation system fixed to a moving carrier is composed of two said systems having the same orientation angle, different target angles and respective target angles (b<math display = 'block'> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> </mrow></math>) Pitch angle with moving carrier (<math display = 'block'> <mrow> <mi>&amp;lambda;</mi> </mrow></math>) The method for resolving the attitude and the position of the moving carrier when the moving carrier is in a high-speed moving state after a specific star body is tracked and a negative feedback tracking form is formed, wherein the specific geometrical relationship exists, and one of the methods is as follows: at a certain time, the spin angle data and the elevation angle data obtained by the respective angle sensors are respectively<math display = 'block'> <mrow> <msub> <mi>&amp;rho;</mi> <mn>5</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;theta;</mi> <mn>5</mn> </msub> </mrow></math>And<math display = 'block'> <mrow> <msub> <mi>&amp;rho;</mi> <mn>6</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;theta;</mi> <mn>6</mn> </msub> </mrow></math>by formula (11), formula (12), formula (13), and formula (14), or by formulae equivalent to formula (11), formula (12), formula (13), and formula (14),
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;beta;</mi> <mn>5</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>5</mn> </msub> <mo>=</mo> <mi>&amp;delta;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <mi>&amp;Phi;</mi> </mrow> </mfenced> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mfenced open = '(' close = ')'> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <mi>&amp;Phi;</mi> <mo>&amp;minus;</mo> <mi>&amp;phiv;</mi> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <mi>&amp;Phi;</mi> </mrow> </mfenced> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>11</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <mi>&amp;phiv;</mi> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mo>&amp;minus;</mo> <msub> <mi>&amp;beta;</mi> <mn>5</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>5</mn> </msub> <mo>=</mo> <mo>&amp;minus;</mo> <mi>&amp;Phi;</mi> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>12</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
and ,
<math display = 'block'> <mrow> <msub> <mi>&amp;beta;</mi> <mn>5</mn> </msub> <mo>=</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;minus;</mo> <msub> <mi>&amp;theta;</mi> <mn>5</mn> </msub> </mrow></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;beta;</mi> <mn>6</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>6</mn> </msub> <mo>=</mo> <mi>&amp;delta;</mi> <mfenced open = '(' close = ')'> <mrow> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> <mi>&amp;Phi;</mi> </mrow> </mfenced> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mfenced open = '(' close = ')'> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> <mi>&amp;Phi;</mi> <mo>&amp;minus;</mo> <mi>&amp;phiv;</mi> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> <mi>&amp;Phi;</mi> </mrow> </mfenced> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>13</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> <mi>&amp;phiv;</mi> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <mo>&amp;minus;</mo> <msub> <mi>&amp;beta;</mi> <mn>6</mn> </msub> <msub> <mi>&amp;rho;</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>&amp;minus;</mo> <mi>&amp;Phi;</mi> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>+</mo> <mi>&amp;delta;</mi> <mi>&amp;omega;</mi> <mi>&amp;phiv;</mi> <mi>&amp;Phi;</mi> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;</mtext> <mo stretchy='false'>(</mo> <mn>14</mn> <mo stretchy='false'>)</mo> </mtd> </mtr> <mtr> <mtd> <mtext>&amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp; &amp;nbsp;&amp;nbsp;</mtext> <mo>&amp;minus;</mo> <mi>&amp;delta;</mi> <mi>&amp;phiv;</mi> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable></math>
and
<math display = 'block'> <mrow> <msub> <mi>&amp;beta;</mi> <mn>6</mn> </msub> <mo>=</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>&amp;minus;</mo> <msub> <mi>&amp;theta;</mi> <mn>6</mn> </msub> </mrow></math>
wherein ,
<math display = 'block'> <mtable columnalign='left' linebreak='true'> <mtr> <mtd> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <mo>=</mo> <mi>F</mi> <mfenced open = '(' close = ')'> <mi>&amp;lambda;</mi> </mfenced> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> <mo>=</mo> <mi>G</mi> <mfenced open = '(' close = ')'> <mi>&amp;lambda;</mi> </mfenced> </mtd> </mtr> </mtable></math>
respectively two system target angles<math display = 'block'> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> </mrow></math>、<math display = 'block'> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>6</mn> </msub> </mrow></math>Pitch angle of co-moving carrier<math display = 'block'> <mrow> <mi>&amp;lambda;</mi> </mrow></math>The attitude (pitch angle) of the motion carrier itself is solved by the geometric function between the two<math display = 'block'> <mrow> <mi>&amp;lambda;</mi> </mrow></math>And course angle<math display = 'block'> <mrow> <mi>&amp;phiv;</mi> </mrow></math>) And the position (latitude) of the moving carrier itself<math display = 'block'> <mrow> <mi>&amp;Phi;</mi> </mrow></math>And longitude<math display = 'block'> <mrow> <mi>&amp;omega;</mi> </mrow></math>)。
CN201710782835.0A 2017-09-03 2017-09-03 Star light navigation system based on spin-elevation tracking theory and resolving method thereof Active CN107677266B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710782835.0A CN107677266B (en) 2017-09-03 2017-09-03 Star light navigation system based on spin-elevation tracking theory and resolving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710782835.0A CN107677266B (en) 2017-09-03 2017-09-03 Star light navigation system based on spin-elevation tracking theory and resolving method thereof

Publications (2)

Publication Number Publication Date
CN107677266A true CN107677266A (en) 2018-02-09
CN107677266B CN107677266B (en) 2023-06-20

Family

ID=61135953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710782835.0A Active CN107677266B (en) 2017-09-03 2017-09-03 Star light navigation system based on spin-elevation tracking theory and resolving method thereof

Country Status (1)

Country Link
CN (1) CN107677266B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763258A (en) * 2019-11-06 2020-02-07 中国北方车辆研究所 Turret rotation angle measuring system based on rotary connector and coded disc
CN114142926A (en) * 2021-10-15 2022-03-04 北京遥测技术研究所 Ultra-far deep space laser communication capturing and tracking system
CN114739307A (en) * 2022-04-08 2022-07-12 中国人民解放军国防科技大学 All-fiber structure combined attitude determination device and application method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564275A (en) * 1984-06-21 1986-01-14 Mcdonnell Douglas Corporation Automatic heliostat track alignment method
US20060085130A1 (en) * 2004-10-18 2006-04-20 Trex Enterprises Corporation Daytime stellar imager for attitude determination
CN101236296A (en) * 2008-01-31 2008-08-06 北京控制工程研究所 Ultraviolet navigation sensor optical system
CN101368764A (en) * 2008-09-01 2009-02-18 陈应天 Solar furnace adopting spin-elevation tracking mode
CN101788296A (en) * 2010-01-26 2010-07-28 北京航空航天大学 SINS/CNS deep integrated navigation system and realization method thereof
CN101859014A (en) * 2010-06-09 2010-10-13 中国科学院电工研究所 Azimuth-elevation tracking method of heliostat with reflecting mirror surface deviated from rotating center
CN102590831A (en) * 2012-02-13 2012-07-18 北京华力创通科技股份有限公司 Method and device for judging satellite visibility under carrier rotating condition
CN103076015A (en) * 2013-01-04 2013-05-01 北京航空航天大学 SINS/CNS integrated navigation system based on comprehensive optimal correction and navigation method thereof
CN103676960A (en) * 2012-09-11 2014-03-26 北京信普尼科技有限公司 Efficient concentrating solar tracking self-calibration device and application thereof
CN105468032A (en) * 2015-11-30 2016-04-06 北京控制工程研究所 Starlight orientation instrument structure applied to all-time starlight navigation
CN105806346A (en) * 2014-12-31 2016-07-27 上海新跃仪表厂 Medium and high orbit constellation intersatellite photographic observation sensor and intersatellite angular distance measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672655B (en) * 2009-09-25 2011-06-08 北京航空航天大学 Measuring method for position, posture and course of car on the ground based on double shaft photoelectric measurement system
CN104296754B (en) * 2014-10-10 2017-09-19 北京大学 Autonomous navigation system and its autonomous navigation method based on laser space communication terminal

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564275A (en) * 1984-06-21 1986-01-14 Mcdonnell Douglas Corporation Automatic heliostat track alignment method
US20060085130A1 (en) * 2004-10-18 2006-04-20 Trex Enterprises Corporation Daytime stellar imager for attitude determination
CN101236296A (en) * 2008-01-31 2008-08-06 北京控制工程研究所 Ultraviolet navigation sensor optical system
CN101368764A (en) * 2008-09-01 2009-02-18 陈应天 Solar furnace adopting spin-elevation tracking mode
CN101788296A (en) * 2010-01-26 2010-07-28 北京航空航天大学 SINS/CNS deep integrated navigation system and realization method thereof
CN101859014A (en) * 2010-06-09 2010-10-13 中国科学院电工研究所 Azimuth-elevation tracking method of heliostat with reflecting mirror surface deviated from rotating center
CN102590831A (en) * 2012-02-13 2012-07-18 北京华力创通科技股份有限公司 Method and device for judging satellite visibility under carrier rotating condition
CN103676960A (en) * 2012-09-11 2014-03-26 北京信普尼科技有限公司 Efficient concentrating solar tracking self-calibration device and application thereof
CN103076015A (en) * 2013-01-04 2013-05-01 北京航空航天大学 SINS/CNS integrated navigation system based on comprehensive optimal correction and navigation method thereof
CN105806346A (en) * 2014-12-31 2016-07-27 上海新跃仪表厂 Medium and high orbit constellation intersatellite photographic observation sensor and intersatellite angular distance measurement method
CN105468032A (en) * 2015-11-30 2016-04-06 北京控制工程研究所 Starlight orientation instrument structure applied to all-time starlight navigation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, YT: ""Report on the second prototype of non-imaging focusing heliostat and its application in food processing"", 《SOLAR ENERGY》 *
Y.T. CHEN 等: ""Off-axis aberration correction surface in solar energy application"", 《SOLAR ENERGY》 *
陈应天等: "用于轴对称的两级光学聚光器的非成像二次反射镜", 《物理学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763258A (en) * 2019-11-06 2020-02-07 中国北方车辆研究所 Turret rotation angle measuring system based on rotary connector and coded disc
CN114142926A (en) * 2021-10-15 2022-03-04 北京遥测技术研究所 Ultra-far deep space laser communication capturing and tracking system
CN114739307A (en) * 2022-04-08 2022-07-12 中国人民解放军国防科技大学 All-fiber structure combined attitude determination device and application method thereof
CN114739307B (en) * 2022-04-08 2023-10-20 中国人民解放军国防科技大学 All-fiber structure combined attitude determination device and application method thereof

Also Published As

Publication number Publication date
CN107677266B (en) 2023-06-20

Similar Documents

Publication Publication Date Title
CN109459054B (en) Moving base attitude calibration method based on auto-collimation tracking
US5155327A (en) Laser pointing system
JPH04228400A (en) Triaxial attitude control system of spaceship using pole star sensor
CN107677266A (en) Based on the theoretical Star navigation system system of spin low-angle tracking and its calculation method
CN106597393A (en) Spaceborne microwave optical compound tracking and pointing radar on-orbit calibration system and method
ITRM20120664A1 (en) HIGH PRECISION SOLAR ELECTRONIC COMPASS.
CN106502277A (en) Three-axis air-bearing table superhigh precision measurement apparatus and method based on tracking technique
CN111551164B (en) Compensation method for course effect error of rate offset frequency laser gyro north seeker
CN115343743A (en) Astronomical satellite integrated navigation positioning system and method independent of horizontal reference and satellite signal
CN109470274B (en) Vehicle-mounted photoelectric theodolite vehicle-mounted platform deformation measurement system and method
CN111895968B (en) High-precision composite horizontal angle measuring system
US4159419A (en) Three axis stellar sensor
US10690876B2 (en) Enhanced image detection for celestial-aided navigation and star tracker systems
CN115077560A (en) Dynamic detection method for parallelism of optical axis of shipborne visible light and medium wave infrared system
Stachnik et al. Multiple spacecraft Michelson stellar interferometer
CN111380563A (en) Detection device, photoelectric theodolite detection system and aviation airborne optical platform detection system
CN112882498A (en) Three-axis photoelectric search tracking device and method with image rotation inhibiting function
Chen et al. Navigation and geo-tracking system of UAV EO payload
Yu et al. Differential measurement of atmospheric refraction using a telescope with double fields of view
SU1656323A1 (en) Method for determining star coordinates by means of a transducer installed on the space vehicle for making the star catalogue
CN116300417B (en) Large-scale distributed space telescope primary and secondary mirror formation control method
CN115764303B (en) Double-inertial navigation satellite mobile terminal antenna two-axis stable three-axis dynamic tracking method
CN211346822U (en) Big and small visual field combined star measuring sensor device
Chen et al. Research on UAV target localization technology based on master INS information transfer alignment
Liu et al. Rapid Autonomous Navigation of Geosynchronous Satellite Using Novel Infrared Earth Measurements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant