CN107664814B - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN107664814B CN107664814B CN201710974797.9A CN201710974797A CN107664814B CN 107664814 B CN107664814 B CN 107664814B CN 201710974797 A CN201710974797 A CN 201710974797A CN 107664814 B CN107664814 B CN 107664814B
- Authority
- CN
- China
- Prior art keywords
- lens
- image
- focal length
- equal
- imaging optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 125
- 238000003384 imaging method Methods 0.000 claims abstract description 73
- 239000011521 glass Substances 0.000 claims abstract description 8
- 230000014509 gene expression Effects 0.000 claims description 14
- 230000004075 alteration Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;第一透镜为玻璃材质,第二透镜为玻璃材质,第三透镜为塑料材质,第四透镜为塑料材质,第五透镜为塑料材质,第六透镜为塑料材质,第七透镜为塑料材质;且满足下列关系式:‑3≤f1/f≤‑1,1.7≤n1≤2.2,1≤f6/f7≤10;2≤(R1+R2)/(R1‑R2)≤10;1.7≤n2≤2.2。该摄像光学镜头能获得高成像性能的同时,获得低TTL。
Description
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;
第一透镜为玻璃材质,第二透镜为玻璃材质,第三透镜为塑料材质,第四透镜为塑料材质,第五透镜为塑料材质,第六透镜为塑料材质,第七透镜为塑料材质;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的折射率为n1,所述第二透镜的折射率为n2,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,满足下列关系式:
-3≤f1/f≤-1,1.7≤n1≤2.2,1≤f6/f7≤10;
2≤(R1+R2)/(R1-R2)≤10;
1.7≤n2≤2.2。
本发明实施方式相对于现有技术而言,通过上述透镜的配置方式,利用在焦距、折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径的数据上有特定关系的透镜的共同配合,使摄像光学镜头能在获得高成像性能的同时,满足超薄化和广角化的要求。
所述第一透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第一透镜的轴上厚度为d1,且满足下列关系式:0.11≤d1≤0.44。
优选的,所述第二透镜具有正屈折力,其物侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:0.34≤f2/f≤1.19;-2.38≤(R3+R4)/(R3-R4)≤0.65;0.23≤d3≤0.69。
优选的,所述第三透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:1.25≤f3/f≤8.81;-0.96≤(R5+R6)/(R5-R6)≤0.87;0.24≤d5≤0.90。
优选的,所述第四透镜具有负屈折力;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:-8.68≤f4/f≤-1.01;-2.63≤(R7+R8)/(R7-R8)≤2.12;0.11≤d7≤0.50。
优选的,所述第五透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:0.24≤f5/f≤0.86;0.52≤(R9+R10)/(R9-R10)≤2.31;0.31≤d9≤1.99。
优选的,所述第六透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:-10.65≤f6/f≤-0.82;0.50≤(R11+R12)/(R11-R12)≤3.60;0.14≤d11≤0.50。
优选的,所述第七透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:0.93≤(R13+R14)/(R13-R14)≤4.98;-2.33≤f7/f≤-0.37;0.13≤d13≤0.55。
优选的,所述摄像光学镜头的光学总长TTL小于或等于6.16毫米。
优选的,所述摄像光学镜头的光圈F数小于或等于2.21。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。第七透镜L7和像面Si之间可设置有光学过滤片(filter)GF等光学元件。第一透镜L1为玻璃材质,第二透镜L2为玻璃材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质。
在此,定义整体摄像光学镜头10的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的折射率为n1,所述第二透镜的折射率为n2,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7。所述摄像光学镜头10满足下列关系式:-3≤f1/f≤-1,1.7≤n1≤2.2,1≤f6/f7≤10;2≤(R1+R2)/(R1-R2)≤10;1.7≤n2≤2.2。
-3≤f1/f≤-1,规定了第一透镜L1的负屈折力。超过上限规定值时,虽然有利于镜头向超薄化发展,但是第一透镜L1的负屈折力会过强,难以补正像差等问题,同时不利于镜头向广角化发展。相反,超过下限规定值时,第一透镜的负屈折力会变过弱,镜头难以向超薄化发展。优选的,满足-2.99≤f1/f≤-1.52。
1.7≤n1≤2.2,规定了第一透镜L1的折射率,在此范围内更有利于向超薄化发展,同时利于修正像差。优选的,满足1.7≤n1≤1.82。
1≤f6/f7≤10,规定了第六透镜L6的焦距f6与第七透镜L7的焦距f7的比值,可有效降低摄像用光学透镜组的敏感度,进一步提升成像质量。优选的,满足1.05≤f6/f7≤9.5。
2≤(R1+R2)/(R1-R2)≤10,规定了第一透镜L1的形状,在范围外时,随着向超薄广角化发展,很难补正轴外画角的像差等问题。优选的,满足2.10≤(R1+R2)/(R1-R2)≤9.49。
1.7≤n2≤2.2,规定了第二透镜L4的折射率,有利于实现超薄化。优选的,满足1.71≤n2≤1.85。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力;整体摄像光学镜头的焦距为f,第一透镜L1焦距f1,第一透镜L1的轴上厚度d1满足下列关系式:0.11≤d1≤0.44,有利于实现超薄化。优选的,0.17≤d1≤0.35。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,具有正屈折力;整体摄像光学镜头10的焦距为f,第二透镜L2焦距f2,第二透镜L2物侧面的曲率半径R3,第二透镜L2像侧面的曲率半径R4,以及第二透镜L2的轴上厚度d3满足下列关系式:0.34≤f2/f≤1.19,通过将第二透镜L2的正光焦度控制在合理范围,以合理而有效地平衡由具有负光焦度的第一透镜L1产生的球差以及系统的场曲量;-2.38≤(R3+R4)/(R3-R4)≤0.65,规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正轴上色像差问题;0.23≤d3≤0.69,有利于实现超薄化。优选的,0.54≤f2/f≤0.95;-1.49≤(R3+R4)/(R3-R4)≤-0.81;0.36≤d3≤0.56。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凸面,具有正屈折力;整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,以及第三透镜L3的轴上厚度d5满足下列关系式:1.25≤f3/f≤8.81,有利于系统获得良好的平衡场曲的能力,以有效地提升像质;-0.96≤(R5+R6)/(R5-R6)≤0.87,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生;0.24≤d5≤0.90,有利于实现超薄化。优选的,2.01≤f3/f≤7.05;-0.60≤(R5+R6)/(R5-R6)≤0.69;0.39≤d5≤0.72。
本实施方式中,第四透镜L4具有负屈折力;整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,以及第四透镜L4的轴上厚度d7满足下列关系式:-8.68≤f4/f≤-1.01,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性;-2.63≤(R7+R8)/(R7-R8)≤2.12,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题;0.11≤d7≤0.50,有利于实现超薄化。优选的,-5.42≤f4/f≤-1.26;-1.65≤(R7+R8)/(R7-R8)≤1.70;0.17≤d7≤0.40。
本实施方式中,第五透镜L5的物侧面于近轴处为凹面,像侧面于近轴处为凸面,具有正屈折力;整体摄像光学镜头10的焦距为f,第五透镜L5焦距f5,第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,以及第五透镜L5的轴上厚度d9满足下列关系式:0.24≤f5/f≤0.86,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度;0.52≤(R9+R10)/(R9-R10)≤2.31,规定的是第五透镜L5的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题;0.31≤d9≤1.99,有利于实现超薄化。优选的,0.38≤f5/f≤0.69;0.83≤(R9+R10)/(R9-R10)≤1.85;0.50≤d9≤1.59。
本实施方式中,第六透镜L6的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力;整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,第六透镜L6物侧面的曲率半径R11,第六透镜L6像侧面的曲率半径R12,以及第六透镜L6的轴上厚度d11满足下列关系式:-10.65≤f6/f≤-0.82,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性;0.50≤(R11+R12)/(R11-R12)≤3.60,规定的是第六透镜L6的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题0.14≤d11≤0.50,有利于实现超薄化。优选的,-6.66≤f6/f≤-1.02;0.81≤(R11+R12)/(R11-R12)≤2.88;0.22≤d11≤0.40。
本实施方式中,第七透镜L7的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力;整体摄像光学镜头10的焦距为f,所述第七透镜L7物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,第七透镜L7焦距f7,以及第七透镜L7的轴上厚度d13满足下列关系式:0.93≤(R13+R14)/(R13-R14)≤4.98,规定的是第七透镜L7的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题;-2.33≤f7/f≤-0.37,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性;0.13≤d13≤0.55,有利于实现超薄化。优选的,-1.46≤f7/f≤-0.47;0.20≤d13≤0.44。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于6.16毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或等于5.88。
本实施方式中,摄像光学镜头10的光圈F数小于或等于2.21。大光圈,成像性能好。优选的,摄像光学镜头10的光圈F数小于或等于2.17。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。距离、半径与中心厚度的单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离);
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了依据本发明第一实施方式的摄像光学镜头10的设计数据,焦距、距离、半径与中心厚度的单位为mm。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:光学过滤片GF的物侧面的曲率半径;
R16:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:光学过滤片GF的轴上厚度;
d16:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明实施方式1的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
IH:像高
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明实施方式1的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,R1、R2分别代表第一透镜L1的物侧面和像侧面,R3、R4分别代表第二透镜L2的物侧面和像侧面,R5、R6分别代表第三透镜L3的物侧面和像侧面,R7、R8分别代表第四透镜L4的物侧面和像侧面,R9、R10分别代表第五透镜L5的物侧面和像侧面,R11、R12分别代表第六透镜L6的物侧面和像侧面,R13、R14分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
【表4】
驻点个数 | 驻点位置1 | 驻点位置2 | |
R1 | 0 | ||
R2 | 0 | ||
R3 | 0 | ||
R4 | 2 | 0.575 | 0.875 |
R5 | 0 | ||
R6 | 0 | ||
R7 | 0 | ||
R8 | 1 | 0.415 | |
R9 | 0 | ||
R10 | 0 | ||
R11 | 1 | 0.075 | |
R12 | 1 | 1.475 | |
R13 | 1 | 1.425 | |
R14 | 1 | 1.915 |
图2、图3分别示出了波长为470nm、555nm、650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.814mm,全视场像高为2.994mm,对角线方向的视场角为74.75°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明实施方式2的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | 反曲点位置4 | |
R1 | 1 | 0.525 | |||
R2 | 0 | ||||
R3 | 0 | ||||
R4 | 0 | ||||
R5 | 0 | ||||
R6 | 0 | ||||
R7 | 1 | 0.145 | |||
R8 | 2 | 0.375 | 1.125 | ||
R9 | 1 | 0.905 | |||
R10 | 1 | 1.005 | |||
R11 | 2 | 0.245 | 1.725 | ||
R12 | 1 | 0.905 | |||
R13 | 1 | 0.855 | |||
R14 | 1 | 0.735 |
【表8】
图6、图7分别示出了波长为470nm、555nm、650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.816mm,全视场像高为2.994mm,对角线方向的视场角为74.83°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明实施方式3的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
【表12】
图10、图11分别示出了波长为470nm、555nm、650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.833mm,全视场像高为2.994mm,对角线方向的视场角为74.61°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 | 实施例1 | 实施例2 | 实施例3 |
f | 3.899 | 3.904 | 3.941 |
f1 | -5.926 | -4.309 | -11.820 |
f2 | 2.854 | 2.638 | 3.126 |
f3 | 12.628 | 9.794 | 23.161 |
f4 | -16.919 | -8.483 | -5.954 |
f5 | 2.234 | 2.161 | 1.890 |
f6 | -7.553 | -4.774 | -20.986 |
f7 | -2.672 | -4.548 | -2.209 |
f6/f7 | 2.827 | 1.050 | 9.500 |
(R1+R2)/(R1-R2) | 4.870 | 2.100 | 9.498 |
(R3+R4)/(R3-R4) | -0.976 | -1.191 | -1.170 |
(R5+R6)/(R5-R6) | -0.248 | -0.479 | 0.578 |
(R7+R8)/(R7-R8) | 0.485 | 1.413 | -1.317 |
(R9+R10)/(R9-R10) | 1.540 | 1.403 | 1.041 |
(R11+R12)/(R11-R12) | 1.007 | 1.087 | 2.397 |
(R13+R14)/(R13-R14) | 2.004 | 3.323 | 1.863 |
f1/f | -1.520 | -1.104 | -2.999 |
f2/f | 0.732 | 0.676 | 0.793 |
f3/f | 3.238 | 2.508 | 5.877 |
f4/f | -4.339 | -2.173 | -1.511 |
f5/f | 0.573 | 0.554 | 0.480 |
f6/f | -1.937 | -1.223 | -5.325 |
f7/f | -0.685 | -1.165 | -0.560 |
d1 | 0.240 | 0.292 | 0.210 |
d3 | 0.463 | 0.459 | 0.456 |
d5 | 0.599 | 0.552 | 0.484 |
d7 | 0.210 | 0.292 | 0.334 |
d9 | 0.624 | 0.729 | 1.325 |
d11 | 0.300 | 0.336 | 0.276 |
d13 | 0.316 | 0.365 | 0.252 |
Fno | 2.150 | 2.150 | 2.150 |
TTL | 5.199 | 5.601 | 5.549 |
n1 | 1.8211 | 1.8211 | 1.8211 |
n2 | 1.7130 | 1.8540 | 1.7130 |
n3 | 1.5346 | 1.5346 | 1.5346 |
n4 | 1.6613 | 1.6713 | 1.6713 |
n5 | 1.5346 | 1.5346 | 1.5346 |
n6 | 1.5346 | 1.5346 | 1.5346 |
n7 | 1.5352 | 1.5352 | 1.5352 |
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (10)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;所述第一透镜具有负屈折力,所述第二透镜具有正屈折力,所述第三透镜具有正屈折力,所述第四透镜具有负屈折力,所述第五透镜具有正屈折力,所述第六透镜具有负屈折力,所述第七透镜具有负屈折力;
第一透镜为玻璃材质,第二透镜为玻璃材质,第三透镜为塑料材质,第四透镜为塑料材质,第五透镜为塑料材质,第六透镜为塑料材质,第七透镜为塑料材质;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的折射率为n1,所述第二透镜的折射率为n2,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,满足下列关系式:
-3≤f1/f≤-1,1.7≤n1≤2.2,1≤f6/f7≤10;
2≤(R1+R2)/(R1-R2)≤10;
1.7≤n2≤2.2。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第一透镜的轴上厚度为d1,且满足下列关系式:
0.11mm≤d1≤0.44mm。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜其物侧面于近轴为凸面;
所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:
0.34≤f2/f≤1.19;
-2.38≤(R3+R4)/(R3-R4)≤0.65;
0.23mm≤d3≤0.69mm。
4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜其物侧面于近轴为凸面,其像侧面于近轴为凸面;
所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:
1.25≤f3/f≤8.81;
-0.96≤(R5+R6)/(R5-R6)≤0.87;
0.24mm≤d5≤0.90mm。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
-8.68≤f4/f≤-1.01;
-2.63≤(R7+R8)/(R7-R8)≤2.12;
0.11mm≤d7≤0.50mm。
6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜其物侧面于近轴为凹面,其像侧面于近轴为凸面;
所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
0.24≤f5/f≤0.86;
0.52≤(R9+R10)/(R9-R10)≤2.31;
0.31mm≤d9≤1.99mm。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:
-10.65≤f6/f≤-0.82;
0.50≤(R11+R12)/(R11-R12)≤3.60;
0.14mm≤d11≤0.50mm。
8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:
0.93≤(R13+R14)/(R13-R14)≤4.98;
-2.33≤f7/f≤-0.37;
0.13mm≤d13≤0.55mm。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于6.16毫米。
10.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.21。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710974797.9A CN107664814B (zh) | 2017-10-19 | 2017-10-19 | 摄像光学镜头 |
JP2017225275A JP6342058B1 (ja) | 2017-10-19 | 2017-11-23 | 撮像光学レンズ |
US15/842,074 US10268023B1 (en) | 2017-10-19 | 2017-12-14 | Camera optical lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710974797.9A CN107664814B (zh) | 2017-10-19 | 2017-10-19 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107664814A CN107664814A (zh) | 2018-02-06 |
CN107664814B true CN107664814B (zh) | 2020-02-04 |
Family
ID=61098538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710974797.9A Active CN107664814B (zh) | 2017-10-19 | 2017-10-19 | 摄像光学镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107664814B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114089505B (zh) * | 2019-08-20 | 2024-08-06 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111458849B (zh) * | 2020-06-16 | 2020-09-08 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4065123B2 (ja) * | 2001-11-02 | 2008-03-19 | パナソニック フォト・ライティング 株式会社 | ズームレンズ |
JP2012002906A (ja) * | 2010-06-15 | 2012-01-05 | Konica Minolta Opto Inc | 投影レンズ及び投影装置 |
JP5620607B2 (ja) * | 2012-02-22 | 2014-11-05 | 富士フイルム株式会社 | 撮像レンズおよびこれを備えた撮像装置 |
CN104076492B (zh) * | 2013-03-29 | 2017-01-18 | 佳能株式会社 | 透镜装置和包括透镜装置的图像拾取装置 |
CN106291886B (zh) * | 2015-05-12 | 2019-01-01 | 亚太精密工业(深圳)有限公司 | 广角镜头 |
-
2017
- 2017-10-19 CN CN201710974797.9A patent/CN107664814B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107664814A (zh) | 2018-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107664817B (zh) | 摄像光学镜头 | |
CN107664813B (zh) | 摄像光学镜头 | |
CN107664816B (zh) | 摄像光学镜头 | |
CN107797232B (zh) | 摄像光学镜头 | |
CN107797239B (zh) | 摄像光学镜头 | |
CN107678134B (zh) | 摄像光学镜头 | |
CN107678135B (zh) | 摄像光学镜头 | |
CN107942484B (zh) | 摄像光学镜头 | |
CN107797235B (zh) | 摄像光学镜头 | |
CN107797238B (zh) | 摄像光学镜头 | |
CN107664829B (zh) | 摄像光学镜头 | |
CN107797234B (zh) | 摄像光学镜头 | |
CN108089305B (zh) | 摄像光学镜头 | |
CN107664822B (zh) | 摄像光学镜头 | |
CN107817582B (zh) | 摄像光学镜头 | |
CN107678130B (zh) | 摄像光学镜头 | |
CN107942487B (zh) | 摄像光学镜头 | |
CN107942485B (zh) | 摄像光学镜头 | |
CN107664814B (zh) | 摄像光学镜头 | |
CN108254860B (zh) | 摄像光学镜头 | |
CN107907969B (zh) | 摄像光学镜头 | |
CN107907973B (zh) | 摄像光学镜头 | |
CN108227130B (zh) | 摄像光学镜头 | |
CN107976776B (zh) | 摄像光学镜头 | |
CN107907971B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200427 Address after: No. 8, 2 floor, 85 Cavendish Science Park Avenue, Singapore Patentee after: Raytheon solutions Pte Ltd Address before: No. 8, 1st floor, Tongju Science and Technology Building, 10 65th Street, Hongmao Bridge, Singapore Patentee before: Raytheon Technology (Singapore) Co., Ltd |