CN107644413B - 基于邻域比值和自步学习的sar图像变化区域检测方法 - Google Patents

基于邻域比值和自步学习的sar图像变化区域检测方法 Download PDF

Info

Publication number
CN107644413B
CN107644413B CN201710739761.2A CN201710739761A CN107644413B CN 107644413 B CN107644413 B CN 107644413B CN 201710739761 A CN201710739761 A CN 201710739761A CN 107644413 B CN107644413 B CN 107644413B
Authority
CN
China
Prior art keywords
sar image
synthetic aperture
aperture radar
radar sar
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710739761.2A
Other languages
English (en)
Other versions
CN107644413A (zh
Inventor
刘若辰
焦李成
王锐楠
李建霞
冯婕
李阳阳
张向荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Electronic Science and Technology
Original Assignee
Xian University of Electronic Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Electronic Science and Technology filed Critical Xian University of Electronic Science and Technology
Priority to CN201710739761.2A priority Critical patent/CN107644413B/zh
Publication of CN107644413A publication Critical patent/CN107644413A/zh
Application granted granted Critical
Publication of CN107644413B publication Critical patent/CN107644413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了的一种基于邻域比值和自步学习的合成孔径雷达SAR图像变化区域检测方法,主要解决现有技术对合成孔径雷达SAR图像的斑点噪声敏感,易造成合成孔径雷达SAR图像的部分纹理信息丢失的问题。本发明的具体步骤如下:(1)读入合成孔径雷达SAR图像;(2)归一化;(3)计算邻域比值差异值;(4)构建差异值矩阵;(5)选择训练样本集;(6)训练深度信念网络;(7)构建概率矩阵;(8)更新概率矩阵;(9)获得变化检测图像。本发明有效利用原始图像的局部信息和深度信念网络的自学习能力减少了斑点噪声,保留了图像局部信息,提高了变化检测的精度。

Description

基于邻域比值和自步学习的SAR图像变化区域检测方法
技术领域
本发明属于图像处理技术领域,更进一步涉及遥感图像变化检测技术领域中的一种基于邻域比值和自步学习的合成孔径雷达SAR(Synthetic Aperture Radar,SAR)图像变化区域检测方法。本发明可用于对同一地区不同时段的两幅合成孔径雷达SAR图像的邻域像素信息进行比较,得到变化差异图,并用自步学习算法对差异图进行图像分割,得到变化检测图。
背景技术
合成孔径雷达作为一种主动微波传感器,具有分辨率高、全天候、全天时工作以及穿透力强的特点,使合成孔径雷达SAR具有光学遥感图像无法比拟的优势。合成孔径雷达SAR图像变化检测技术是研究同一场景不同时段的两幅或者多幅合成孔径雷达SAR图像发生的区域性变化。其应用场景较为广泛,主要包括自然生态的监控、自然灾害评估和预防、获取地貌变化信息等。
目前合成孔径雷达SAR图像变化检测的分析步骤大致分为两步:(1)生成差异图。此步骤是初步区分2幅合成孔径雷达SAR图像中的未变化类和变化类,并为差异图分析提供基础。其典型算法包括:差值法、均值比值法和对数比值法。这些算法存在的缺点是对相干斑噪声敏感,检测变化精度不高;(2)分析差异图。该步骤是对步骤(1)获得的差异图进行分析,提取变化信息,最终得到两幅图像的变化区域和非变化区域。
Zheng等人在其发表的论文“Using combined difference image and k-meansclustering for合成孔径雷达SAR image change detection”(IEEE Geoscience andRemote Sensing Letters,2014,11(3):691-695)中提出了一种简单实用的差异图融合方法,即组合差异图CDI(Combined Difference Image,CDI)法。该方法的步骤是,首先用差值算子和对数比值算子分别得到合成孔径雷达SAR图像的差值差异图和对数比值差异图。然后对上述差异图进行均值滤波和中值滤波,初步去除噪声干扰和野点。然后再利用人工参数加权法获得做最终融合差异图。最终使用K-means算法分析融合差异图。该方法存在的不足之处是,算法中含有人工参数,需要多次测试才能得出最优参数值,不易根据影像本身的性质进行自动选择。
西安电子科技大学在其拥有的专利技术“基于稀疏表示的合成孔径雷达SAR图像相干斑抑制方法”(专利申请号:201110346349.7,授权公告号:CN102346908B)中提出了一种基于稀疏表示的合成孔径雷达SAR图像相干斑抑制方法。该方法的步骤是,首先对原始合成孔径雷达SAR图像进行对数变换。然后将对数变换后的图像分割为的重叠分块,将图像块的自身信息作为控制因子对其进行稀疏表示。接着应用近似KSVD(K-Singular ValueDecomposition,KSVD)算法进行字典学习,得到自适应字典和更新后的稀疏表示系数。再利用自适应字典和更新后的稀疏表示系数得到图像W,对W进行指数变换得到图像R。最终对由原始合成孔径雷达SAR图像Y和指数变换后的图像R得到的差值图像V进行非线性各向异性扩散,得到最终的去斑图像。该方法存在的不足之处是,字典学习中的误差控制在实际操作中,易造成图像的部分纹理信息丢失,增加后期变化检测的误检率。
发明内容
本发明的目的在于克服上述已有技术的缺点,提出了一种基于邻域比值和自步学习的合成孔径雷达SAR图像变化区域检测方法,以实现对合成孔径雷达SAR图像变化区域的准确检测。该方法结合了邻域比值与自步学习两种方法,由于邻域比值可以充分利用图像的局部信息,而且对仿射变换和噪声也保持一定程度的稳定性,从差异值矩阵中分别随机选择不同的训练样本集依次训练深度信念网络,提升深度信念网络的自学习能力,提高了差异值矩阵中每个元素被划分为变化类的概率的准确度。该方法思路简单明确,通过有效利用原始图像的局部信息和深度信念网络的自学习能力提高了变化检测的精度。
本发明实现上述目的的思路是:首先运用邻域比值方法构建归一化合成孔径雷达SAR图像的差异值矩阵,从差异值矩阵中分别随机选择不同的训练样本集,依次训练一个深度信念网络。再把差异值矩阵所有元素作为测试数据,依次输入到训练好的深度信念网络里进行测试,将深度信念网络的输出结果依次保存到概率矩阵中,更新概率矩阵,最终输出变化检测图像。
本发明实现的具体步骤包括如下:
(1)读入合成孔径雷达SAR图像:
读入同一地区不同时相的两幅已配准且校正的合成孔径雷达SAR图像I1和I2
(2)归一化:
使用归一化公式,对合成孔径雷达SAR图像I1和I2分别进行归一化处理,得到归一化后的合成孔径雷达SAR图像I1'和I2';
(3)计算邻域比值差异值:
(3a)使用灰度值差异性公式,计算归一化后的合成孔径雷达SAR图像I1'和I2'每一个像素点的灰度值的差异性参数;
(3b)使用邻域比值差异值公式,计算归一化后的合成孔径雷达SAR图像I1'和I2'的每一个邻域比值差异值;
(4)构建差异值矩阵:
将归一化后的合成孔径雷达SAR图像I1'和I2'所有像素点的邻域比值差异值,组成一个差异值矩阵;
(5)选择训练样本集:
(5a)从差异值矩阵中随机选取一个元素,将所选元素与其周围3×3邻域的9个元素组成一个训练样本;
(5b)除差异值矩阵中所选随机元素外,从差异值矩阵中分别随机选择其总元素数目的15%,30%,45%,60%,75%的元素,组成5个训练样本集;
(6)训练深度信念网络:
将5个训练样本集的不同样本,依次输入到深度信念网络中,训练深度信念网络;
(7)构建概率矩阵:
将差异值矩阵的每一个元素及其周围3×3邻域元素,依次输入到训练好的深度信念网络中,得到每一个元素的变化概率,将变化概率保存到概率矩阵中;
(8)更新概率矩阵:
(8a)判断概率矩阵中的每一个元素是否大于等于0.5,若是,则执行步骤(8b),否则,执行步骤(8c);
(8b)将元素的值更新为255后执行步骤(9);
(8c)将元素的值更新为0后执行步骤(9);
(9)获得变化检测图像:
将更新后的概率矩阵中所有元素值作为像素灰度值,将像素灰度值转化为变化检测图像。
本发明与现有技术相比具有以下优点:
第一,由于本发明采用了邻域比值方法,构建了归一化后合成孔径雷达SAR图像的差异值矩阵,克服了现有技术中受噪声影响导致不能有效检测出变化区域的问题,使得本发明在进行合成孔径雷达SAR图像变化检测时,提高了变化检测的精度。
第二,由于本发明采用了自步学习方法,从差异值矩阵中分别随机选择不同的训练样本集后再依次训练深度信念网络,克服了现有技术中含有人工参数,需要多次测试才能得出最优参数值,不易根据影像本身的性质进行自动选择的问题,使得本发明在进行合成孔径雷达SAR图像变化检测时提升深度信念网路自学习能力,提高了差异值矩阵中每个元素被划分为变化类的准确度。
附图说明
图1是本发明的流程图;
图2是本发明仿真实验中对Bern地区合成孔径雷达SAR图像的变化检测结果图;
图3是本发明仿真实验中对Ottawa地区合成孔径雷达SAR图像的变化检测结果图;
图4是本发明仿真实验中对Mulargia地区合成孔径雷达SAR图像的变化检测结果图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1,本发明的具体实现步骤如下:
步骤1,读入合成孔径雷达SAR图像。
读入同一地区不同时相的两幅已配准且校正的合成孔径雷达SAR图像I1和I2
步骤2,归一化。
使用下式,对合成孔径雷达SAR图像I1和I2分别进行归一化处理,得到归一化后的合成孔径雷达SAR图像I1'和I2':
其中,I1'表示合成孔径雷达SAR图像I1归一化后的合成孔径雷达SAR图像,min表示取最小值操作,max表示取最大值操作,I2'表示合成孔径雷达SAR图像I2归一化后的合成孔径雷达SAR图像。
步骤3,计算邻域比值差异值。
第一步,使用下式,计算归一化后的合成孔径雷达SAR图像I1'和I2'每一个像素点的灰度值的差异性参数
其中,表示归一化后的合成孔径雷达SAR图像I1'和I2'在第x个像素点处灰度值的方差差异性参数,x表示从归一化后的合成孔径雷达SAR图像I1'和I2'的所有像素点中随机选择的同一个位置的像素点,σ(x)表示在归一化后的合成孔径雷达SAR图像I1'和I2'中,分别以第x个像素点为中心像素的两个3×3邻域Ωx的像素灰度值的方差,μ(y)表示在归一化后的合成孔径雷达SAR图像I1'和I2'中,分别以第y个像素点为中心像素的两个3×3邻域Ωy的像素灰度值的均值,第x个像素点和第y个像素点是归一化后的合成孔径雷达SAR图像I1'和I2'中同一个位置的像素点。
第二步,使用下式,计算归一化后的合成孔径雷达SAR图像I1'和I2'的每一个邻域比值差异值:
其中,D(z)表示在第z个像素点处的邻域比值差异像素值,H1(z)和H2(z)分别表示归一化后的合成孔径雷达SAR图像I1'和I2'在第z个像素点的灰度值,Σ表示求和操作,i表示在归一化后的合成孔径雷达SAR图像I1'或I2'中以第z个像素点为中心像素的3×3邻域中的第i个像素点,∈表示属于符号,Ωz表示以第z个像素点为中心像素的3×3邻域,∧表示且操作,H1(i)表示在归一化合成孔径雷达SAR图像I1'中像素点i的像素值,H2(i)表示在归一化合成孔径雷达SAR图像I2'中像素点i的像素值。
步骤4,构建差异值矩阵。
将归一化后的合成孔径雷达SAR图像I1'和I2'所有像素点的邻域比值差异值,组成一个差异值矩阵。
步骤5,选择训练样本集。
第一步,从差异值矩阵中随机选取一个元素,将所选元素与其周围3×3邻域的9个元素组成一个训练样本。
第二步,除差异值矩阵中所选随机元素外,从差异值矩阵中分别随机选择其总元素数目的15%,30%,45%,60%,75%的元素,组成5个训练样本集。
步骤6,训练深度信念网络。
将5个训练样本集的不同样本,依次输入到深度信念网络中,训练深度信念网络。
训练深度神经网络的具体操作步骤如下:
第一步,将深度信念网络的隐藏层层数设为4,每个隐藏层的节点数目分别为250,150,100,1,深度信念网络的每个隐藏层的结构为一个由多神经元组成的受限玻尔兹曼机RBM网络,深度信念网络的输入层的节点数目为9,输出层的节点数目为1。
第二步,用0到50以内的浮点数随机初始化每个隐藏层受限玻尔兹曼机RBM的权重和偏置,用所选的训练样本集单独地无监督训练每一层RBM网络,将每个隐藏层的受限玻尔兹曼机RBM训练100次,得到每一层RBM网络的最优权重和偏置。
第三步,使用基于最小交叉熵的反向传播算法,对深度信念网络进行微调,得到训练好的深度信念网络。
步骤7,构建概率矩阵。
将差异值矩阵的每一个元素及其周围3×3邻域元素,依次输入到训练好的深度信念网络中,深度信念网络输出每一个矩阵元素被分到变化类的概率,将概率依次保存到概率矩阵中。
步骤8,更新概率矩阵。
第一步,判断概率矩阵中的每一个元素是否大于等于0.5,若是,则执行第二步,否则,执行第三步。
第二步,将元素的值更新为255后执行步骤9。
第三步,将元素的值更新为0后执行步骤9。
步骤9,获得变化检测图像。
将更新后的概率矩阵中所有元素值作为像素灰度值,调用Matlab的imshow函数,将像素灰度值转化为变化检测图像。
下面结合仿真实验对本发明的效果做进一步的说明。
1、仿真条件:
本发明的仿真实验是在主频2.30GHz的Intel Pentium(R)Dual-Core CPU、内存5GB的硬件环境和MATLAB R2014a的软件环境下进行的。
本发明仿真实验所使用的仿真参数如下:
漏检数:统计实验结果图中发生变化区域的像素个数,与参考图中变化区域的像素个数进行对比,把参考图中发生变化但实验结果图中检测为未变化的像素个数,称为漏检数FN。
误检数:统计实验结果图中未发生变化区域的像素个数,与参考图中未变化区域的像素个数进行对比,把参考图中未发生变化但实验结果图中检测为变化的像素个数,称为误检数FP。
总错误数=漏检数+误检数;
正确率PCC:PCC=1-总错误数/总像素数。
衡量检测结果图与参考图一致性的Kappa系数:
其中,PRE表示理论检测精度的一致率,Nc表示实验结果图中像素值是255的像素的总个数,Nu表示实验结果图中像素值是0的像素的总个数,Mc为标准参考图像的像素点的总个数,PCC表示实际检测精度的一致率,卡帕系数Kappa指标检验变化检测结果的精度。
2、仿真内容与结果分析:
本发明的仿真实验使用了三组真实的合成孔径雷达SAR图像数据及相应的变化检测参考图,仿真实验中采用的实验图像数据如下:
图2是本发明仿真实验中对Bern地区合成孔径雷达SAR图像的变化检测结果图。图2(a)是本发明仿真实验中使用的真实的合成孔径雷达SAR图像,该图像选自于Bern地区1999年4月的一幅合成孔径雷达SAR图像,图2(b)是本发明仿真实验中使用的真实的合成孔径雷达SAR图像,该图像选自于Bern地区1999年5月的一幅合成孔径雷达SAR图像,图2(c)是本发明仿真实验中使用的Bern地区的变化检测参考图,图2(d)是本发明仿真实验中采用现有技术的基于邻域比值差异图NR(Neighborhood-based Ratio,NR)方法,获得Bern地区的合成孔径雷达SAR图像的变化检测结果,图2(e)是本发明仿真实验中采用现有技术的基于深度对称卷积耦合网络SCCN(Symmetric Convolutional Coupling Network,SCCN)方法,获得Bern地区的合成孔径雷达SAR图像的变化检测结果,图2(f)是采用本发明技术,获得Bern地区的合成孔径雷达SAR图像的变化检测结果。
图3是本发明仿真实验中对Ottawa地区合成孔径雷达SAR图像的变化检测结果图。图3(a)是本发明仿真实验中使用的真实的合成孔径雷达SAR图像,该图像选自于Ottawa地区1997年5月的一幅合成孔径雷达SAR图像,图3(b)是本发明仿真实验中使用的真实的合成孔径雷达SAR图像,该图像选自于Ottawa地区1997年8月的一幅合成孔径雷达SAR图像,图3(c)是本发明仿真实验中使用的Ottawa地区的变化检测参考图,图3(d)是本发明仿真实验中采用现有技术的基于邻域比值差异图NR方法,获得Ottawa地区的合成孔径雷达SAR图像的变化检测结果,图3(e)是本发明仿真实验中采用现有技术的基于深度对称卷积耦合网络SCCN方法,获得Ottawa地区的合成孔径雷达SAR图像的变化检测结果,图3(f)采用本发明技术,获得Ottawa地区的合成孔径雷达SAR图像的变化检测结果。
图4是本发明仿真实验中对意大利撒丁岛Mulargia湖泊区域合成孔径雷达SAR图像的变化检测结果图。图4(a)是本发明仿真实验中使用的真实的合成孔径雷达SAR图像,该图像选自于意大利撒丁岛Mulargia湖泊区域1996年7月的一幅合成孔径雷达SAR图像,图4(b)是本发明仿真实验中使用的真实的合成孔径雷达SAR图像,该图像选自于意大利撒丁岛Mulargia湖泊区域的1996年9月的一幅合成孔径雷达SAR图像,图4(c)是本发明仿真实验中使用的意大利撒丁岛Mulargia湖泊区域的变化检测参考图,图4(d)是本发明仿真实验中采用现有技术的基于邻域比值差异图NR方法,获得意大利撒丁岛Mulargia湖泊区域的合成孔径雷达SAR图像的变化检测结果,图4(e)是本发明仿真实验中采用现有技术的基于深度对称卷积耦合网络SCCN方法,获得意大利撒丁岛Mulargia湖泊区域的合成孔径雷达SAR图像的变化检测结果,图4(f)是采用本发明技术,获得意大利撒丁岛Mulargia湖泊区域的合成孔径雷达SAR图像的变化检测结果。
本发明的仿真实验采用基于邻域比值差异图NR方法、基于深度对称卷积耦合网络SCCN方法和本发明方法,分别对Bern地区、Ottawa地区和意大利撒丁岛Mulargia湖泊区域合成孔径雷达SAR图像进行变化检测的检测结果进行对比。
图2(c),图2(d),图2(e)和图2(f)中的黑色部分表示仿真实验后检测到的变化区域,白色部分表示仿真实验后检测到的非变化区域。由图2(d)和图2(e)可见,两图中的黑色部分与图2(c)中的黑色部分相同,两图中白色部分比图2(c)中的白色部分多,黑色部分相同表示可以正确检测到非变化区域,白色部分多表示错误检测到变化区域。由图2(f)可见,图中黑色部分和与图2(c)中的黑色部分相同,图2(f)中白色部分比图2(c)中的白色部分少,黑色部分相同表示可以正确检测到非变化区域,白色部分少表示可以正确检测到变化区域。
由表1可见,本发明的总错误像素数分别比NR方法和SCCN方法少了159个和2263个,总错误像素数小表示检测精度高。Kappa系数比NR方法和SCCN方法分别高0.043和0.079,Kappa系数高表示检测精度高。
经分析,采用NR方法和SCCN方法误检测的非变化区域多,采用本发明的方法误检测的非变化区域少,采用本发明方法得到的检测结果图与参考图最为接近。
表1 Bern地区变化检测结果一览表
方法 漏检像素数 错检像素数 总错误像素数 检测正确率 Kappa系数
NR 414 83 497 0.9945 0.809
SCCN 1863 738 2601 0.9318 0.773
本发明 167 171 338 0.9963 0.852
图3(c),图3(d),图3(e)和图3(f)中的黑色部分表示仿真实验后检测到的变化区域,白色部分表示仿真实验后检测到的非变化区域。由图3(d)和图3(e)可见,两图中的黑色部分与图3(c)中的黑色部分相同,两图中白色部分比图3(c)中的白色部分多,黑色部分相同表示可以正确检测到非变化区域,白色部分多表示错误检测到变化区域。由图3(f)可见,图中黑色部分和与图3(c)中的黑色部分相同,图3(f)中白色部分比图3(c)中的白色部分少,黑色部分相同表示可以正确检测到非变化区域,白色部分少表示可以正确检测到变化区域。
由表2可见,本发明的总错误像素数分别比NR方法和SCCN方法少了1308个和3487个,总错误像素数小表示检测精度高。Kappa系数比NR方法和SCCN方法分别高0.038和0.131,Kappa系数高表示检测精度高。
经分析,采用NR方法和SCCN方法误检测的非变化区域多,采用本发明的方法误检测的非变化区域少,采用本发明方法得到的检测结果图与参考图最为接近。
表2 Ottawa地区变化检测结果一览表
方法 漏检像素数 错检像素数 总错误像素数 检测正确率 Kappa系数
NR 2473 1272 3745 0.9753 0.866
SCCN 2714 3210 5924 0.9418 0.773
本发明 517 1920 2437 0.9759 0.904
图4(c),图4(d),图4(e)和图4(f)中的黑色部分表示仿真实验后检测到的变化区域,白色部分表示仿真实验后检测到的非变化区域。由图4(d)和图4(e)可见,两图中的黑色部分与图4(c)中的黑色部分相同,两图中白色部分比图4(c)中的白色部分多,黑色部分相同表示可以正确检测到非变化区域,白色部分多表示错误检测到变化区域。由图4(f)可见,图中黑色部分和与图4(c)中的黑色部分相同,图4(f)中白色部分比图4(c)中的白色部分少,黑色部分相同表示可以正确检测到非变化区域,白色部分少表示可以正确检测到变化区域。
由表3可见,本发明的总错误像素数分别比NR方法和SCCN方法少了13697个和4683个,总错误像素数小表示检测精度高。Kappa系数比NR方法和SCCN方法分别高0.044和0.148,Kappa系数高表示检测精度高。
经分析,采用NR方法和SCCN方法误检测的非变化区域多,采用本发明的方法误检测的非变化区域少,采用本发明方法得到的检测结果图与参考图最为接近。
表3意大利撒丁岛Mulargia湖泊区域变化检测结果一览表
方法 漏检像素数 错检像素数 总错误像素数 检测正确率 Kappa系数
NR 18815 829 19664 0.9415 0.643
SCCN 6511 4139 10650 0.9138 0.539
本发明 5709 258 5967 0.9517 0.687

Claims (5)

1.一种基于邻域比值和自步学习的合成孔径雷达SAR图像变化区域检测方法,其特征在于,包括如下步骤:
(1)读入合成孔径雷达SAR图像:
读入同一地区不同时相的两幅已配准且校正的合成孔径雷达SAR图像I1和I2
(2)归一化:
使用归一化公式,对合成孔径雷达SAR图像I1和I2分别进行归一化处理,得到归一化后的合成孔径雷达SAR图像I1'和I2';
(3)计算邻域比值差异值:
(3a)使用灰度值差异性公式,计算归一化后的合成孔径雷达SAR图像I1'和I2'每一个像素点的灰度值的差异性参数;
(3b)使用邻域比值差异值公式,计算归一化后的合成孔径雷达SAR图像I1'和I2'的每一个邻域比值差异值;
(4)构建差异值矩阵:
将归一化后的合成孔径雷达SAR图像I1'和I2'所有像素点的邻域比值差异值,组成一个差异值矩阵;
(5)选择训练样本集:
(5a)从差异值矩阵中随机选取一个元素,将所选元素与其周围3×3邻域的9个元素组成一个训练样本;
(5b)除差异值矩阵中所选随机元素外,从差异值矩阵中分别随机选取元素总数的15%,30%,45%,60%,75%的元素,组成5个训练样本集;
(6)训练深度信念网络:
将5个训练样本集的不同样本,依次输入到深度信念网络中,训练深度信念网络;
(7)构建概率矩阵:
将差异值矩阵的每一个元素及其周围3×3邻域元素,依次输入到训练好的深度信念网络中,得到每一个元素的变化概率,将变化概率保存到概率矩阵中;
(8)更新概率矩阵:
(8a)判断概率矩阵中的每一个元素是否大于等于0.5,若是,则执行步骤(8b),否则,执行步骤(8c);
(8b)将元素的值更新为255后执行步骤(9);
(8c)将元素的值更新为0后执行步骤(9);
(9)获得变化检测图像:
将更新后的概率矩阵中所有元素值作为像素灰度值,将像素灰度值转化为变化检测图像。
2.根据权利要求1所述的基于邻域比值和自步学习的合成孔径雷达SAR图像变化区域检测方法,其特征在于:步骤(2)中所述的归一化公式如下:
其中,I1'表示合成孔径雷达SAR图像I1归一化后的合成孔径雷达SAR图像,min表示取最小值操作,max表示取最大值操作,I2'表示合成孔径雷达SAR图像I2归一化后的合成孔径雷达SAR图像。
3.根据权利要求1所述的基于邻域比值和自步学习的合成孔径雷达SAR图像变化区域检测方法,其特征在于:步骤(3a)中所述的灰度值差异性公式如下:
其中,表示归一化后的合成孔径雷达SAR图像I1'和I2'在第x个像素点处灰度值的方差差异性参数,x表示从归一化后的合成孔径雷达SAR图像I1'和I2'的所有像素点中随机选择的同一个位置的像素点,σ(x)表示在归一化后的合成孔径雷达SAR图像I1'和I2'中,分别以第x个像素点为中心像素的两个3×3邻域Ωx的像素灰度值的方差,μ(y)表示在归一化后的合成孔径雷达SAR图像I1'和I2'中,分别以第y个像素点为中心像素的两个3×3邻域Ωy的像素灰度值的均值,第x个像素点和第y个像素点是归一化后的合成孔径雷达SAR图像I1'和I2'中同一个位置的像素点。
4.根据权利要求1所述的基于邻域比值和自步学习的合成孔径雷达SAR图像变化区域检测方法,其特征在于:步骤(3b)中所述的邻域比值差异值公式如下:
其中,D(z)表示在第z个像素点处的邻域比值差异像素值,H1(z)和H2(z)分别表示归一化后的合成孔径雷达SAR图像I1'和I2'在第z个像素点的灰度值,表示归一化后的合成孔径雷达SAR图像I1'和I2'在第x个像素点处灰度值的方差差异性参数,Σ表示求和操作,i表示在归一化后的合成孔径雷达SAR图像I1'或I2'中以第z个像素点为中心像素的3×3邻域中的第i个像素点,∈表示属于符号,Ωz表示以第z个像素点为中心像素的3×3邻域,∧表示且操作,H1(i)表示在归一化合成孔径雷达SAR图像I1'中像素点i的像素值,H2(i)表示在归一化合成孔径雷达SAR图像I2'中像素点i的像素值。
5.根据权利要求1所述的基于邻域比值和自步学习的合成孔径雷达SAR图像变化区域检测方法,其特征在于:步骤(6)中所述训练深度信念网络的具体步骤如下:
第一步,将深度信念网络的隐藏层层数设为4,每个隐藏层的节点数目分别为250,150,100,1,深度信念网络的每个隐藏层的结构为一个由多神经元组成的受限玻尔兹曼机RBM网络,深度信念网络的输入层的节点数目为9,输出层的节点数目为1;
第二步,用0到50以内的浮点数随机初始化每个隐藏层受限玻尔兹曼机RBM的权重和偏置,用所选的训练样本集单独地无监督训练每一层RBM网络,将每个隐藏层的受限玻尔兹曼机RBM训练100次,得到每一层RBM网络的最优权重和偏置;
第三步,使用基于最小交叉熵的反向传播算法,对深度信念网络进行微调,得到训练好的深度信念网络。
CN201710739761.2A 2017-08-25 2017-08-25 基于邻域比值和自步学习的sar图像变化区域检测方法 Active CN107644413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710739761.2A CN107644413B (zh) 2017-08-25 2017-08-25 基于邻域比值和自步学习的sar图像变化区域检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710739761.2A CN107644413B (zh) 2017-08-25 2017-08-25 基于邻域比值和自步学习的sar图像变化区域检测方法

Publications (2)

Publication Number Publication Date
CN107644413A CN107644413A (zh) 2018-01-30
CN107644413B true CN107644413B (zh) 2019-11-01

Family

ID=61110503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710739761.2A Active CN107644413B (zh) 2017-08-25 2017-08-25 基于邻域比值和自步学习的sar图像变化区域检测方法

Country Status (1)

Country Link
CN (1) CN107644413B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108460392B (zh) * 2018-03-09 2020-04-07 西安电子科技大学 基于网络结构优化的sar图像变化区域检测方法
CN112418282A (zh) * 2020-11-13 2021-02-26 江苏禹空间科技有限公司 一种基于cnn-cdcn的图像变化检测方法
CN113129292B (zh) * 2021-04-27 2023-04-07 陕西师范大学 基于迭代马尔科夫的合成孔径雷达影像变化检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793690A (zh) * 2014-01-27 2014-05-14 天津科技大学 一种基于皮下血流探测的人体生物活体检测方法及应用
CN103839257A (zh) * 2013-12-24 2014-06-04 西安电子科技大学 一种广义高斯k&i的sar图像变化检测方法
CN104077596A (zh) * 2014-06-18 2014-10-01 河海大学 一种无标志物跟踪注册方法
CN104091181A (zh) * 2014-07-15 2014-10-08 中国科学院合肥物质科学研究院 基于深度受限玻尔兹曼机的害虫图像自动识别方法及系统
CN105844279A (zh) * 2016-03-22 2016-08-10 西安电子科技大学 基于深度学习和sift特征的sar图像变化检测方法
CN106203521A (zh) * 2016-07-15 2016-12-07 西安电子科技大学 基于差异图自步学习的sar图像变化检测方法
CN106558058A (zh) * 2016-11-29 2017-04-05 北京图森未来科技有限公司 分割模型训练方法、道路分割方法、车辆控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839257A (zh) * 2013-12-24 2014-06-04 西安电子科技大学 一种广义高斯k&i的sar图像变化检测方法
CN103793690A (zh) * 2014-01-27 2014-05-14 天津科技大学 一种基于皮下血流探测的人体生物活体检测方法及应用
CN104077596A (zh) * 2014-06-18 2014-10-01 河海大学 一种无标志物跟踪注册方法
CN104091181A (zh) * 2014-07-15 2014-10-08 中国科学院合肥物质科学研究院 基于深度受限玻尔兹曼机的害虫图像自动识别方法及系统
CN105844279A (zh) * 2016-03-22 2016-08-10 西安电子科技大学 基于深度学习和sift特征的sar图像变化检测方法
CN106203521A (zh) * 2016-07-15 2016-12-07 西安电子科技大学 基于差异图自步学习的sar图像变化检测方法
CN106558058A (zh) * 2016-11-29 2017-04-05 北京图森未来科技有限公司 分割模型训练方法、道路分割方法、车辆控制方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAR图像变化检测算法研究;曹宇;《中国优秀硕士学位论文全文数据库 信息科技辑》;20130515(第05期);第7-8页 *
Self-paced learning for latent variable models;Kumar M, Packer B, Koller D;《International Conference on Neural Information Processing Systems》;20101231;第1189-1197页 *

Also Published As

Publication number Publication date
CN107644413A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
CN107516082B (zh) 基于自步学习的sar图像变化区域检测方法
CN105844279B (zh) 基于深度学习和sift特征的sar图像变化检测方法
Kanarachos et al. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform
CN104680542B (zh) 基于在线学习的遥感影像变化检测方法
CN107644413B (zh) 基于邻域比值和自步学习的sar图像变化区域检测方法
CN105608698A (zh) 一种基于sae的遥感图像变化检测方法
CN104200471B (zh) 基于自适应权值图像融合的sar图像变化检测方法
CN103942540A (zh) 基于曲波纹理分析和svm-knn分类的假指纹检测算法
Zeng et al. Image fusion for land cover change detection
CN109029993A (zh) 结合遗传算法优化参数和机器视觉的轴承故障检测算法
CN103824302B (zh) 基于方向波域图像融合的sar图像变化检测方法
CN106203521A (zh) 基于差异图自步学习的sar图像变化检测方法
CN108492298A (zh) 基于生成对抗网络的多光谱图像变化检测方法
CN105374047B (zh) 基于改进的双边滤波与聚类的sar图像变化检测方法
CN109002792B (zh) 基于分层多模型度量学习的sar图像变化检测方法
CN108537790A (zh) 基于耦合翻译网络的异源图像变化检测方法
CN109191418A (zh) 一种基于收缩自编码器特征学习的遥感图像变化检测方法
Lam Methodologies for mapping land cover/land use and its change
CN110427997A (zh) 面向复杂遥感影像背景的改进cva变化检测方法
Schwegmann et al. Synthetic aperture radar ship discrimination, generation and latent variable extraction using information maximizing generative adversarial networks
Andriyanov et al. Pattern recognition on radar images using augmentation
CN116402825A (zh) 轴承故障红外诊断方法、系统、电子设备及存储介质
Shang et al. SAR image change detection based on mean shift pre-classification and fuzzy C-means
CN107657615B (zh) 基于增量cae的高分辨sar图像变化检测方法
CN107346549B (zh) 一种利用遥感影像多特征的多类别变化动态阈值检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared