CN107636843A - 用于制造包括串联连接的多个薄膜光伏电池的光伏面板的方法 - Google Patents

用于制造包括串联连接的多个薄膜光伏电池的光伏面板的方法 Download PDF

Info

Publication number
CN107636843A
CN107636843A CN201580079028.1A CN201580079028A CN107636843A CN 107636843 A CN107636843 A CN 107636843A CN 201580079028 A CN201580079028 A CN 201580079028A CN 107636843 A CN107636843 A CN 107636843A
Authority
CN
China
Prior art keywords
battery
branch
finished product
semi
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580079028.1A
Other languages
English (en)
Inventor
约苏·戈伊克特塞亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teknick Foundation
Fundacion Tekniker
Original Assignee
Teknick Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teknick Foundation filed Critical Teknick Foundation
Publication of CN107636843A publication Critical patent/CN107636843A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

用于制造包括串联连接的多个薄膜光伏电池(1)的光伏面板(PV)的方法,该方法包括以下步骤:通过在电绝缘基板(2)上布置金属层(3)、PN结层(4)、透明导电层(5)来获得分层的半成品,金属层(3)用于形成电池(1)的下电极,PN结层(4)用于产生电,透明导电层(5)用于形成电池的上电极;获得所获得的半成品的电特性的表面分布;根据该表面分布来确定使半成品分成多个区域(1)的表面划分,使得区域(1)的电产生能力在区域(1)之间相差所确定的最大百分比;根据获得的表面划分来切割布置在基板(2)上的层(3,4,5);从而获得多个电池(1)并且将电池(1)串联连接,使得获得最大的功率输出。

Description

用于制造包括串联连接的多个薄膜光伏电池的光伏面板的 方法
技术领域
本发明属于光伏面板制造的领域,其中,使用以1微米或2微米厚的层布置的具有高的光吸收能力的材料,因此其可以作为薄膜层被施加在中性承载基板上。具体地,本发明涉及当将这样的电池串联连接时如何进行这样的电池的功率平衡。
背景技术
目前,若干公司正在销售由薄膜制成的光伏面板。目前,用于薄膜光伏电池的最重要的材料是CdTe和CIGS(铜铟镓硒)。至少在实验室样本中,前者具有制造相对简单的优点,而基本上制造更复杂的CIGS具有能够实现比CdTe更高的效率水平的优点。
除了所使用的吸收材料以外,上述两种技术在制造期间光伏电池相对于基板的布置也不同。光伏电池基本上通过布置位于收集电流的两个电极之间的PN结来制作,上述PN结由两种半导体材料或具有两种不同的掺杂水平或掺杂类型的高纯度半导体材料形成,上述两个电极中的一个电极是金属的;并且另一个电极对于大部分光是透明的且导电足够好。在这两种技术中,透明电极通常主要用在电池性能方面起重要作用的透明导电氧化物(TCO)制造,但是,在CdTe中,该TCO是沉积在基板上的第一元件,在CIGS技术中,沉积的第一元件通常是金属电极元件。
对应于电池相对于基板的设置,构造被称为“底板结构(substrate)”(在CIGS中常用,原因是在工作中安装时模块使得基板保持在电池下方)或者“顶板结构(superstrate)”(在CdTe中是常用,原因是在安装时基板设置在电池上方)。显然,在“顶板结构”构造中,用于太阳能电池的沉积的基板必须是透明的以允许光通过,并且通常由玻璃制成。
所描述的本发明适用于透明电极和金属电极的作用有相应改变的两种构造的薄膜光伏电池,但是从现在起,说明将涉及“底板结构”构造中的电池,其中,CIGS是当前最普遍使用的材料,但是也包括在替代常规构造使用时的CdTe本身或者与CIGS关系紧密的锌黄锡矿(kesterite)。
光伏电池从照射到其上的光生成电流,但是所生成的电压非常低,在0.5V至0.8V附近,因此难以直接使用这种电来为其他电气设备供电。为了便于这种应用,通常串联连接多个电池,使得由所述多个电池生成的电压相加达到便于适应期望应用的水平。在由晶体硅电池制成的模块的情况下,模块通常包括至少四十个串联连接的电池,但是电池的数量可以达到一百。
由模块提供的电流与通过所有硅电池的电流相同,如同其电阻由最弱的环节决定的电路(chains)一样,由模块提供的电流由最低质量的电池决定,因此重要的是,所有电池都非常相似,以防止可以大大降低整个模块的效率的单个电池的出现。因此,晶体硅电池通常在制造之后根据其性能进行分类,然后基于具有非常相似特性的电池被组装以形成模块。
薄膜光伏模块的一个优点在于:其可以通过在用不同的材料进行涂覆的连续阶段之间插入若干切割步骤(多达三个)来便于电池的串联连接,使得最终TCO本身执行将电池的正面与下一个电池的背面互连的附加任务。这是通常被称为单片集成的技术,并且在例如专利US4631351中描述。如图1所示,通过使用这种技术,模块被制造为沿模块的长边延长的一系列相同的非常窄的矩形电池,其在短边的方向上串联地横向连接。
这种方法的缺点在于:不能补救电池的不一致性,模块效率将受限于可能占表示总面积的1%至2%之间的面积的最低质量的电池,因此工艺一致性要求非常高,这不易与形成CIGS吸收体的工艺的高度复杂的特性(还不完全清楚)结合。
事实上,在CIGS吸收体中,即使是通过目前已知的更为复杂的真空技术沉积的CIGS吸收体,也总是出现一定比例的小的缺陷区域,被称为“分路(shunt)”,其中吸收体的电特性劣化并且表现为小且弱的短路,这限制了由电池提供的电力,使得用于将在实验室中针对小电池实现的效率水平转移到大尺寸的技术的开发主要集中于减小这些“分路”的不利影响。例如,在来自书籍“THIN-FILM COMPOUND SEMICONDUCTOR VOLTAICS-2009”的文章“Electroluminescence imaging of Cu(In,Ga)Se2 thin film modules”中,提到20×20cm的微型模块中的典型的分路数目在10到20之间。
专利US4640002和US7979969是对于这些分路的通常解决方案的示例,主要包括定位且然后去除薄膜太阳能电池的包含分路的部分。这减小了电池的面积,并且可能严重影响电池的导电能力,使得整个太阳能模块的效率可能由于这种分路的存在或通过消除处理而显著降低。
除了分路的存在以外,CIGS吸收体的电特性本身的不可预测的波动可能导致由同一模块的不同区域提供的电力的巨大变化。首先,CIGS吸收体的工作模式尚不完全清楚,所以不清楚什么是在CIGS吸收体的形成期间要控制的基本参数。其次,CIGS吸收体的化学性质非常复杂。例如,已经发现:在铜、铟、镓或硒的溅射期间,CIGS不是可以被形成的唯一化合物。可以形成其他二元化合物,例如对光伏效应非常不利的Cu2Se,因此吸收体质量可能由于存在这种二元化合物而具有局部渐变。此外,这些化合物中的一些化合物具有与光伏黄铜矿的X射线衍射线基本上相同的X射线衍射线,因此,除非使用更为复杂的分析技术如拉曼散射(Raman scattering),否则不容易确定哪些是已经形成的准确化合物。所有这些都会在CIGS光伏吸收体的形成的结果中引起一些不可预测性。
现在由所有制造商使用的常规单片集成开始于对沉积在基板上的第一层——金属电极层,在CIGS技术的情况下通常是沉积在电绝缘基板上的钼涂层——进行切割。通常用激光进行的所述切割将表面划分成电隔离开的区域,每个电隔离开的区域随后将被发展以形成将与相邻的电池串联地电连接的电池。因此,一旦在沉积CIGS之前对金属电极进行了第一次切割,不能针对在将沉积在该电极上并且然后被处理以形成完整的模块的CIGS中随机获得的效率和分路分布来调整电池的布置。
发明内容
为了克服上述缺点,本发明提供了一种用于制造包括串联连接的多个薄膜光伏电池的光伏面板的方法,所述方法包括以下步骤:
a)通过在电绝缘基板上布置如下的层来获得分层的半成品:
-用于形成电池的下电极的金属层;
-用于电的产生的PN结层;
-用于形成电池的上电极的透明导电层;
b)获得所获得的半成品的电特性或光电特性的表面分布;
c)根据表面分布,确定将半成品分成多个区域的表面划分,使得区域之间的电产生能力的差异小于确定的百分比;
d)根据所获得的表面划分来切割布置在基板上的层,从而获得多个电池;e)将电池串联连接。
因此,通过在薄膜层上切割电池之前了解电特性或光电特性的分布,可以进行引起电池串联连接的定制的切割,使每个电池具有相似的实际电特性。以这种方式,电路中最弱的环节将以最小的量降低电池的阵列的整体效率和功率。该百分比可以如期望的那样低。
优选地,步骤c)被执行成使得电池中的每个电池内的电特性或光电特性的变化低于预定值。在每个电池中具有最小程度的电池间一致性对于提供较高效率的面板将是有利的。
优选地,在未切割的模块上测定的电特性是开路电压、光电特性和/或效率。
有利地,所述方法在步骤a)与步骤b)之间包括以下子步骤:确定半成品的分路的分布;以及从分层的半成品切除分路。
因此,在对轻微缺陷进行测定之前,可以从半成品中去除容易检测的主要缺陷如分路。
优选地,所述方法包括:在步骤b)中确定所述分路或剩余分路;以及切除在步骤b)中确定的分路的后续子步骤。
有利地,使用诸如电致发光、光致发光、暗锁相热成像或光照锁相热成像的成像表征技术来执行步骤b)。
作为优选的替代方案,通过以下操作执行步骤c):通过使用有限元方法以及在步骤b)中确定的电特性对光伏面板(PV)进行建模。
然而,还可以通过直接使用在步骤b)中确定的电特性之一的分布或者在步骤b)中确定的电特性的组合的分布来执行步骤c)。
附图说明
为了完成描述并且为了提供对本发明的更好的理解,提供了一组附图。所述附图形成说明书的组成部分并且示出了本发明的实施方式。所述实施方式不应被解释为限制本发明的范围,而是仅作为可以如何实现本发明的示例。附图包括以下图:
图1示出了相邻布置以形成PV面板的细长矩形电池的典型的现有技术布置。
图2示出了模拟电池或电池的一部分的电部件。
图3示出了具有2D布置的电池或电池的一部分的模型。
图4示出了具有3D布置的电池或电池的一部分的模型。
图5A至图5D以及图6A至图6D示出了切割半成品的层以获得串联连接的两个电池的步骤。
图7示出了典型的现有技术图案,其中没有考虑光电特性的不规则分布。
图8示出了根据本发明的不均匀的切割图案的示例。
图9A至图9E示出了根据现有技术的均匀分布的用于获得具有矩形电池的太阳能面板的步骤。
图9F示出了图9A至图9E的步骤,不同之处在于利用本发明的方法可以获得的切割。
图10示出了执行电池之间的连接的另一种方法。
具体实施方式
如附图所示,本发明设计一种用于制造包括串联连接的多个薄膜光伏电池1的光伏面板PV的方法,所述方法包括以下步骤:
a)通过在电绝缘基板2上布置如下的层来获得分层的半成品:
-用于形成电池1的下电极的金属层3;
-用于电的产生的PN结层4;
-用于形成电池的上电极的透明导电层5;
b)例如使用诸如电致发光、光致发光、暗锁相热成像或光照锁相热成像的成像表征技术来获得所获得的半成品的开路电压(Voc)、光电特性和/或效率的表面分布;
c)根据表面分布,确定将半成品分成多个区域1的表面划分,使得在区域1之间区域1的电产生能力相差确定的最大百分比;
d)根据获得的表面划分来切割布置在基板2上的层3、层4、层5,从而获得多个电池1;
e)将电池1串联连接。
在优选实施方式中,步骤c)被执行成使得电池中的每个电池内的电特性或光电特性的变化低于预定值。
在另一个优选实施方式中,该方法在步骤a)与步骤b)之间包括以下子步骤:确定半成品的分路的分布;以及从分层的半成品切除分路。
如图5A中的示例所示,起始点是绝缘基板2,绝缘基板2上已经沉积有用于电池1形成的不可缺少的层,即,在整个区域上的金属电极3、形成PN结的半导体4和透明电极5,然后将被用于以层3、层4、层5形成没有任何切口的模块。
一旦已经获得上面沉积有层3、层4、层5的基板2,就进行其表征,至少包括用于提供模块的整个区域的测定的表征的过程,从所述表征获得关于每个点的Voc、效率或其他光电特性的空间分布的信息。如在例如在JOURNAL OF VACUUM SCIENCE&TECHNOLOGY A(真空科学与技术期刊A),28卷,665至670页的文章“Imaging characterization techniquesapplied to Cu(In,Ga)Se-2solar cells”中描述的,可以使用诸如电致发光、光致发光、暗锁相热成像或光照锁相热成像的技术来进行该测定。根据这篇文章,在某些假设下,测定是光电响应,可以从中获得开路电压或能量效率的测定。
如图2至图4所示,均匀的太阳能电池的电行为可以通过几个元件即二极管、电流源和两个电阻器的组合以简化形式来描述。
对于具有表面不均匀性的大电池,可以通过使用电模拟程序如SPICE以及如图3所示的二维模型根据期望的精确度的行为模拟来预测其行为,在上述二维模型中,电流源-二极管-电阻器组中的每一个组对应于较大或较小的电池的区域。通过采用如图4所示的3D模型可以达到甚至更好的精确度。
在该附图中,只示出了四个不同的组来以能够容易理解的图说明该构思,但是要清楚的是,该构思可以被扩展到并联布置的任意数目的组。这些组中的每一个组表示在电池的小区域中从透明电极到金属电极的电池中的垂直流动,其通过表示透明电极(TCO,透明导电氧化物)的有限电阻的电阻RTCO以及通过底部处的直接电接触与相邻的组连接,上述直接电接触对应于在大多数情况下电阻非常小的金属电极。
在表示太阳能电池的简化模型(电流源-二极管-电阻器)的每个小区域中,这四个部件的值可以不同,使得可以模拟在某一点处电池的局部行为,类似地,并联连接的所有二极管-源的整体(这些元件在每个点上具有不同值)允许模拟电池的整个表面上的电特性的不均匀分布或者所定位的“分路”的表现。以这种方式,获得描述整个表面的模型,包括整个表面的可以使用数千个这样的太阳能电池的简化模型进行数学处理的不均匀性,上述数千个这样的太阳能电池的简化模型全部如图3那样通过有限电阻RTCO和用于通过金属电极的连接的直接电接触而并联连接,有限电阻RTCO对应于透明电极的电阻。
代替模拟,另一个选择是通过基于以下的实证结论:制造的面板的一致性是足够的,使得当与所示出的那些相比时可以通过非常简单的有限元件来表示模型。
本发明的核心构思是:使用可以得到执行电池的测定的至少一系列电池特性的点测量来执行覆盖有大的光电电池的每个基板(面板)的这样的数学描述,然后使用该测定以及从中得到的数学描述,以确定使面板成为串联连接的较小电池的最优切割是什么,从而使得所生成的电力最大。为此,必须确保在切割和互连之后形成的电池没有一个与其他电池显著不同,特别是所有电池中的所生成的电流基本相等。
由模块的每个小区域生成的电流密度的测量将是管理以对由模块中的所有电池产生的电流密度进行均衡的方式切割模块的目标的最容易的方式,但是现在不存在可以直接测量这种数据的分析技术,所以最好的方法是:执行可以得到模块的有意义的数学模型的一系列测定,该数学模型可以让我们推测每个小区域的电流生成能力。
在诸如US5131954或US2009014052的专利文献中已经描述了将涂覆有三个必不可少的层(金属电极、PN结、透明电极)的基板切割成较小的电池并且然后将它们互连以进行单片集成的方法。在图5A至图5D中示意性地描述了进行切割和互连的方法的示例。
图5A示出了施加有三个主要层(金属电极、PN结和透明电极)的电绝缘基板。在图5B所示的步骤中,已经形成了穿过三个层的切口,这使基板在切口的底部处露出,使得现在存在彼此电绝缘的两个分开的太阳能电池。优选地,可以通过激光执行这种切割。在图5C所示的步骤中,已经在与第一切口相邻的区域中选择性地进行了新的切割,以去除最后两层(PN结和透明电极),使得金属电极区域露出,在CIGS电池的情况下,金属电极是钼。最后,在图5D所示的步骤中,使用金属微导线在金属电极的露出区域与相邻电池的顶部之间形成电连接。这要求微导线两端使用电导体方法例如使用银胶粘剂或者用铟焊接而附接至钼和TCO(透明电极)。
作为替选,如图6中用图解法所示,以相反的顺序执行切割处理可能是有利的。
在这种情况下,首先例如使用光刻法完成局部区域中的两个顶功能层(PN结和透明电极)的去除,由此在面板的除了必须去除所述两个层的区域的整个表面上施加光敏掩模、UV硬化,从而使得执行选择性冲击以去除这些层,但是金属电极不受其影响,使得在冲击之后(或更多后续冲击,一个针对两个上层的每个低层部件),金属电极(在CIGS电池的情况下为钼)在感兴趣的区域中露出。
此后,执行穿过三个层延伸的线切割,露出基板,使得构成面板的彼此电绝缘的电池被限定。该切割可以有利地通过激光进行。最后,将使用微导线或者如在US5131954或US2009014052中描述的类似技术来连接相邻的电池。
图10示出了利用数字打印机的能力来执行电池之间的连接的另一种方法。在完成激光切割并且给金属接触开窗之后,可以在激光切口中沉积绝缘材料(G),以确保电池之间不存在意外的电接触,此后,将银浆(R)沉积在绝缘材料顶部以及相邻电池的金属接触件和TCO上,以在电池中的一个电池的下部与另一个电池的上部之间形成电连接。
例如,如图7所示,使用这种切割和互连的技术,可以制造具有串联连接的72个电池的太阳能模块。
与例如US5131954不同,本发明背后的构思是:在完全相同的电池中的表面切割无需是最佳的,并且当前快速的表征和计算方法允许在生产线中包括原始面板的单独表征,遍及原始面板的区域的效率、光电特性和分路的分布的测定,以及后续的针对最大电力输出的最佳切割的计算,使得根据原始面板(分层的半成品)的不均匀性,形成72个电池的最合适的切割和互连可以是图8中描绘的切割和互连。
图9F示出了用于单片集成的切割和互连的替选过程。
图9A示出了面板的俯视图,已经给其表面施加了金属电极层3、pn结和透明电极5。图9B示出了前面板,其中已经从侧边缘选择性地去除了最后两层,露出金属电极3,在CIGS电池的情况下,金属电极3为钼。图9C示出了随后的步骤,其中穿过施加至基板的所有层进行了五个切割,使得六个独立的电池被限定,接触电极在其外部处。优选地使用激光来进行这种切割。图9D示出了在模块的有源区的边缘上施加绝缘体6,覆盖沿斜方向进行切割的区域。这样的绝缘体可以优选地被施加为随着时间而凝固的糊剂。图E是结束步骤,其中用微导线7或替选地沉积在绝缘糊剂上方的银浆从电池的上表面到最近的金属电极形成连接,通过以倾斜方式进行切割的方法,上述金属电极被电连接至下一个电池的底部,从而使得所有电池串联连接。
最后,图9F是非规则形状的表示,其中可以根据面板中效率的不均匀分布以及分路的定位来进行切割,上述面板中效率的不均匀分布以及分路的定位已经通过面板的表面的测定被检测并且将作为数据被引入计算机程序中,所述计算机程序被设计成计算将提供最大的电力生成的切割分布。
替选地,可能发生的是,所描述的数学模型的处理变得如此复杂,以至于不能及时地对每个模块做出切割决策以保持生产速度,并且在那种情况下,恢复为计算模块中的电池的分布的简化方式可能是有利的。例如,可以确定,由于不可能测量由每个区域产生的电流密度,因此所有电池必须具有相同的产生区域(总面积减去消除分路的面积),并且优选的分布将是每一个电池内部的光电性能变化较小的分布,以确保每个电池是一致且均匀的。
因此,本发明的简化方法将包括以下步骤:对面板的开路电压进行测定,切除分路,然后在面板上切割电池,使得在考虑了去除的分路的情况下电池的面积是相同的。用于切割电池的模式不是唯一的,因此更优选的是,将电池切割成使得每个电池内的变化最小。
作为另一种替选,可以考虑分路的影响在很大程度上取决于其接近电池的互连区域。如在第105期Solar Energy(太阳能),494至504页的“Influence of a shunt on theelectrical behavior in thin film photovoltaic modules-A 2D finite elementsimulation study”中说明的,通过TCO到下一个互连的距离越短,分路的负面影响越大。考虑到这一点,在一些情况下,有利的是,不去设法消除测定中检测到的一些分路或微分路,而仅仅以如下方式进行将模块划分成电池:将剩余分路留在模块的电池内部的分路是无害的位置中。
本发明的优点之一是:方法灵活且适应于使用电池互连方面的这种灵活性所生产的每个面板的独特特性,我们可以补救面板上存在的缺陷,因此本发明在一定程度上降低了常规单片集成所固有的非常严格的制造均匀性要求,所以成本节省不仅来自更好地利用每个面板可以提供的电力,而且特别地,因为其允许简化且更便宜的制造工艺。
在本文中,术语“包括(comprises)”及其衍生如“包括(comprising)”不应被理解为排他意义,即,这些术语不应被解释为排除以下可能性:被描述且被限定的事物可以包括另外的要素或步骤。
本发明显然不限于本文中描述的具体实施方式,而是还包括在如权利要求所限定的本发明的一般范围内本领域技术人员可能考虑到的例如关于材料、尺寸、部件、构造等的选择的任何变型。

Claims (8)

1.一种用于制造包括串联连接的多个薄膜光伏电池(1)的光伏面板(PV)的方法,所述方法包括以下步骤:
a)通过在电绝缘基板(2)上布置如下的层来获得分层的半成品:
-用于形成所述电池(1)的下电极的金属层(3);
-用于电的产生的PN结层(4);
-用于形成所述电池的上电极的透明导电层(5);
b)获得所获得的半成品的电特性或光电特性的表面分布;
c)根据所述表面分布,确定将所述半成品分成多个区域(1)的表面划分,使得区域(1)之间的电产生能力的差异小于确定的百分比;
d)根据所获得的表面划分来切割布置在所述基板(2)上的所述层(3,4,5),从而获得多个电池(1);
e)将所述电池(1)串联连接。
2.根据权利要求1所述的方法,其中,步骤c)被执行成使得所述电池中的每个电池内的电特性或光电特性的变化低于预定值。
3.根据前述权利要求中任一项所述的方法,其中,所述电特性是开路电压(Voc)、光电特性和/或效率。
4.根据前述权利要求中任一项所述的方法,所述方法在步骤a)与步骤b)之间包括以下子步骤:确定所述半成品的分路的分布;以及从所述分层的半成品切除所述分路。
5.根据前述权利要求中任一项所述的方法,所述方法包括在步骤b)中确定所述分路或剩余分路,以及包括以下后续子步骤:切除在步骤b)中确定的所述分路,或者让所述分路处于与所述切割有关的位置,使得所述分路对所述电池的效率的影响大大减小。
6.根据前述权利要求中任一项所述的方法,其中,使用诸如电致发光、光致发光、暗锁相热成像或光照锁相热成像的成像表征技术来执行步骤b)。
7.根据前述权利要求中任一项所述的方法,其中,通过以下操作执行步骤c):通过使用有限元方法和在步骤b)中确定的电特性对所述光伏面板(PV)进行建模。
8.根据权利要求1至6中任一项所述的方法,其中,通过直接使用在步骤b)中确定的电特性或光电特性之一的分布或者在步骤b)中确定的电特性或光电特性的组合的分布来执行步骤c)。
CN201580079028.1A 2015-04-22 2015-04-22 用于制造包括串联连接的多个薄膜光伏电池的光伏面板的方法 Pending CN107636843A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/058740 WO2016169595A1 (en) 2015-04-22 2015-04-22 Method for manufacturing a photovoltaic panel comprising a plurality of thin film photovoltaic cells connected in series

Publications (1)

Publication Number Publication Date
CN107636843A true CN107636843A (zh) 2018-01-26

Family

ID=52997445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580079028.1A Pending CN107636843A (zh) 2015-04-22 2015-04-22 用于制造包括串联连接的多个薄膜光伏电池的光伏面板的方法

Country Status (2)

Country Link
CN (1) CN107636843A (zh)
WO (1) WO2016169595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176506A (zh) * 2019-05-31 2019-08-27 信利半导体有限公司 薄膜光伏电池串联结构及薄膜光伏电池串联的制备工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116929228B (zh) * 2023-09-19 2024-02-13 无锡日联科技股份有限公司 一种光伏面板焊接模组质量检测设备及检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080083448A1 (en) * 2006-09-29 2008-04-10 Borden Peter G Interconnect for thin film photovoltaic modules
US20100210040A1 (en) * 2008-11-17 2010-08-19 Solopower, Inc. Method and apparatus for reducing the effect of shunting defects on thin film solar cell performance
CN102484148A (zh) * 2009-08-26 2012-05-30 三菱电机株式会社 太阳能电池单元及其制造方法
EP2654089A2 (en) * 2007-02-16 2013-10-23 Nanogram Corporation Solar cell structures, photovoltaic modules and corresponding processes
WO2013179898A1 (ja) * 2012-05-29 2013-12-05 三菱電機株式会社 太陽電池モジュールとその製造方法および太陽電池モジュール製造管理装置
WO2014071417A2 (en) * 2012-11-05 2014-05-08 Solexel, Inc. Systems and methods for monolithically isled solar photovoltaic cells and modules
DE102012024255A1 (de) * 2012-12-12 2014-06-12 Forschungszentrum Jülich GmbH Verfahren zur Herstellung und Serienverschaltung von photovoltaischen Elementen zu einem Solarmodul sowie Solarmodul

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080083448A1 (en) * 2006-09-29 2008-04-10 Borden Peter G Interconnect for thin film photovoltaic modules
EP2654089A2 (en) * 2007-02-16 2013-10-23 Nanogram Corporation Solar cell structures, photovoltaic modules and corresponding processes
US20100210040A1 (en) * 2008-11-17 2010-08-19 Solopower, Inc. Method and apparatus for reducing the effect of shunting defects on thin film solar cell performance
CN102484148A (zh) * 2009-08-26 2012-05-30 三菱电机株式会社 太阳能电池单元及其制造方法
WO2013179898A1 (ja) * 2012-05-29 2013-12-05 三菱電機株式会社 太陽電池モジュールとその製造方法および太陽電池モジュール製造管理装置
WO2014071417A2 (en) * 2012-11-05 2014-05-08 Solexel, Inc. Systems and methods for monolithically isled solar photovoltaic cells and modules
DE102012024255A1 (de) * 2012-12-12 2014-06-12 Forschungszentrum Jülich GmbH Verfahren zur Herstellung und Serienverschaltung von photovoltaischen Elementen zu einem Solarmodul sowie Solarmodul

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176506A (zh) * 2019-05-31 2019-08-27 信利半导体有限公司 薄膜光伏电池串联结构及薄膜光伏电池串联的制备工艺
CN110176506B (zh) * 2019-05-31 2024-05-07 信利半导体有限公司 薄膜光伏电池串联结构及薄膜光伏电池串联的制备工艺

Also Published As

Publication number Publication date
WO2016169595A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
US20180175234A1 (en) Array Of Monolithically Integrated Thin Film Photovoltaic Cells And Associated Methods
CN101313411B (zh) 太阳能电池及其制造方法
CN106165116B (zh) 带有旁路二极管的光伏模块
US20080023065A1 (en) Thin film photovoltaic module wiring for improved efficiency
Aydin et al. Pathways toward commercial perovskite/silicon tandem photovoltaics
TW200929413A (en) Process testers and testing methodology for thin-film photovoltaic devices
Jeong et al. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme
Anizan et al. Effects of the contact resistivity variations of the screen-printed silicon solar cell
Brecl et al. A detailed study of monolithic contacts and electrical losses in a large‐area thin‐film module
KR102623599B1 (ko) 개선된 션트 저항(shunt resistance)을 갖는 박막 태양광 모듈
CN107636843A (zh) 用于制造包括串联连接的多个薄膜光伏电池的光伏面板的方法
Brecl et al. Simulation of losses in thin‐film silicon modules for different configurations and front contacts
Zinßer et al. Finite element simulation of electrical intradevice physics of thin-film solar cells and its implications on the efficiency
US9343604B2 (en) Process for monolithic series connection of the photovoltaic cells of a solar module and a photovoltaic module implementing this process
Haase et al. Design of Large Poly‐Si on Oxide Interdigitated Back Contact (POLO IBC) Silicon Solar Cells with Local Al–p+ Contacts in the Constraints of Measurement and Module Integration
CN111247643A (zh) 光电变换模块以及制造光电变换模块的方法
Janssen et al. 2D-finite element model of a CIGS module
Gruber et al. Direct visualization of charge-extraction in metal-mesh based OPV cells by light-biased LBIC
Guillevin et al. Pilot line results of N-type IBC cell process in mass production environment
CN101640232B (zh) 薄膜太阳电池模块的加工方法
Burgers et al. Designing IBC cells with FFE: Long range effects with circuit simulation
Campbell et al. Enhanced Carrier Collection in Cd/In-Based Dual Buffers in Kesterite Thin-Film Solar Cells from Nanoparticle Inks
Johansson Modelling and optimization of CIGS solar cell modules
Nicolai et al. Analysis of the EWT‐DGB solar cell at low and medium concentration and comparison with a PESC architecture
WO2011032741A2 (en) Method for manufacturing a thin-film photovoltaic cell module encompassing an array of cells and photovoltaic cell module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180126