CN107633873A - A kind of Urology Surgery extracorporeal lithotiptor control method based on internet - Google Patents

A kind of Urology Surgery extracorporeal lithotiptor control method based on internet Download PDF

Info

Publication number
CN107633873A
CN107633873A CN201710943688.0A CN201710943688A CN107633873A CN 107633873 A CN107633873 A CN 107633873A CN 201710943688 A CN201710943688 A CN 201710943688A CN 107633873 A CN107633873 A CN 107633873A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710943688.0A
Other languages
Chinese (zh)
Inventor
丁才学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710943688.0A priority Critical patent/CN107633873A/en
Publication of CN107633873A publication Critical patent/CN107633873A/en
Pending legal-status Critical Current

Links

Abstract

The invention belongs to calculi therapy technical field, discloses a kind of Urology Surgery extracorporeal lithotiptor control method based on internet, human body is scanned by using Ultrasonic-B probe, and the image is presented on the computer of access internet;CPU calculates space length and superposition of movement track therebetween according to the wave source focal position information of positional information of the calculus on human body on scanning section and stone crusher;According to the space length between the calculus on human body and the wave source focus of stone crusher and superposition of movement track, calculus accurate location is obtained;Acoustic waveform and ultrasonic wave waveform transfer are crushed to calculus accurate location via waveguide axis.The present invention can improve calculus-smashing efficiency, and calculus-smashing effect is good;The wave source focus that fast and accurately can be automatically positioned calculus simultaneously in shock wave source cup.Reduce the operation difficulty that doctor uses extra chock wave lithotriptor.

Description

A kind of Urology Surgery extracorporeal lithotiptor control method based on internet
Technical field
The invention belongs to calculi therapy technical field, more particularly to a kind of Urology Surgery extracorporeal lithotiptor based on internet Control method.
Background technology
Calculus is in the catheter lumen in body or the chamber of luminal organ (such as kidney, ureter, gall-bladder or bladder) in The solid mass of formation.It is mainly seen in gall-bladder and bladder, renal plevis, also seen in the chamber of pancreas conduit, salivary ducts etc..Knot Stone is made up of inorganic salts or organic matter.Typically there is a core in calculus, by the epithelial cell, bacterial aggregate, parasitic ovum to come off Or polypide, excrement block or foreign matter composition, inorganic salts or organic matter are deposited on core layer by layer again.Due to the difference of afflicted organ, knot Composition, shape, quality contained by the mechanism of stone formation, influence to body etc. differ.Generally speaking, calculus can cause pipe Chamber blocks, and influences the discharge of afflicted organ's liquid, produces the symptoms such as pain, bleeding or secondary infection.However, existing positioning knot Stone is actually the repetitive process searching for, position, searching again for, repositioning, and not only positioning time length, also makes doctor be pestered beyond endurance; Existing broken calculus method is inefficient simultaneously, and calculus-smashing effect is poor.
To sum up, the problem of prior art is present be:Existing positioning calculus is actually to search for, position, searching again for, repositioning Repetitive process, not only positioning time grow, also doctor is pestered beyond endurance;Existing broken calculus method is inefficient simultaneously, calculus Crushing effect is poor.
The content of the invention
The problem of existing for prior art, the invention provides a kind of Urology Surgery extracorporeal lithotiptor based on internet Control method.
The present invention is achieved in that a kind of Urology Surgery extracorporeal lithotiptor control method based on internet, the base Urology Surgery extracorporeal lithotiptor control method in internet comprises the following steps:
Step 1, human body is scanned with Ultrasonic-B probe, gathers the section detection image data of Ultrasonic-B probe, and by the shadow As being presented on the computer of access internet;
Interference relationships analysis method comprises the following steps between the Computer signal:
(1) some characteristic parameter CPs of the interference signal on wireless signal field are determined, and feature based parameter is formed pair The interference space model answered, the interference space model based on foundation, determine interference signal characteristic vector to be analyzedWith reference Character vector of signals
(2) interference space model is based on, for interference signal characteristic vectorDefinition is to contrast signal characteristic vector's Displacement vector
(3) displacement vector is definedIt is interference signal feature to the projection of some latitude coordinates axle in interference space VectorTo contrast signal characteristic vectorDistance in the CP dimensions, that is, have:
Wherein PRJ () operator representation is directed to the project of a certain CP dimensions;
(4) it is S to the disturbance state of contrast signal to define interference signal, to represent that interference signal is done to contrast signal Disturb relation;
(5) on the premise of interference has been formed, it is necessary first to choose and determine interference effect parameter EP, believe for interference For number, parameter is usually signal power p or energy e;
(6) it is G to the annoyance level of contrast signal to define interference signal, and contrast signal is done to weigh interference signal Disturb influence degree;
Methods described further comprises:For the more of each self-contained some interference characteristic vectors of interference signal and contrast signal Mould situation, disturbance state S (V nowI, VS), it is calculated as below:
Wherein S [VI, VS]M×NIt is referred to as disturbance state matrix, each element in matrixRepresent VIIn K characteristic vector and VSIn l-th of characteristic vector disturbance state, each element is not in only two characteristic vector set During interference, S (VI, VSThe interference signal of)=0 is not just formed to contrast signal and disturbed;Conversely, S (VI, VS) > 0, now interference signal Interference will be formed to contrast signal;
Data for projection calculates the iterative model of target image during the image of the Ultrasonic-B probe obtains, the iterative model Formula is expressed as:
Wherein, X is the target image, and M is sytem matrix, and G is the data for projection, and i represents iterations, XiRepresent The iteration result obtained after ith iteration;λ represents convergence coefficient, and λ ∈ (0,1), M T represent the transposition to matrix M;Set The initial value of the target image, and the iterative model is utilized in the target image according to the iterations pre-set Each pixel be iterated renewal, obtain the target image, the current grayvalue of the pixel in the iterative model With the gray value Uniform approximat of previous iteration;It is described by gray value in target image be less than 0 pixel zero setting;
Step 2, when scanning show to the calculus on human body on a certain position on the display unit, pass through input singly Positional information of the calculus on scanning section is inputed to CPU and locked by member;
The display unit hides piece image using multiple hybrid parameters and several carrier images, by with image Multiple mixing embedded technology image information is embedded into the time-varying parameter of digital image system, to digital image system establish Mathematical modeling, with this important spy of completely estimation of the Iterative Learning Identification Method in finite time interval to time-varying parameter Property, the complete reconstruction of the image information of digital image system is realized, empirical value result shows, with Iterative Learning Identification Method Can recover hidden image completely, and by substantial amounts of experiment test proposed method resistance JPEG compression, shear, make an uproar The ability of sound and medium filtering geometric attack;
Remember that original image G is θ (t) sequences, be that image G ' is x (t) sequences after encryption, carrier image group Fi(i=1, 2 ..., n) it is wi(t) sequence, i=1,2 ..., n, mixed image SnFor y (t), then system representation is:
t∈{0,1,2...N},x(t)∈Rn,θ(t)∈R1;y1(t)∈R1;y(t)∈R1, nonlinear function f (x (t), θ (t), t) function that original image is encrypted is represented, nonlinear function g (x (t), t) represents the image and carrier image one after encryption Secondary iterative mixing function, h (y1(t), t) represent that n overlaps for mixed function, when parameter true value is θ*(t) when, write as:
For estimating θ*(t) Iterative Learning Identification system is:
In formula, k is iterations, and initial value during each iteration is identical, it is assumed that partial derivatives of the f on x, θ, and g is on x's Partial derivative, and h exist on g partial derivative, note:
And It is C to remember its boundaryD,CC, CA, CB
If:
Wherein ρ value is:
||1-γk(t)Dk(t+1)Ck(t+1)Bk(t) | |≤ρ < 1;
||γkDk(t)Ck(t)-γkDk(t+1)Ck(t+1)Ak(t)||≤CM'
Then as k → ∞, θk(t) θ is converged on section { 0,1 ..., N }*(t);
Prove:
According to Order Derivatives in Differential Mid-Value Theorem:
Note:M'kkDk(t)Ck(t)-γkDk(t+1)Ck(t+1)Ak(t);
Obtain:
Both ends take λ norms:
Note | | M'k||λ≤CM'Wushu (16) substitutes into (30) and obtained:
Inequality can be write as:
Because 0≤ρ≤1 takes λ sufficiently large, then:
The time-varying parameter θ that the CPU is obtained by Iterative Learning Identification Methodk(t) one group of image sequence Row, hiding image is reconstructed according still further to the pixel rate of original image, for the hidden image and mixed image that are resumed still So their error can be reflected using root-mean-square error, their object fidelity is measured using Y-PSNR, carried Body image F and mixed image S root-mean-square error is:
Root-mean-square error is smaller, illustrates that two images are more similar, and wherein carrier image F image size is M × M, image S Size be N × N;
Image F and the Y-PSNR PSNR of mixed image are:
For Y-PSNR PSNR as the criterion for weighing image object fidelity, its value is bigger, illustrates image blend Fidelity is higher, and three width mixed image of selection, three mixed parameters realize hiding for original image, digital picture recovery system State expression formula is:
During experiment, λ=3.65, initial value x are takenk(0)=0.47, original image θ (t) is gray level image, carrier image w1(t)、 w2(t)、w3(t) it is the gray level image of two width differences, mixed image, y is obtained after 4 mixing are hidden*(t);
According to formula αi+1=μ ' αi(1-αi), setting parameter μ '=3.82, initial value α1=0.75, in the iteration of Logistic mappings Chaos sequence caused by lower is { αi, therefrom choose experiment parameter sequence;
The learning gains determined according to convergence adequate condition are:
In formula, βi=1- αi, i=1,2, it is check algorithm performance, defining target function is
Step 3, CPU according to the calculus on human body scanning section on positional information and stone crusher ripple Source focal position information calculates space length and superposition of movement track therebetween;
Step 4, according to the space length and superposition of movement rail between the calculus on human body and the wave source focus of stone crusher Mark, CPU driving power device said two devices do relative motion according to superposition of movement track, obtain the accurate position of calculus Put;
Both step 5, the size for determining calculus, the size of the type for determining calculus or determination calculus and type;Selection For the amplitude for the audio frequency for producing acoustic waveform, the amplitude of audio frequency is that the size based on calculus is selected;
Step 6, acoustic waveform is produced using sound wave actuator;Produced using ultrasonic drive with ultrasonic wave The ultrasonic wave waveform of frequency;
Step 7, acoustic waveform and ultrasonic wave waveform transfer are crushed to calculus accurate location via waveguide axis.
Further, the input mode of described input block can be to be inputted using mouse, inputted with keyboard Or touched and inputted with touch-screen.
Further, the wave source focal position information of positional information and stone crusher of the calculus on scanning section has one Common location reference is the positional information of Ultrasonic-B probe.
Further, the superposition of movement track is that the calculus on human body remains static, and wave source focus is carried out with respect to it Motion, terminates until the calculus on human body is located to move in wave source focus.
Further, the superposition of movement track is that wave source focus remains static, and the calculus on human body is carried out with respect to it Motion, terminates until the calculus is located to move in wave source focus.
By the present invention in that knot can be improved with ultrasonic drive to produce the ultrasonic wave waveform with ultrasonic frequency Stone crushing efficiency, calculus-smashing effect are good;Calculus can be automatically positioned fast and accurately by using the method for Ultrasonic-B probe simultaneously To the wave source focus in shock wave source cup.Reduce the operation difficulty that doctor uses extra chock wave lithotriptor.
Brief description of the drawings
Fig. 1 is the Urology Surgery extracorporeal lithotiptor control method flow chart based on internet that the present invention implements to provide.
Embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, with reference to embodiments, to the present invention It is further elaborated.It should be appreciated that the specific embodiments described herein are merely illustrative of the present invention, it is not used to Limit the present invention.
The application principle of the present invention is further described below in conjunction with the accompanying drawings.
As shown in figure 1, the Urology Surgery extracorporeal lithotiptor control method bag provided in an embodiment of the present invention based on internet Include following steps:
S101, human body is scanned with Ultrasonic-B probe, gathers the section detection image data of Ultrasonic-B probe, and by the image It is presented on the computer of access internet;
S102, when scanning is shown to the calculus on human body on a certain position on the display unit, pass through input block Positional information of the calculus on scanning section is inputed into CPU to be locked;
S103, CPU according to the calculus on human body scanning section on positional information and stone crusher wave source Focal position information calculates space length and superposition of movement track therebetween;
S104, according to the space length between the calculus on human body and the wave source focus of stone crusher and superposition of movement track, CPU driving power device said two devices do relative motion according to superposition of movement track, obtain calculus accurate location;
Both S105, the size for determining calculus, the size of the type for determining calculus or determination calculus and type;Selection is used In the amplitude for the audio frequency for producing acoustic waveform, the amplitude of audio frequency is that the size based on calculus is selected;
S106, acoustic waveform is produced using sound wave actuator;Produced using ultrasonic drive with ultrasonic wave frequency The ultrasonic wave waveform of rate;
S107, acoustic waveform and ultrasonic wave waveform transfer are crushed to calculus accurate location via waveguide axis.
The input mode of input block provided by the invention can be inputted using mouse, inputted with keyboard or Touched and inputted with touch-screen.
The wave source focal position information of positional information and stone crusher of the calculus provided by the invention on scanning section has one Individual common location reference is the positional information of Ultrasonic-B probe.
Superposition of movement track provided by the invention is that the calculus on human body remains static, and wave source focus is carried out with respect to it Motion, terminates until the calculus on human body is located to move in wave source focus.
Superposition of movement track provided by the invention is that wave source focus remains static, and the calculus on human body is carried out with respect to it Motion, terminates until the calculus is located to move in wave source focus.
In a preferred embodiment of the invention, interference relationships analysis method comprises the following steps between Computer signal:
(1) some characteristic parameter CPs of the interference signal on wireless signal field are determined, and feature based parameter is formed pair The interference space model answered, the interference space model based on foundation, determine interference signal characteristic vector to be analyzedWith reference Character vector of signals
(2) interference space model is based on, for interference signal characteristic vectorDefinition is to contrast signal characteristic vector's Displacement vector
(3) displacement vector is definedIt is interference signal feature to the projection of some latitude coordinates axle in interference space VectorTo contrast signal characteristic vectorDistance in the CP dimensions, that is, have:
Wherein PRJ () operator representation is directed to the project of a certain CP dimensions;
(4) it is S to the disturbance state of contrast signal to define interference signal, to represent that interference signal is done to contrast signal Disturb relation;
(5) on the premise of interference has been formed, it is necessary first to choose and determine interference effect parameter EP, believe for interference For number, parameter is usually signal power p or energy e;
(6) it is G to the annoyance level of contrast signal to define interference signal, and contrast signal is done to weigh interference signal Disturb influence degree;
Methods described further comprises:For the more of each self-contained some interference characteristic vectors of interference signal and contrast signal Mould situation, disturbance state S (V nowI, VS), it is calculated as below:
Wherein S [VI, VS]M×NIt is referred to as disturbance state matrix, each element in matrixRepresent VIIn K characteristic vector and VSIn l-th of characteristic vector disturbance state, each element is not in only two characteristic vector set During interference, S (VI, VSThe interference signal of)=0 is not just formed to contrast signal and disturbed;Conversely, S (VI, VS) > 0, now interference signal Interference will be formed to contrast signal;
In a preferred embodiment of the invention, data for projection calculates the iteration of target image during the image of Ultrasonic-B probe obtains Model, the formula of the iterative model are expressed as:
Wherein, X is the target image, and M is sytem matrix, and G is the data for projection, and i represents iterations, XiRepresent The iteration result obtained after ith iteration;λ represents convergence coefficient, and λ ∈ (0,1), MT represent the transposition to matrix M;Institute is set The initial value of target image is stated, and the iterative model is utilized in the target image according to the iterations pre-set Each pixel is iterated renewal, obtains the target image, the current grayvalue of the pixel in the iterative model and The gray value Uniform approximat of previous iteration;It is described by gray value in target image be less than 0 pixel zero setting;
In a preferred embodiment of the invention, display unit hides one using multiple hybrid parameters and several carrier images Width image, image information is embedded into the time-varying parameter of digital image system by the multiple mixing embedded technology with image In, to digital image system founding mathematical models, with Iterative Learning Identification Method in finite time interval to time-varying parameter Estimation completely this key property, realize the complete reconstruction of the image information of digital image system, empirical value result shows, With Iterative Learning Identification Method it can recover hidden image completely, and the proposed method by substantial amounts of experiment test Resist the ability of JPEG compression, shearing, noise and medium filtering geometric attack;
Remember that original image G is θ (t) sequences, be that image G ' is x (t) sequences after encryption, carrier image group Fi(i=1, 2 ..., n) it is wi(t) sequence, i=1,2 ..., n, mixed image SnFor y (t), then system representation is:
t∈{0,1,2...N},x(t)∈Rn,θ(t)∈R1;y1(t)∈R1;y(t)∈R1, nonlinear function f (x (t), θ (t), t) function that original image is encrypted is represented, nonlinear function g (x (t), t) represents the image and carrier image one after encryption Secondary iterative mixing function, h (y1(t), t) represent that n overlaps for mixed function, when parameter true value is θ*(t) when, write as:
For estimating θ*(t) Iterative Learning Identification system is:
In formula, k is iterations, and initial value during each iteration is identical, it is assumed that partial derivatives of the f on x, θ, and g is on x's Partial derivative, and h exist on g partial derivative, note:
And It is C to remember its boundaryD,CC, CA, CB
If:
Wherein ρ value is:
||1-γk(t)Dk(t+1)Ck(t+1)Bk(t) | |≤ρ < 1;
||γkDk(t)Ck(t)-γkDk(t+1)Ck(t+1)Ak(t)||≤CM';
Then as k → ∞, θk(t) θ is converged on section { 0,1 ..., N }*(t);
Prove:
According to Order Derivatives in Differential Mid-Value Theorem:
Note:M'kkDk(t)Ck(t)-γkDk(t+1)Ck(t+1)Ak(t);
Obtain:
Both ends take λ norms:
Note | | M'k||λ≤CM'Wushu (16) substitutes into (30) and obtained:
Inequality can be write as:
Because 0≤ρ≤1 takes λ sufficiently large, then:
The time-varying parameter θ that the CPU is obtained by Iterative Learning Identification Methodk(t) one group of image sequence Row, hiding image is reconstructed according still further to the pixel rate of original image, for the hidden image and mixed image that are resumed still So their error can be reflected using root-mean-square error, their object fidelity is measured using Y-PSNR, carried Body image F and mixed image S root-mean-square error is:
Root-mean-square error is smaller, illustrates that two images are more similar, and wherein carrier image F image size is M × M, image S Size be N × N;
Image F and the Y-PSNR PSNR of mixed image are:
For Y-PSNR PSNR as the criterion for weighing image object fidelity, its value is bigger, illustrates image blend Fidelity is higher, and three width mixed image of selection, three mixed parameters realize hiding for original image, digital picture recovery system State expression formula is:
During experiment, λ=3.65, initial value x are takenk(0)=0.47, original image θ (t) is gray level image, carrier image w1(t)、 w2(t)、w3(t) it is the gray level image of two width differences, mixed image, y is obtained after 4 mixing are hidden*(t);
According to formula αi+1=μ ' αi(1-αi), setting parameter μ '=3.82, initial value α1=0.75, in the iteration of Logistic mappings Chaos sequence caused by lower is { αi, therefrom choose experiment parameter sequence;
The learning gains determined according to convergence adequate condition are:
In formula, βi=1- αi, i=1,2, it is check algorithm performance, defining target function is
The foregoing is merely illustrative of the preferred embodiments of the present invention, is not intended to limit the invention, all essences in the present invention All any modification, equivalent and improvement made within refreshing and principle etc., should be included in the scope of the protection.

Claims (5)

1. a kind of Urology Surgery extracorporeal lithotiptor control method based on internet, it is characterised in that described based on internet Urology Surgery extracorporeal lithotiptor control method comprises the following steps:
Step 1, human body is scanned with Ultrasonic-B probe, gathers the section detection image data of Ultrasonic-B probe, and be in by the image Now on the computer of access internet;
Interference relationships analysis method comprises the following steps between the Computer signal:
(1) some characteristic parameter CPs of the interference signal on wireless signal field are determined, and corresponding to feature based parameter formed Interference space model, the interference space model based on foundation, determine interference signal characteristic vector to be analyzedWith contrast signal Characteristic vector
(2) interference space model is based on, for interference signal characteristic vectorDefinition is to contrast signal characteristic vectorDisplacement Vector
(3) displacement vector is definedIt is interference signal characteristic vector to the projection of some latitude coordinates axle in interference spaceTo contrast signal characteristic vectorDistance in the CP dimensions, that is, have:
Wherein PRJ () operator representation is directed to the project of a certain CP dimensions;
(4) it is S to the disturbance state of contrast signal to define interference signal, to represent that interference of the interference signal to contrast signal is closed System;
<mrow> <mi>S</mi> <mrow> <mo>(</mo> <mover> <msub> <mi>V</mi> <mi>I</mi> </msub> <mo>&amp;RightArrow;</mo> </mover> <mo>,</mo> <mover> <msub> <mi>V</mi> <mi>S</mi> </msub> <mo>&amp;RightArrow;</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>&amp;Exists;</mo> <msub> <mi>CP</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow> <msub> <mi>CP</mi> <mi>i</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>,</mo> <mi>S</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;Delta;</mi> <mrow> <msub> <mi>CP</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>&amp;ForAll;</mo> <msub> <mi>CP</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow> <msub> <mi>CP</mi> <mi>i</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>,</mo> <mi>S</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>&amp;Delta;</mi> <mrow> <msub> <mi>CP</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
(5) on the premise of interference has been formed, it is necessary first to choose and determine interference effect parameter EP, for interference signal Speech, parameter is usually signal power p or energy e;
(6) it is G to the annoyance level of contrast signal to define interference signal, to weigh interference shadow of the interference signal to contrast signal The degree of sound;
Methods described further comprises:For the multimode feelings of each self-contained some interference characteristic vectors of interference signal and contrast signal Condition, disturbance state S (V nowI, VS), it is calculated as below:
Wherein S [VI, VS]M×NIt is referred to as disturbance state matrix, each element in matrixRepresent VIIn k-th Characteristic vector and VSIn l-th of characteristic vector disturbance state, each element is not done in only two characteristic vector set When disturbing, S (VI, VS) > 0 interference signal just not to contrast signal formed disturb;Conversely, S (VI, VS) > 0, now interference signal will Contrast signal is formed and disturbed;
Data for projection calculates the iterative model of target image, the formula of the iterative model during the image of the Ultrasonic-B probe obtains It is expressed as:
<mrow> <msup> <mi>X</mi> <mi>i</mi> </msup> <mo>=</mo> <msup> <mi>X</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mi>X</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msubsup> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mi>&amp;lambda;</mi> </mrow> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> <mo>;</mo> </mrow>
Wherein, X is the target image, and M is sytem matrix, and G is the data for projection, and i represents iterations, XiRepresent ith The iteration result obtained after iteration;λ represents convergence coefficient, and λ ∈ (0,1), M T represent the transposition to matrix M;The mesh is set The initial value of logo image, and the iterative model is utilized to each in the target image according to the iterations pre-set Pixel is iterated renewal, obtains the target image, the current grayvalue of the pixel in the iterative model with it is previous The gray value Uniform approximat of iteration;It is described by gray value in target image be less than 0 pixel zero setting;
Step 2, when scanning show to the calculus on human body on a certain position on the display unit, pass through input block general Positional information of the calculus on scanning section inputs to CPU and locked;
The display unit hides piece image using multiple hybrid parameters and several carrier images, by with the more of image Image information is embedded into the time-varying parameter of digital image system by mixing embedded technology again, and mathematics is established to digital image system Model, it is real with estimation completely this key property of Iterative Learning Identification Method in finite time interval to time-varying parameter Now the complete reconstruction of the image information of digital image system, empirical value result show, can with Iterative Learning Identification Method Recover hidden image completely, and by substantial amounts of experiment test proposed method resistance JPEG compression, shearing, noise and The ability of medium filtering geometric attack;
Remember that original image G is θ (t) sequences, be that image G ' is x (t) sequences after encryption, carrier image group Fi(i=1,2 ..., n) be wi(t) sequence, i=1,2 ..., n, mixed image SnFor y (t), then system representation is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>&amp;theta;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>y</mi> <mn>1</mn> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>h</mi> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>1</mn> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
t∈{0,1,2...N},x(t)∈Rn,θ(t)∈R1;y1(t)∈R1;y(t)∈R1, nonlinear function f (x (t), θ (t), T) function of original image encryption is represented, nonlinear function g (x (t), t) represents that the image after encryption and carrier image once change For mixed function, h (y1(t), t) represent that n overlaps for mixed function, when parameter true value is θ*(t) when, write as:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msup> <mi>x</mi> <mo>*</mo> </msup> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>=</mo> <mi>f</mi> <mo>(</mo> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>&amp;theta;</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mn>1</mn> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>g</mi> <mo>(</mo> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>*</mo> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>h</mi> <mo>(</mo> <msup> <mi>y</mi> <mn>1</mn> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
For estimating θ*(t) Iterative Learning Identification system is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>=</mo> <mi>f</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>g</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>h</mi> <mo>(</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
In formula, k is iterations, and initial value during each iteration is identical, it is assumed that partial derivatives of the f on x, θ, and local derviations of the g on x Number, and h exist on g partial derivative, note:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>h</mi> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <msub> <mi>&amp;xi;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;xi;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>*</mo> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;xi;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;xi;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>&lt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;xi;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;zeta;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>&amp;sigma;</mi> <mn>3</mn> </msub> <mo>&lt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
ηk(t)=(1- σ4*(t)+σ4θk(t), 0 < σ4< 1;And remember that its boundary is CD,CC, CA, CB
If:
<mrow> <mo>-</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>&amp;rho;</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>C</mi> <msup> <mi>M</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>C</mi> <mi>B</mi> </msub> </mrow> <mrow> <msubsup> <mi>C</mi> <mi>A</mi> <mi>&amp;lambda;</mi> </msubsup> <mo>-</mo> <msub> <mi>C</mi> <mi>A</mi> </msub> </mrow> </mfrac> <mo>&lt;</mo> <mn>1</mn> <mo>;</mo> </mrow>
Wherein ρ value is:
||1-γk(t)Dk(t+1)Ck(t+1)Bk(t) | |≤ρ < 1;
||γkDk(t)Ck(t)-γkDk(t+1)Ck(t+1)Ak(t)||≤CM'
Then as k → ∞, θk(t) θ is converged on section { 0,1 ..., N }*(t);
Prove:
According to Order Derivatives in Differential Mid-Value Theorem:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mo>{</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <mo>(</mo> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mo>{</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mo>{</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>{</mo> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;theta;</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mo>{</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>{</mo> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>-</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>B</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>B</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>&amp;rho;</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>&amp;rho;</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <msub> <mi>D</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Note:M'kkDk(t)Ck(t)-γkDk(t+1)Ck(t+1)Ak(t);
Obtain:
Both ends take λ norms:
Note | | M'k||λ≤CM'Wushu (16) substitutes into (30) and obtained:
Inequality can be write as:
<mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;lambda;</mi> </msub> <mo>&amp;le;</mo> <mi>&amp;rho;</mi> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;lambda;</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>C</mi> <msup> <mi>M</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>C</mi> <mi>B</mi> </msub> </mrow> <mrow> <msubsup> <mi>C</mi> <mi>A</mi> <mi>&amp;lambda;</mi> </msubsup> <mo>-</mo> <msub> <mi>C</mi> <mi>A</mi> </msub> </mrow> </mfrac> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;lambda;</mi> </msub> <mo>;</mo> </mrow>
Because 0≤ρ≤1 takes λ sufficiently large, then:
<mrow> <munder> <mi>lim</mi> <mrow> <mi>k</mi> <mo>&amp;RightArrow;</mo> <mi>&amp;infin;</mi> </mrow> </munder> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;lambda;</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
The time-varying parameter θ that the CPU is obtained by Iterative Learning Identification Methodk(t) one group of image sequence, then press Hiding image is reconstructed according to the pixel rate of original image, still can be adopted for the hidden image and mixed image being resumed Reflect their error with root-mean-square error, their object fidelity measured using Y-PSNR, carrier image F and Mixed image S root-mean-square error is:
<mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mi>N</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>S</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mo>;</mo> </mrow>
Root-mean-square error is smaller, illustrates that two images are more similar, and wherein carrier image F image size is M × M, and image S's is big Small is N × N;
Image F and the Y-PSNR PSNR of mixed image are:
<mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <mn>10</mn> <mi>lg</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>M</mi> <mo>&amp;times;</mo> <mi>N</mi> <mo>&amp;times;</mo> <msup> <mn>255</mn> <mn>2</mn> </msup> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <mi>F</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>S</mi> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
For Y-PSNR PSNR as the criterion for weighing image object fidelity, its value is bigger, illustrates the fidelity of image blend Degree is higher, chooses three width mixed image, three mixed parameters realize hiding for original image, the state of digital picture recovery system Expression formula is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mi>&amp;theta;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <msub> <mi>w</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <msub> <mi>w</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <msub> <mi>w</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>y</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
During experiment, λ=3.65, initial value x are takenk(0)=0.47, original image θ (t) is gray level image, carrier image w1(t)、w2 (t)、w3(t) it is the gray level image of two width differences, mixed image, y is obtained after 4 mixing are hidden*(t);
According to formula αi+1=μ ' αi(1-αi), setting parameter μ '=3.82, initial value α1=0.75, the institute under the iteration of Logistic mappings Caused chaos sequence is { αi, therefrom choose experiment parameter sequence;
The learning gains determined according to convergence adequate condition are:
<mrow> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;beta;</mi> <mn>2</mn> </msub> <msub> <mi>&amp;beta;</mi> <mn>3</mn> </msub> <mo>)</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> </mfrac> <mo>;</mo> </mrow>
In formula, βi=1- αi, i=1,2, it is check algorithm performance, defining target function is
Step 3, CPU are burnt according to the wave source of positional information of the calculus on human body on scanning section and stone crusher Dot position information calculates space length and superposition of movement track therebetween;
Step 4, according to the space length between the calculus on human body and the wave source focus of stone crusher and superposition of movement track, in Central Processing Unit driving power device said two devices do relative motion according to superposition of movement track, obtain calculus accurate location;
Both step 5, the size for determining calculus, the size of the type for determining calculus or determination calculus and type;Select to be used for The amplitude of the audio frequency of acoustic waveform is produced, the amplitude of audio frequency is that the size based on calculus is selected;
Step 6, acoustic waveform is produced using sound wave actuator;Produced using ultrasonic drive with ultrasonic frequency Ultrasonic wave waveform;
Step 7, acoustic waveform and ultrasonic wave waveform transfer are crushed to calculus accurate location via waveguide axis.
2. the Urology Surgery extracorporeal lithotiptor control method based on internet as claimed in claim 1, it is characterised in that described Input block input mode can be inputted using mouse, inputted with keyboard or with touch-screen touch carry out it is defeated Enter.
3. the Urology Surgery extracorporeal lithotiptor control method based on internet as claimed in claim 1, it is characterised in that described The wave source focal position information of positional information and stone crusher of the calculus on scanning section has a common location reference to be visited for B ultrasound The positional information of head.
4. the Urology Surgery extracorporeal lithotiptor control method based on internet as claimed in claim 1, it is characterised in that described Superposition of movement track is that the calculus on human body remains static, and wave source focus is moved with respect to it, until the knot on human body Stone, which is located to move in wave source focus, to be terminated.
5. the Urology Surgery extracorporeal lithotiptor control method based on internet as claimed in claim 1, it is characterised in that described Superposition of movement track is that wave source focus remains static, and the calculus on human body is moved with respect to it, until the calculus is located at Motion terminates in wave source focus.
CN201710943688.0A 2017-10-11 2017-10-11 A kind of Urology Surgery extracorporeal lithotiptor control method based on internet Pending CN107633873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710943688.0A CN107633873A (en) 2017-10-11 2017-10-11 A kind of Urology Surgery extracorporeal lithotiptor control method based on internet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710943688.0A CN107633873A (en) 2017-10-11 2017-10-11 A kind of Urology Surgery extracorporeal lithotiptor control method based on internet

Publications (1)

Publication Number Publication Date
CN107633873A true CN107633873A (en) 2018-01-26

Family

ID=61103947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710943688.0A Pending CN107633873A (en) 2017-10-11 2017-10-11 A kind of Urology Surgery extracorporeal lithotiptor control method based on internet

Country Status (1)

Country Link
CN (1) CN107633873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113343179A (en) * 2021-06-02 2021-09-03 江苏邦鼎科技有限公司 Striking and crushing method and system based on oblique shearing
CN114550943A (en) * 2022-04-21 2022-05-27 武汉烽火凯卓科技有限公司 Shock wave incident point simulation planning method and system based on medical image

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103156643A (en) * 2013-03-12 2013-06-19 深圳市海德医疗设备有限公司 Method and device for extracorporeal shock wave lithotripter to locate stone automatically by using B ultrasound
CN105101894A (en) * 2013-05-09 2015-11-25 美国奥林匹斯外科技术吉鲁斯阿克米公司 Multi-mode oscillating lithotripter
CN105608717A (en) * 2015-12-22 2016-05-25 肖古华 CT system and CT image reconstruction method
CN105049141B (en) * 2015-05-26 2017-04-05 西安电子科技大学 A kind of inter-signal interference relationship analysis method based on multidimensional interference space model
CN106823150A (en) * 2016-07-18 2017-06-13 山东省肿瘤防治研究院 It is a kind of to facilitate breast tumor radiotherapy combined type locating frame device
US20170221202A1 (en) * 2016-01-29 2017-08-03 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus and medical image processing apparatus
WO2017142281A1 (en) * 2016-02-15 2017-08-24 Samsung Electronics Co., Ltd. Image processing apparatus, image processing method and recording medium thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103156643A (en) * 2013-03-12 2013-06-19 深圳市海德医疗设备有限公司 Method and device for extracorporeal shock wave lithotripter to locate stone automatically by using B ultrasound
CN105101894A (en) * 2013-05-09 2015-11-25 美国奥林匹斯外科技术吉鲁斯阿克米公司 Multi-mode oscillating lithotripter
CN105049141B (en) * 2015-05-26 2017-04-05 西安电子科技大学 A kind of inter-signal interference relationship analysis method based on multidimensional interference space model
CN105608717A (en) * 2015-12-22 2016-05-25 肖古华 CT system and CT image reconstruction method
US20170221202A1 (en) * 2016-01-29 2017-08-03 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus and medical image processing apparatus
WO2017142281A1 (en) * 2016-02-15 2017-08-24 Samsung Electronics Co., Ltd. Image processing apparatus, image processing method and recording medium thereof
CN106823150A (en) * 2016-07-18 2017-06-13 山东省肿瘤防治研究院 It is a kind of to facilitate breast tumor radiotherapy combined type locating frame device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113343179A (en) * 2021-06-02 2021-09-03 江苏邦鼎科技有限公司 Striking and crushing method and system based on oblique shearing
CN114550943A (en) * 2022-04-21 2022-05-27 武汉烽火凯卓科技有限公司 Shock wave incident point simulation planning method and system based on medical image
CN114550943B (en) * 2022-04-21 2022-07-29 武汉烽火凯卓科技有限公司 Shock wave incident point simulation planning method and system based on medical image

Similar Documents

Publication Publication Date Title
CN102844789B (en) System and method for correcting data for deformations during image-guided procedures
US20190050999A1 (en) Dilated Fully Convolutional Network for Multi-Agent 2D/3D Medical Image Registration
Hu et al. Modelling prostate motion for data fusion during image-guided interventions
CN110074813A (en) A kind of ultrasonic image reconstruction method and system
CN107633873A (en) A kind of Urology Surgery extracorporeal lithotiptor control method based on internet
CN104603836A (en) Enhanced method for correcting data for deformations during image guided procedures
Mendizabal et al. Physics-based deep neural network for real-time lesion tracking in ultrasound-guided breast biopsy
Koutsourelakis A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography
CN104574329A (en) Ultrasonic fusion imaging method and ultrasonic fusion imaging navigation system
CN107592802A (en) Strengthen the system and method for guide abdominal videoendoscopic surgery process by anatomical model
CN106170784A (en) For analyzing, store and the method and system of regenerating information
Liang et al. Synthesis and edition of ultrasound images via sketch guided progressive growing GANS
Qin et al. Reconstructing the full tongue contour from EMA/X-ray microbeam
Sedeh et al. Modeling, simulation, and optimal initiation planning for needle insertion into the liver
CN106388774B (en) A kind of pocket induction type magnetosonic two-dimensional conductivity imaging device
Van Reeth et al. The use of inexact helium wavefunctions in positron-helium scattering
Li et al. A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner
CN103680279A (en) Cystoscope surgery simulated training method and system
Ye et al. Filling model based soft tissue deformation model
Zayed et al. Automatic frame selection using MLP neural network in ultrasound elastography
CN113842164A (en) System and method for detecting BRAF-V600E mutation
CN104220893A (en) Coordinate transformation of graphical objects registered to magnetic resonance image
Azampour et al. Anatomy‐aware computed tomography‐to‐ultrasound spine registration
CN107049315A (en) Based on the Injection Current formula thermoacoustic resistivity image method for reconstructing for optimizing alternative manner
Orkisz et al. Real-time target tracking applied to improve fragmentation of renal stones in extra-corporeal lithotripsy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180126