CN107627299A - A kind of kinematic parameter errors scaling method of rope driving parallel robot - Google Patents
A kind of kinematic parameter errors scaling method of rope driving parallel robot Download PDFInfo
- Publication number
- CN107627299A CN107627299A CN201710817308.9A CN201710817308A CN107627299A CN 107627299 A CN107627299 A CN 107627299A CN 201710817308 A CN201710817308 A CN 201710817308A CN 107627299 A CN107627299 A CN 107627299A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- formula
- rope
- pose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005457 optimization Methods 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 42
- 239000011159 matrix material Substances 0.000 claims description 13
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 6
- 241000208340 Araliaceae Species 0.000 claims 2
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 2
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 2
- 235000008434 ginseng Nutrition 0.000 claims 2
- 235000013399 edible fruits Nutrition 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
Landscapes
- Manipulator (AREA)
Abstract
本发明公开了一种绳索驱动并联机器人运动学参数误差标定方法,包括:1、建立绳索驱动并联机器人运动学模型和绳索驱动并联机器人的运动学参数误差模型,2、利用优化算法对参数误差进行辨识,3、优化标定位姿测量装置的参考坐标系相对绳索驱动并联机器人的参考坐标系的位置关系,4、结合迭代优化算法联合标定运动学参数误差。本发明能够准确标定绳索驱动并联机器人的运动学参数误差,从而提高绳索驱动并联机器人的运动学精度。
The invention discloses a method for calibrating the kinematics parameter error of a rope-driven parallel robot, comprising: 1. establishing a kinematics model of the rope-driven parallel robot and a kinematic parameter error model of the rope-driven parallel robot; Identification, 3. Optimizing the positional relationship between the reference coordinate system of the calibration and attitude measuring device relative to the reference coordinate system of the cable-driven parallel robot, 4. Combining with iterative optimization algorithm to jointly calibrate the kinematic parameter error. The invention can accurately calibrate the kinematics parameter error of the cable-driven parallel robot, thereby improving the kinematics precision of the cable-driven parallel robot.
Description
技术领域technical field
本发明涉及机器人运动学参数标定领域,具体涉及一种基于位姿测量的绳索驱动并联机器人运动学参数误差标定方法。The invention relates to the field of robot kinematics parameter calibration, in particular to a method for calibrating errors of kinematics parameters of a cable-driven parallel robot based on pose measurement.
背景技术Background technique
机器人机械结构在加工和装配过程中不可避免会产生一些结构参数误差,这些结构参数误差会导致机器人的运动学模型计算的结果产生误差。所以在机器人生产过程中,必须要对机器人的运动学参数误差进行标定。The mechanical structure of the robot will inevitably produce some structural parameter errors in the process of processing and assembly, and these structural parameter errors will lead to errors in the calculation results of the kinematic model of the robot. Therefore, in the robot production process, it is necessary to calibrate the kinematic parameter error of the robot.
对于常用的标定工具有相机、激光干涉仪等位置和姿态测量装置,这些位姿测量装置可以测量机器人执行器末端动平台的位置和姿态。测量装置是以自身坐标系作为参考坐标系测量机器人末端执行器的位姿,所以在标定机器人运动学参数误差之前必须测量机器人参考坐标系和测量装置参考坐标系之间的相对位置关系。但是由于测量装置的参考测量位置和机器人结构之间存在误差,导致测量的相对位置关系与实际位置关系之间存在误差,使得最终标定的机器人运动学参数误差精度降低。工业生产过程中需要对很多机器人进行标定,传统方法需要对测量装置的位置关系进行手动标定,导致标定速度慢,标定过程繁琐,生产效率低下。所以亟需一种可以自动进行标定,并且具有较高精度的标定方法,以期能够提高生产效率,扩大经济效益。Commonly used calibration tools include position and attitude measuring devices such as cameras and laser interferometers, which can measure the position and attitude of the moving platform at the end of the robot actuator. The measuring device uses its own coordinate system as the reference coordinate system to measure the pose of the robot end effector, so the relative positional relationship between the robot reference coordinate system and the measuring device reference coordinate system must be measured before calibrating the robot kinematics parameter error. However, due to the error between the reference measurement position of the measuring device and the robot structure, there is an error between the measured relative position relationship and the actual position relationship, which reduces the error accuracy of the final calibrated robot kinematics parameters. Many robots need to be calibrated in the industrial production process. The traditional method requires manual calibration of the positional relationship of the measuring device, resulting in slow calibration speed, cumbersome calibration process, and low production efficiency. Therefore, there is an urgent need for a calibration method that can be automatically calibrated and has higher precision, in order to improve production efficiency and expand economic benefits.
发明内容Contents of the invention
本发明为克服现有技术的不足之处,提供一种绳索驱动并联机器人的运动学参数误差标定方法,以期能够准确标定绳索驱动并联机器人的运动学参数误差,从而提高绳索驱动并联机器人的运动学精度。In order to overcome the deficiencies of the prior art, the present invention provides a method for calibrating the kinematic parameter error of a rope-driven parallel robot, in order to accurately calibrate the kinematic parameter error of the rope-driven parallel robot, thereby improving the kinematics of the rope-driven parallel robot precision.
本发明为达到上述发明目的,采用如下技术方案:The present invention adopts following technical scheme in order to achieve the above-mentioned purpose of the invention:
本发明一种绳索驱动并联机器人的运动学参数误差标定方法,是应用于绳索驱动并联机器人的标定过程中,并在所述绳索驱动并联机器人一侧设置有位姿测量装置;其特点是,所述运动学参数误差标定方法是按照下步骤进行:The present invention relates to a kinematic parameter error calibration method of a cable-driven parallel robot, which is applied in the calibration process of the cable-driven parallel robot, and a pose measuring device is arranged on one side of the cable-driven parallel robot; the characteristic is that the The kinematic parameter error calibration method is carried out according to the following steps:
步骤1、在所述位姿测量装置的测量工作范围内,建立所述绳索驱动并联机器人的参考坐标系Os,机器人末端动平台上的参考坐标系Op,位姿测量装置的参考坐标系Oc,并将所述位姿测量装置的参考坐标系Oc作为世界坐标系;Step 1. Establish the reference coordinate system O s of the cable-driven parallel robot, the reference coordinate system O p on the moving platform at the end of the robot, and the reference coordinate system of the pose measurement device within the measurement working range of the pose measurement device O c , and using the reference coordinate system O c of the pose measurement device as the world coordinate system;
步骤2、建立所述绳索驱动并联机器人的运动学模型;Step 2, establishing a kinematics model of the rope-driven parallel robot;
步骤2.1、对于为m绳索驱动装置输出的n自由度的绳索驱动并联机器人,所述末端动平台在所述绳索驱动并联机器人的参考坐标系Os中的理论位姿表示为Xs=[Ps Φs]T,其中Ps表示所述末端动平台的位置,Φs表示所述末端动平台的姿态;Step 2.1. For a cable-driven parallel robot with n degrees of freedom output by an m cable-driven device, the theoretical pose of the terminal moving platform in the reference coordinate system O s of the cable-driven parallel robot is expressed as X s =[P s Φ s ] T , where P s represents the position of the end moving platform, and Φ s represents the attitude of the end moving platform;
令bi表示第i绳索驱动装置在所述机器人末端动平台上的参考坐标系Op上的位置,ai表示绳索输出点在所述机器人平台上的参考坐标系Os上的位置;i=1…m;Let b i represent the position of the i-th rope driving device on the reference coordinate system O p on the moving platform at the end of the robot, and a i represent the position of the rope output point on the reference coordinate system O s on the robot platform; i = 1...m;
利用式(1)表示单个绳索驱动装置的闭链方程:Use equation (1) to express the closed-chain equation of a single rope drive:
li=ai-Ps-Rsp(Φs)bi (1)l i =a i -P s -R sp (Φ s )b i (1)
式(1)中,li表示第i绳索驱动装置的绳索输出点到所述末端动平台的绳索连接点的绳索向量,Rsp表示所述机器人末端动平台上的参考坐标系Op到所述绳索驱动并联机器人的参考坐标系Os的旋转矩阵;In formula (1), l i represents the rope vector from the rope output point of the i-th rope driving device to the rope connection point of the end moving platform, and R sp represents the reference coordinate system Op on the end moving platform of the robot to all The rotation matrix of the reference frame O s of the rope-driven parallel robot;
步骤2.2、根据式(2)得到绳索驱动并联机器人的逆运动学方程:Step 2.2, obtain the inverse kinematics equation of the rope-driven parallel robot according to formula (2):
||li||2=(ai-Ps-Rsp(Φs)bi)T(ai-Ps-Rsp(Φs)bi),i=1,2,…,m (2)||l i || 2 =(a i -P s -R sp (Φ s )b i ) T (a i -P s -R sp (Φ s )b i ),i=1,2,…, m (2)
由式(2)得到所述绳索驱动并联机器人的绳索长度向量为l=[||l1||2||l2||2…||li||2…||lm||2]T;From formula (2), the rope length vector of the rope-driven parallel robot is l=[||l 1 || 2 ||l 2 || 2 …||l i || 2 …||l m || 2 ] T ;
步骤3、建立所述绳索驱动并联机器人的运动学参数误差模型;Step 3, establishing a kinematic parameter error model of the cable-driven parallel robot;
步骤3.1、令由机械加工和装配因素导致的机器人运动学误差参数表示为其中,bi表示所述第i绳索驱动装置在所述机器人末端动平台上的参考坐标系Op上的位置误差,ai表示所述的绳索输出点在所述机器人平台上的参考坐标系Os上的位置误差,表示电机编码器单位转动角度对应绳索的输出长度误差,则需要辨识的运动学参数误差共有7m个Cal=[Cal1 Cal2 … Cali … Calm]T;Step 3.1, let the robot kinematics error parameters caused by machining and assembly factors be expressed as Wherein, b i represents the position error of the i-th rope drive device on the reference coordinate system O p on the end-moving platform of the robot, and a i represents the reference coordinate system of the output point of the rope on the robot platform The position error over O s , Indicates that the unit rotation angle of the motor encoder corresponds to the output length error of the rope, and there are 7m kinematic parameter errors to be identified Cal=[Cal 1 Cal 2 ... Cal i ... Cal m ] T ;
步骤3.2、利用所述位姿测量装置测量N组末端动平台的位姿,并利用第j组测量的位姿求得如式(3)所示的电机编码器输出角度θi的误差 Step 3.2, using the pose measuring device to measure the poses of N groups of terminal moving platforms, and using the poses measured by the j group to obtain the error of the motor encoder output angle θ i shown in formula (3)
式(3)中,{θm,j}表示用第j组测量的位姿求得的m个电机编码器反馈的实际转动角度,lj表示用第j组测量的位姿求得的绳索长度向量;In formula (3), {θ m,j } represents the actual rotation angles fed back by the m motor encoders obtained from the j-th group of measured poses, and l j represents the rope length vector;
步骤4、由式(3)得到如式(4)所示的优化目标方程:Step 4, obtain the optimization objective equation shown in formula (4) by formula (3):
式(4)中,eθ表示所述N组末端动平台的位姿求得的m个电机编码器输出角度的误差方程,并有: In formula (4), e θ represents the error equation of the output angles of the m motor encoders obtained from the poses of the N groups of terminal moving platforms, and has:
采用最小二乘法对式(4)进行优化求解,得到如式(5)所示的运动学参数误差辨识模型:Formula (4) is optimized and solved by the least square method, and the kinematic parameter error identification model shown in formula (5) is obtained:
式(5)中,为误差方程eθ对运动学参数误差Cal的雅可比矩阵,Wt表示运动学参数误差Cal的归一化矩阵;In formula (5), is the Jacobian matrix of the error equation e θ to the kinematic parameter error Cal, and W t represents the normalized matrix of the kinematic parameter error Cal;
步骤5、标定位姿测量装置的参考坐标系Oc相对所述绳索驱动并联机器人的参考坐标系Os的位置关系;Step 5, calibrate the positional relationship of the reference coordinate system Oc of the attitude measuring device relative to the reference coordinate system Os of the cable-driven parallel robot;
步骤5.1、令所述末端动平台的实际测量位姿表示为Xcs=[Pcs Φcs]T,其中,Pcs表示所述绳索驱动并联机器人的参考坐标系Os在所述位姿测量装置的参考坐标系Oc中的位置,Φcs表示绳索驱动并联机器人的参考坐标系Os在所述位姿测量装置的参考坐标系Oc中的姿态;则利用式(6)表示所述末端动平台在所述位姿测量装置的参考坐标系Oc中的位置Pc:Step 5.1. Let the actual measured pose of the terminal moving platform be expressed as X cs =[P cs Φ cs ] T , where P cs represents the reference coordinate system O s of the cable-driven parallel robot in the pose measurement The position in the reference coordinate system O c of the device, Φ cs represents the attitude of the reference coordinate system O s of the cable-driven parallel robot in the reference coordinate system O c of the pose measurement device; then use formula (6) to express the The position P c of the terminal moving platform in the reference coordinate system O c of the pose measurement device:
Pc=Rcs(Φcs)Ps+Pcs (6)P c =R cs (Φ cs )P s +P cs (6)
式(6)中,Rcs表示绳索驱动并联机器人的参考坐标系Os相对于所述位姿测量装置的参考坐标系Oc的旋转矩阵;In formula (6), R cs represents the rotation matrix of the reference coordinate system O s of the cable-driven parallel robot relative to the reference coordinate system O c of the pose measuring device;
步骤5.2、简化式(6),从而利用式(7)建立位姿测量装置的参考坐标系Oc与所述绳索驱动并联机器人的参考坐标系Os的位置关系方程:Step 5.2, Simplify Formula (6), so as to use Formula (7) to establish the position relationship equation between the reference coordinate system Oc of the pose measuring device and the reference coordinate system Os of the cable-driven parallel robot:
利用式(8)建立位姿测量装置的参考坐标系Oc与所述绳索驱动并联机器人的参考坐标系Os的位置关系优化方程,再利用L-M算法对式(8)进行优化求解,得到位置参数Pcs:Utilize formula (8) to establish the position relationship optimization equation of the reference coordinate system O c of the pose measuring device and the reference coordinate system O s of the cable-driven parallel robot, and then use the LM algorithm to optimize and solve formula (8) to obtain the position Parameter P cs :
步骤5.3、令Pc-Pcs=A,Ps=B,根据式(6)得到Rcs(Φcs)B=A,则利用式(9)得到位姿测量装置的参考坐标系Oc与所述绳索驱动并联机器人的参考坐标系Os的姿态关系方程,再利用L-M算法对式(9)进行优化求解,得到姿态参数Φcs:Step 5.3, let P c -P cs =A, P s =B, get R cs (Φ cs )B=A according to formula (6), then use formula (9) to get the reference coordinate system O c of the pose measurement device With the attitude relationship equation of the reference coordinate system O s of the cable-driven parallel robot, the LM algorithm is used to optimize and solve the formula (9), and the attitude parameter Φ cs is obtained:
Rcs(Φcs)=ABT(B·BT)-1 (9)R cs (Φ cs )=AB T (B·B T ) -1 (9)
步骤6、联合标定运动学参数误差;Step 6. Jointly calibrate the kinematic parameter error;
步骤6.1、利用式(10)计算位姿测量装置测量N组末端动平台的位姿的均方误差SD:Step 6.1, using formula (10) to calculate the mean square error SD of the pose measuring device to measure the poses of N groups of terminal moving platforms:
式(10)中,Xc表示在位姿测量装置的参考坐标系Oc中,位姿测量装置测量的机器人末端动平台的实际位姿,表示在位姿测量装置的参考坐标系Oc中,机器人末端动平台的理论位姿;In formula (10), Xc represents the actual pose of the robot terminal moving platform measured by the pose measuring device in the reference coordinate system Oc of the pose measuring device, Indicates the theoretical pose of the moving platform at the end of the robot in the reference coordinate system Oc of the pose measurement device;
步骤6.2、初始化迭代次数iter=1,运动学参数误差Cal,最大迭代次数为itermax;Step 6.2, initialize the number of iterations iter=1, kinematic parameter error Cal, and the maximum number of iterations is itermax;
步骤6.3、利用步骤5第iter次计算位姿测量装置的参考坐标系Oc与所述绳索驱动并联机器人的参考坐标系Os的相对关系 Step 6.3, use step 5 to calculate the relative relationship between the reference coordinate system O c of the pose measuring device and the reference coordinate system O s of the cable-driven parallel robot for the iter time
步骤6.4、利用最小二乘法第iter次标定运动学参数误差Caliter;Step 6.4, using the least squares method to calibrate the kinematic parameter error Cal iter for the iter time;
步骤6.5、将Caliter+Cal赋值给Caliter,将iter+1赋值给iter;Step 6.5, assign Cal iter + Cal to Cali iter , assign iter+1 to iter;
步骤6.6、如果SD<<δ且iter<iter max,其中δ为极小值,则标定结束,输出Caliter;如果iter>iter max,则终止循环;如果SD>δ且iter<iter max,则返回步骤6.3。Step 6.6. If SD<<δ and iter<iter max, where δ is a minimum value, the calibration ends and Cali iter is output; if iter>iter max, the loop is terminated; if SD>δ and iter<iter max, then Return to step 6.3.
与已有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1、本发明通过建立运动学参数误差模型,接着利用标定算法标定机器人参考坐标系和测量装置参考坐标系之间的相对位置关系,然后利用优化算法辨识运动学参数误差,从而提高了绳索驱动并联机器人的运动学参数误差标定精度;在一次标定过程中由于存在测量误差,因此采用迭代的优化算法,对运动学参数误差标定过程进行迭代优化,使得最终的运动学误差降到最低,大大提高了参数误差标定精度。在整个标定过程中算法可以自动进行,不需要人工干预,大大提高了标定效率。1. The present invention establishes a kinematic parameter error model, then uses a calibration algorithm to calibrate the relative positional relationship between the robot reference coordinate system and the measuring device reference coordinate system, and then uses an optimization algorithm to identify the kinematic parameter error, thereby improving the rope-driven parallel connection. Calibration accuracy of kinematic parameter error of the robot; due to measurement error in a calibration process, an iterative optimization algorithm is used to iteratively optimize the calibration process of kinematic parameter error, so that the final kinematic error is minimized and greatly improved Parameter error calibration accuracy. In the whole calibration process, the algorithm can be carried out automatically without manual intervention, which greatly improves the calibration efficiency.
2、本发明建立了绳索驱动并联机器人的运动学参数误差模型,并使用优化算法对误差进行辨识,使得参数误差标定结果更准确;2. The present invention establishes the kinematics parameter error model of the cable-driven parallel robot, and uses an optimization algorithm to identify the error, so that the calibration result of the parameter error is more accurate;
3、本发明利用优化算法标定位姿测量装置的自身参考坐标系和并联机器人自身参考坐标系的相对位置关系,大大提高了位姿测量装置的测量精度。3. The present invention utilizes an optimization algorithm to calibrate the relative positional relationship between the self-reference coordinate system of the orientation measurement device and the reference coordinate system of the parallel robot, which greatly improves the measurement accuracy of the orientation measurement device.
4、本发明采用迭代的参数误差辨识方法,对标定的位姿测量装置的自身参考坐标系和并联机器人自身参考坐标系相对位置关系和辨识的运动学参数误差进行迭代辨识,整个标定过程可以自动执行,不需要人工干预,大大提高了标定效率和运动学参数误差辨识精度。4. The present invention adopts an iterative parameter error identification method to iteratively identify the relative positional relationship between the self-reference coordinate system of the calibrated pose measurement device and the parallel robot’s own reference coordinate system and the identified kinematic parameter errors. The entire calibration process can be automatically Execution without manual intervention greatly improves calibration efficiency and kinematic parameter error identification accuracy.
附图说明Description of drawings
图1是本发明标定过程中参考坐标系示意图。Fig. 1 is a schematic diagram of the reference coordinate system in the calibration process of the present invention.
具体实施方式detailed description
本实施例中,一种基于位置姿态测量的绳索驱动并联机器人运动学参数误差标定方法,是应用于绳索驱动并联机器人的标定过程中,在绳索驱动并联机器人一侧设置有位置姿态测量装置;具体的说,该误差标定方法包括:并联机器人运动学参数误差辨识模型、位置姿态测量装置坐标系标定模块、机器人运动学参数误差辨识模块。In this embodiment, a cable-driven parallel robot kinematic parameter error calibration method based on position and attitude measurement is applied to the calibration process of the cable-driven parallel robot, and a position and attitude measurement device is installed on the side of the cable-driven parallel robot; specifically In other words, the error calibration method includes: a parallel robot kinematics parameter error identification model, a position and attitude measurement device coordinate system calibration module, and a robot kinematics parameter error identification module.
绳索驱动并联机器人存在运动学参数误差,依据并联机器人的运动学模型建立并联机器人运动学参数误差模型;根据运动学误差参数模型和位置姿态测量装置测量的误差得到参数误差辨识模型,并利用这个参数误差辨识模型进行参数辨识。There are kinematic parameter errors in the cable-driven parallel robot, and the kinematic parameter error model of the parallel robot is established according to the kinematic model of the parallel robot; the parameter error identification model is obtained according to the kinematic error parameter model and the error measured by the position and attitude measurement device, and this parameter is used to Error identification model for parameter identification.
位置姿态测量装置坐标系标定模型以位置姿态测量装置建立世界坐标系,以绳索驱动并联机器人建立参考坐标系,根据位置测量装置测量得到的并联机器人末端位置姿态和参考坐标系下的位置姿态求解标定参考坐标系和世界坐标系的相对位置关系。The coordinate system calibration model of the position and attitude measurement device establishes the world coordinate system with the position and attitude measurement device, establishes the reference coordinate system with the rope-driven parallel robot, and solves the calibration according to the terminal position and attitude of the parallel robot measured by the position measurement device and the position and attitude in the reference coordinate system The relative position relationship between the reference coordinate system and the world coordinate system.
机器人运动学参数误差辨识模块以并联机器人参数误差辨识模型和位置姿态测量装置坐标系标定模块为基础,利用参数辨识优化算法对运动学误差参数进行辨识。The robot kinematic parameter error identification module is based on the parallel robot parameter error identification model and the coordinate system calibration module of the position and attitude measurement device, and uses the parameter identification optimization algorithm to identify the kinematic error parameters.
本实施例中,一种绳索驱动并联机器人的运动学参数误差标定方法,是应用于绳索驱动并联机器人的标定过程中,并在绳索驱动并联机器人一侧设置有位姿测量装置,位置姿态测量装置为通用的位置姿态的测量装置,可以利用位置姿态测量装置测量得到末端动平台的运动误差;在标定过程中可以辨识运动学参数误差,提高绳索驱动并联机器人运动学精度;具体的说,该运动学参数误差标定方法是按照下步骤进行:In this embodiment, a method for calibrating kinematic parameter errors of a rope-driven parallel robot is applied in the calibration process of a rope-driven parallel robot, and a pose measuring device is provided on one side of the rope-driven parallel robot. It is a general-purpose position and attitude measurement device, which can be used to measure the motion error of the end moving platform; during the calibration process, it can identify the kinematics parameter error and improve the kinematics accuracy of the cable-driven parallel robot; specifically, the motion The error calibration method of scientific parameters is carried out according to the following steps:
步骤1、在位姿测量装置的测量工作范围内,测量装置泛指可以测量绳索驱动机器人末端动平台位姿的装置,可以采用激光干涉仪,6D摄像机以及运动捕捉系统,一般要求测量装置的精度要远高于机器人本身的精度;建立绳索驱动并联机器人的参考坐标系Os,机器人末端动平台上的参考坐标系Op,参考坐标系Os可以建立在绳索驱动并联机器人的绳索驱动装置的绳索输出点上,使得参考系原点和绳索输出点向重合,便于建立运动学方程;机器人末端动平台上的参考坐标系Op建立在动平台的几何中心点,方便建立运动学模型;位姿测量装置的参考坐标系Oc,并将位姿测量装置的参考坐标系Oc作为世界坐标系;参考坐标系Oc是测量装置设定好的,一般在测量装置上会标出;Step 1. Within the measurement working range of the pose measuring device, the measuring device generally refers to the device that can measure the pose of the moving platform at the end of the rope-driven robot. Laser interferometers, 6D cameras and motion capture systems can be used, and the accuracy of the measuring device is generally required should be much higher than the precision of the robot itself; establish the reference coordinate system O s of the rope-driven parallel robot, the reference coordinate system O p on the moving platform at the end of the robot, and the reference coordinate system O s can be established on the rope-driven device of the rope-driven parallel robot At the output point of the rope, the origin of the reference system and the output point of the rope coincide to facilitate the establishment of kinematic equations; the reference coordinate system O p on the moving platform at the end of the robot is established at the geometric center point of the moving platform, which is convenient for establishing a kinematics model; The reference coordinate system O c of the measuring device, and the reference coordinate system O c of the pose measuring device is used as the world coordinate system; the reference coordinate system O c is set by the measuring device, and is generally marked on the measuring device;
步骤2、建立绳索驱动并联机器人的运动学模型;Step 2, establishing the kinematics model of the rope-driven parallel robot;
步骤2.1、对于为m绳索驱动装置输出的n自由度的绳索驱动并联机器人,末端动平台在绳索驱动并联机器人的参考坐标系Os中的理论位姿表示为Xs=[Ps Φs]T,其中Ps表示末端动平台的位置,Φs表示末端动平台的姿态;Step 2.1. For a cable-driven parallel robot with n degrees of freedom output by an m cable-driven device, the theoretical pose of the terminal moving platform in the reference coordinate system O s of the cable-driven parallel robot is expressed as X s = [P s Φ s ] T , where P s represents the position of the end moving platform, Φ s represents the attitude of the end moving platform;
如图1所示,令bi表示第i绳索驱动装置在机器人末端动平台上的参考坐标系Op上的位置,ai表示绳索输出点在机器人平台上的参考坐标系Os上的位置;i=1…m;As shown in Fig. 1, let b i denote the position of the i-th rope drive device on the reference coordinate system O p on the end-moving platform of the robot, and a i denote the position of the rope output point on the reference coordinate system O s on the robot platform ;i=1...m;
利用式(1)表示单个绳索驱动装置的闭链方程:Use equation (1) to express the closed-chain equation of a single rope drive:
li=ai-Ps-Rsp(Φs)bi (1)l i =a i -P s -R sp (Φ s )b i (1)
式(1)中,li表示第i绳索驱动装置的绳索输出点到末端动平台的绳索连接点的绳索向量,Rsp表示机器人末端动平台上的参考坐标系Op到绳索驱动并联机器人的参考坐标系Os的旋转矩阵;In formula (1), l i represents the rope vector from the rope output point of the i-th rope drive device to the rope connection point of the end moving platform, and R sp represents the reference coordinate system O p on the end moving platform of the robot to the rope-driven parallel robot The rotation matrix of the reference frame O s ;
步骤2.2、根据式(2)得到绳索驱动并联机器人的逆运动学方程:Step 2.2, obtain the inverse kinematics equation of the rope-driven parallel robot according to formula (2):
||li||2=(ai-Ps-Rsp(Φs)bi)T(ai-Ps-Rsp(Φs)bi),i=1,2,…,m (2)||l i || 2 =(a i -P s -R sp (Φ s )b i ) T (a i -P s -R sp (Φ s )b i ),i=1,2,…, m (2)
由式(2)得到绳索驱动并联机器人的绳索长度向量为l=[||l1||2||l2||2…||li||2…||lm||2]T;From formula (2), the rope length vector of the rope-driven parallel robot is l=[||l 1 || 2 ||l 2 || 2 …||l i || 2 …||l m || 2 ] T ;
步骤3、建立绳索驱动并联机器人的运动学参数误差模型;Step 3, establishing the kinematic parameter error model of the rope-driven parallel robot;
步骤3.1、令由机械加工和装配因素导致的机器人运动学误差参数表示为其中,bi表示第i绳索驱动装置在机器人末端动平台上的参考坐标系Op上的位置误差,ai表示的绳索输出点在机器人平台上的参考坐标系Os上的位置误差,表示电机编码器单位转动角度对应绳索的输出长度误差,一般bi和ai中各有3个参数,有1个参数,则需要辨识的运动学参数误差共有7m个Cal=[Cal1 Cal2 … Cali … Calm]T;Step 3.1, let the robot kinematics error parameters caused by machining and assembly factors be expressed as Among them, b i represents the position error of the i-th rope drive device on the reference coordinate system O p on the robot end moving platform, a i represents the position error of the rope output point on the reference coordinate system O s on the robot platform, Indicates the output length error of the rope corresponding to the unit rotation angle of the motor encoder. Generally, there are 3 parameters in b i and a i respectively, If there is one parameter, there are 7m kinematic parameter errors to be identified Cal=[Cal 1 Cal 2 ... Cal i ... Cal m ] T ;
步骤3.2、利用位姿测量装置测量N组末端动平台的位姿,为了保证参数辨识的鲁棒性,要求测量数据N的数目要远大于辨识参数个数;每个测量装置可以提供1个方程,所以N×m>>7m,为了保证标定速度,可以使得N=20;并利用第j组测量的位姿求得如式(3)所示的电机编码器输出角度θi的误差 Step 3.2. Use the pose measuring device to measure the poses of N groups of terminal moving platforms. In order to ensure the robustness of parameter identification, the number of measurement data N is required to be much larger than the number of identification parameters; each measuring device can provide 1 equation , so N×m>>7m, in order to ensure the calibration speed, N=20 can be made; and the error of the motor encoder output angle θ i shown in equation (3) can be obtained by using the pose measured by the jth group
式(3)中,{θm,j}表示用第j组测量的位姿求得的m个电机编码器反馈的实际转动角度,lj表示用第j组测量的位姿求得的绳索长度向量;In formula (3), {θ m,j } represents the actual rotation angles fed back by the m motor encoders obtained from the j-th group of measured poses, and l j represents the rope length vector;
步骤4、由式(3)得到如式(4)所示的优化目标方程:Step 4, obtain the optimization objective equation shown in formula (4) by formula (3):
式(4)中,eθ表示N组末端动平台的位姿求得的m个电机编码器输出角度的误差方程,并有: In formula (4), e θ represents the error equation of the output angles of m motor encoders obtained from the poses of N groups of terminal moving platforms, and has:
采用最小二乘法对式(4)进行优化求解,得到如式(5)所示的运动学参数误差辨识模型:Formula (4) is optimized and solved by the least square method, and the kinematic parameter error identification model shown in formula (5) is obtained:
式(5)中,为误差方程eθ对运动学参数误差Cal的雅可比矩阵,Wt表示运动学参数误差Cal的归一化矩阵;In formula (5), is the Jacobian matrix of the error equation e θ to the kinematic parameter error Cal, and W t represents the normalized matrix of the kinematic parameter error Cal;
步骤5、标定位姿测量装置的参考坐标系Oc相对绳索驱动并联机器人的参考坐标系Os的位置关系;Step 5, calibrate the positional relationship of the reference coordinate system Oc of the attitude measuring device relative to the reference coordinate system Os of the cable-driven parallel robot;
步骤5.1、令末端动平台的实际测量位姿表示为Xcs=[Pcs Φcs]T,其中,Pcs表示绳索驱动并联机器人的参考坐标系Os在位姿测量装置的参考坐标系Oc中的位置,Φcs表示绳索驱动并联机器人的参考坐标系Os在位姿测量装置的参考坐标系Oc中的姿态;则利用式(6)表示末端动平台在位姿测量装置的参考坐标系Oc中的位置Pc:Step 5.1, let the actual measured pose of the terminal moving platform be expressed as X cs =[P cs Φ cs ] T , where P cs represents the reference coordinate system O of the cable-driven parallel robot in the reference coordinate system O of the pose measurement device The position in c , Φ cs represents the attitude of the reference coordinate system O s of the cable-driven parallel robot in the reference coordinate system O c of the pose measurement device; then use formula (6) to express the reference of the terminal moving platform in the pose measurement device Position P c in coordinate system O c :
Pc=Rcs(Φcs)Ps+Pcs (6)P c =R cs (Φ cs )P s +P cs (6)
式(6)中,Rcs表示绳索驱动并联机器人的参考坐标系Os相对于位姿测量装置的参考坐标系Oc的旋转矩阵;In formula (6), R cs represents the rotation matrix of the reference coordinate system O s of the cable-driven parallel robot relative to the reference coordinate system O c of the pose measurement device;
步骤5.2、由于Rcs为齐次矩阵,有Rcs(Φcs)TRcs(Φcs)=1,将式(6)变形,从而利用式(7)建立位姿测量装置的参考坐标系Oc与绳索驱动并联机器人的参考坐标系Os的位置关系方程:Step 5.2, since R cs is a homogeneous matrix, there is R cs (Φ cs ) T R cs (Φ cs )=1, transform formula (6), and use formula (7) to establish the reference coordinate system of the pose measurement device The position relationship equation between O c and the reference coordinate system O s of the cable-driven parallel robot:
利用式(8)建立位姿测量装置的参考坐标系Oc与绳索驱动并联机器人的参考坐标系Os的位置关系优化方程,再利用L-M算法对式(8)进行优化求解,得到位置参数Pcs:Use formula (8) to establish the position relationship optimization equation of the reference coordinate system O c of the pose measurement device and the reference coordinate system O s of the cable-driven parallel robot, and then use the LM algorithm to optimize and solve formula (8) to obtain the position parameter P cs :
步骤5.3、令Pc-Pcs=A,Ps=B,根据式(6)得到Rcs(Φcs)B=A,则利用式(9)得到位姿测量装置的参考坐标系Oc与绳索驱动并联机器人的参考坐标系Os的姿态关系方程,再利用L-M算法对式(9)进行优化求解,得到姿态参数Φcs:Step 5.3, let P c -P cs =A, P s =B, get R cs (Φ cs )B=A according to formula (6), then use formula (9) to get the reference coordinate system O c of the pose measurement device With the attitude relationship equation of the reference coordinate system O s of the cable-driven parallel robot, the LM algorithm is used to optimize and solve the formula (9), and the attitude parameter Φ cs is obtained:
Rcs(Φcs)=ABT(B·BT)-1 (9)R cs (Φ cs )=AB T (B·B T ) -1 (9)
步骤6、联合标定运动学参数误差;Step 6. Jointly calibrate the kinematic parameter error;
步骤6.1、利用式(10)计算位姿测量装置测量N组末端动平台的位姿的均方误差SD:Step 6.1, using formula (10) to calculate the mean square error SD of the pose measuring device to measure the poses of N groups of terminal moving platforms:
式(10)中,Xc表示在位姿测量装置的参考坐标系Oc中,位姿测量装置测量的机器人末端动平台的实际位姿,表示在位姿测量装置的参考坐标系Oc中,机器人末端动平台的理论位姿;In formula (10), Xc represents the actual pose of the robot terminal moving platform measured by the pose measuring device in the reference coordinate system Oc of the pose measuring device, Indicates the theoretical pose of the moving platform at the end of the robot in the reference coordinate system Oc of the pose measurement device;
步骤6.2、初始化迭代次数iter=1,运动学参数误差Cal,最大迭代次数为itermax,可以取值iter max=10;Step 6.2, initialize iteration number iter=1, kinematic parameter error Cal, maximum iteration number is itermax, can take value iter max=10;
步骤6.3、利用步骤5第iter次计算位姿测量装置的参考坐标系Oc与绳索驱动并联机器人的参考坐标系Os的相对关系 Step 6.3, use step 5 to calculate the relative relationship between the reference coordinate system O c of the pose measurement device and the reference coordinate system O s of the cable-driven parallel robot for the iter time
步骤6.4、利用最小二乘法第iter次标定运动学参数误差Caliter;Step 6.4, using the least squares method to calibrate the kinematic parameter error Cal iter for the iter time;
步骤6.5、将Caliter+Cal赋值给Caliter,将iter+1赋值给iter;Step 6.5, assign Cal iter + Cal to Cali iter , assign iter+1 to iter;
步骤6.6、如果SD<<δ且iter<iter max,其中δ为极小值,取δ=10-6;则标定结束,输出Caliter;如果iter>iter max,则终止循环;如果SD>δ且iter<iter max,则返回步骤6.3。Step 6.6. If SD<<δ and iter<iter max, where δ is a minimum value, take δ=10 -6 ; then the calibration ends and output Cali iter ; if iter>iter max, terminate the loop; if SD>δ And iter<iter max, return to step 6.3.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710817308.9A CN107627299B (en) | 2017-09-12 | 2017-09-12 | A Kinematic Parameter Error Calibration Method for a Cable-Driven Parallel Robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710817308.9A CN107627299B (en) | 2017-09-12 | 2017-09-12 | A Kinematic Parameter Error Calibration Method for a Cable-Driven Parallel Robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107627299A true CN107627299A (en) | 2018-01-26 |
CN107627299B CN107627299B (en) | 2019-10-25 |
Family
ID=61100409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710817308.9A Active CN107627299B (en) | 2017-09-12 | 2017-09-12 | A Kinematic Parameter Error Calibration Method for a Cable-Driven Parallel Robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107627299B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109241675A (en) * | 2018-10-17 | 2019-01-18 | 清华大学 | A kind of Dynamics calibration method for parallel architecture main tapping |
CN110861081A (en) * | 2019-10-14 | 2020-03-06 | 北京航空航天大学 | An autonomous positioning method for the end effector of an under-constrained cable-parallel robot |
CN110871434A (en) * | 2019-11-25 | 2020-03-10 | 清华大学 | A kinematics calibration method for parallel processing equipment |
CN111400917A (en) * | 2020-03-18 | 2020-07-10 | 中国科学技术大学 | A kinematic optimization solution method for a rope-pulled parallel robot with variable structure |
WO2020215385A1 (en) * | 2019-04-26 | 2020-10-29 | 哈尔滨工业大学(深圳) | Kinematics test system for rope-driven flexible robot |
CN112077836A (en) * | 2020-09-08 | 2020-12-15 | 北京北特圣迪科技发展有限公司 | Overhead suspender error correction method based on four-flexible-cable traction parallel actuator |
CN112518738A (en) * | 2020-10-19 | 2021-03-19 | 清华大学 | Cable parallel robot kinematics calibration method based on pulley kinematics |
CN112775935A (en) * | 2020-12-14 | 2021-05-11 | 华南理工大学 | Parallel robot calibration method based on terminal error detection information subset |
CN112975913A (en) * | 2021-03-10 | 2021-06-18 | 清华大学 | Self-calibration method and system for cable-driven parallel mechanism |
CN113742857A (en) * | 2021-08-04 | 2021-12-03 | 温州大学 | Parameter identification method and system of cable robot system |
CN113752253A (en) * | 2021-08-16 | 2021-12-07 | 常州大学 | Parameter optimization method for continuum robot |
CN114367964A (en) * | 2022-03-22 | 2022-04-19 | 中国科学技术大学 | A method for reconfiguration planning of rope-pulled parallel robots |
CN114706312A (en) * | 2022-06-06 | 2022-07-05 | 中国科学技术大学 | A high-precision adaptive cooperative control method for rope-pulled parallel robots |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0546776B1 (en) * | 1991-12-07 | 1997-07-30 | Pohang Iron & Steel Co., Ltd. | Method of Orientating Axes of a Robot Wrist having an Offset |
CN1727861A (en) * | 2005-07-22 | 2006-02-01 | 浙江大学 | Parallel six-dimensional force sensor calibration device |
CN103267112A (en) * | 2013-05-29 | 2013-08-28 | 哈尔滨工业大学 | Device used for carrying out rope performance study on tandem type rope sheave structure |
CN103934823A (en) * | 2014-04-28 | 2014-07-23 | 哈尔滨工程大学 | Six-PTRT type parallel robot with self-calibration function |
CN203831398U (en) * | 2014-04-28 | 2014-09-17 | 哈尔滨工程大学 | 6-PTRT type parallel-connected robot with automatic calibrating function |
CN107009348A (en) * | 2017-04-18 | 2017-08-04 | 中国科学技术大学 | A kind of multi-configuration rope driving parallel robot and its spatial pose method for solving |
-
2017
- 2017-09-12 CN CN201710817308.9A patent/CN107627299B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0546776B1 (en) * | 1991-12-07 | 1997-07-30 | Pohang Iron & Steel Co., Ltd. | Method of Orientating Axes of a Robot Wrist having an Offset |
CN1727861A (en) * | 2005-07-22 | 2006-02-01 | 浙江大学 | Parallel six-dimensional force sensor calibration device |
CN103267112A (en) * | 2013-05-29 | 2013-08-28 | 哈尔滨工业大学 | Device used for carrying out rope performance study on tandem type rope sheave structure |
CN103934823A (en) * | 2014-04-28 | 2014-07-23 | 哈尔滨工程大学 | Six-PTRT type parallel robot with self-calibration function |
CN203831398U (en) * | 2014-04-28 | 2014-09-17 | 哈尔滨工程大学 | 6-PTRT type parallel-connected robot with automatic calibrating function |
CN107009348A (en) * | 2017-04-18 | 2017-08-04 | 中国科学技术大学 | A kind of multi-configuration rope driving parallel robot and its spatial pose method for solving |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109241675A (en) * | 2018-10-17 | 2019-01-18 | 清华大学 | A kind of Dynamics calibration method for parallel architecture main tapping |
WO2020215385A1 (en) * | 2019-04-26 | 2020-10-29 | 哈尔滨工业大学(深圳) | Kinematics test system for rope-driven flexible robot |
CN110861081A (en) * | 2019-10-14 | 2020-03-06 | 北京航空航天大学 | An autonomous positioning method for the end effector of an under-constrained cable-parallel robot |
CN110871434A (en) * | 2019-11-25 | 2020-03-10 | 清华大学 | A kinematics calibration method for parallel processing equipment |
CN110871434B (en) * | 2019-11-25 | 2021-06-29 | 清华大学 | A kinematics calibration method for parallel processing equipment |
CN111400917A (en) * | 2020-03-18 | 2020-07-10 | 中国科学技术大学 | A kinematic optimization solution method for a rope-pulled parallel robot with variable structure |
CN112077836A (en) * | 2020-09-08 | 2020-12-15 | 北京北特圣迪科技发展有限公司 | Overhead suspender error correction method based on four-flexible-cable traction parallel actuator |
CN112077836B (en) * | 2020-09-08 | 2024-01-23 | 北京北特圣迪科技发展有限公司 | Overhead boom error correction method based on four-flexible-cable traction parallel actuator |
CN112518738B (en) * | 2020-10-19 | 2022-04-26 | 清华大学 | Kinematics calibration method of cable-parallel robot based on pulley kinematics |
CN112518738A (en) * | 2020-10-19 | 2021-03-19 | 清华大学 | Cable parallel robot kinematics calibration method based on pulley kinematics |
CN112775935A (en) * | 2020-12-14 | 2021-05-11 | 华南理工大学 | Parallel robot calibration method based on terminal error detection information subset |
CN112975913A (en) * | 2021-03-10 | 2021-06-18 | 清华大学 | Self-calibration method and system for cable-driven parallel mechanism |
CN113742857B (en) * | 2021-08-04 | 2023-08-22 | 温州大学 | A parameter identification method and system for a cable robot system |
CN113742857A (en) * | 2021-08-04 | 2021-12-03 | 温州大学 | Parameter identification method and system of cable robot system |
CN113752253A (en) * | 2021-08-16 | 2021-12-07 | 常州大学 | Parameter optimization method for continuum robot |
CN113752253B (en) * | 2021-08-16 | 2022-11-11 | 常州大学 | A Parameter Optimization Method for Continuum Robots |
CN114367964A (en) * | 2022-03-22 | 2022-04-19 | 中国科学技术大学 | A method for reconfiguration planning of rope-pulled parallel robots |
CN114706312A (en) * | 2022-06-06 | 2022-07-05 | 中国科学技术大学 | A high-precision adaptive cooperative control method for rope-pulled parallel robots |
Also Published As
Publication number | Publication date |
---|---|
CN107627299B (en) | 2019-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107627299B (en) | A Kinematic Parameter Error Calibration Method for a Cable-Driven Parallel Robot | |
CN104608129B (en) | Robot Calibration Method Based on Plane Constraints | |
CN110014426B (en) | Method for grabbing symmetrically-shaped workpieces at high precision by using low-precision depth camera | |
CN109176494B (en) | Self-calibration method and system for rope-driven multi-joint flexible robot and storage medium | |
CN108731591B (en) | Robot tool coordinate system calibration method based on plane constraint | |
CN107718050B (en) | SCARA robot arm length and zero point calibration method, device, medium and computer equipment | |
CN102825602B (en) | PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device | |
CN104354166B (en) | A kind of Zero calibration method of 3-dof parallel robot | |
CN114474056B (en) | A monocular vision high-precision target positioning method for grasping operation | |
CN110253574B (en) | Multi-task mechanical arm pose detection and error compensation method | |
CN105751245B (en) | A kind of method and its equipment for being used to demarcate multi-robot system basis coordinates system | |
CN106064379B (en) | A kind of method that robot calculates practical brachium automatically | |
CN109781164B (en) | Static calibration method of line laser sensor | |
CN106737859B (en) | External parameter calibration method for sensor and robot based on invariant plane | |
CN110370271B (en) | Joint transmission ratio error calibration method of industrial series robot | |
CN108015808A (en) | A kind of Kinematic Calibration method of series-parallel robot | |
CN105014677A (en) | Visual mechanical arm control device and method based on Camshift visual tracking and D-H modeling algorithms | |
CN108890645A (en) | A kind of compensation method of series parallel robot in five degrees of freedom driving joint zero point error | |
CN107471257B (en) | Robot Geometry Calibration Method Based on Single Cable Encoder | |
CN113580148B (en) | Kinematics Calibration Method for Parallel Robot Based on Equivalent Kinematic Chain | |
CN110722558B (en) | Origin correction method and device for robot, controller and storage medium | |
CN106777656A (en) | A kind of industrial robot absolute precision calibration method based on PMPSD | |
CN113400088A (en) | Position-independent geometric error modeling and identification method for AC double-turntable five-axis machine tool | |
CN109176487A (en) | A kind of cooperating joint section scaling method, system, equipment, storage medium | |
CN105737735A (en) | Portable self-calibration end performer repetition positioning precision measurement device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |