CN107613466B - 超密集无线网络下基于指纹相似度的室内定位方法 - Google Patents

超密集无线网络下基于指纹相似度的室内定位方法 Download PDF

Info

Publication number
CN107613466B
CN107613466B CN201710835306.2A CN201710835306A CN107613466B CN 107613466 B CN107613466 B CN 107613466B CN 201710835306 A CN201710835306 A CN 201710835306A CN 107613466 B CN107613466 B CN 107613466B
Authority
CN
China
Prior art keywords
fingerprint
rank
signal strength
received signal
aps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710835306.2A
Other languages
English (en)
Other versions
CN107613466A (zh
Inventor
盛敏
厚丹妮
刘俊宇
李建东
张琰
彭琳琳
郑阳
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710835306.2A priority Critical patent/CN107613466B/zh
Publication of CN107613466A publication Critical patent/CN107613466A/zh
Application granted granted Critical
Publication of CN107613466B publication Critical patent/CN107613466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Collating Specific Patterns (AREA)

Abstract

本发明属于无线通信与室内定位技术领域,公开了一种超密集无线网络下基于指纹相似度的室内定位方法,通过定义的灵活且稳定的指纹相似度估计目标的位置,包括:设计的简单高效的接入点(access point,AP)的选择方法选择能够有效地表征室内环境中接收信号强度特征的AP;通过采用接收信号强度相对值以便建立较稳定的指纹库,减轻环境动态与和接收设备异构的影响,提高定位精度;在线阶段设计的权重优先级准则,其在确定两个位置的相似度时为更强信号强度的AP分配较大的权重,从而更好地对抗环境的动态问题,提高定位精度;尤其是当大量的AP丢失时,FSIL能够提供更加鲁棒的定位精度。

Description

超密集无线网络下基于指纹相似度的室内定位方法
技术领域
本发明属于无线通信与室内定位技术领域,尤其涉及一种超密集无线网络下基于指纹相似度的室内定位方法。
背景技术
近年来,物联网中基于位置感知的应用的需求激增,例如医院、机场、大型商场等实际场景下的定位和导引。同时,智能家居、无人医疗护理以及智能机器人等行业也需要计算机能够在室内识别特定对象的位置,推动了室内定位技术(indoor positioningsystem,IPS)快速发展,并带来巨大的前景机会。与此同时,由于物联网设备(例如手机、平板电脑、可穿戴设备等)的性能飞速增长,室内定位技术可以为用户带来更好的用户体验。现有的室内定位技术可以被分为两类:基于测距(range-based)的室内定位技术和基于位置指纹(fingerprint-based)的室内定位技术。由于室内环境复杂且变化多端,基于测距的室内定位技术不能精确地定位;相比之下,基于位置指纹的室内定位技术能更好地适应复杂且多变化的环境,具有更大的潜力。基于位置指纹的室内定位技术包括两个阶段:离线阶段与在线阶段,具体来说,离线阶段收集各个参考点处的位置指纹特征以构建指纹库;在线阶段为待测点从已建好的指纹库中匹配指纹进而估计待测点的位置。得益于接收信号强度的收集简单易操作(无需额外的设施,仅需一些基础设备,例如,智能手机,平板等),大多数基于指纹的室内定位方法采用接收信号强度作为位置指纹特征。随着超密集无线网络中网络基础设施的密集部署,例如,小型基站和Wi-Fi接入点(access point,AP),室内定位技术可以利用丰富的锚节点来精确跟踪和估计待测点的位置。然而,室内环境中密集部署的大量AP将造成无线环境将发生剧烈变化(例如AP的动态变化,无线信道的时变性),导致基于位置指纹的定位方法存在困难和挑战。例如,由于AP的即插即用功能,在线阶段对待测点定位时,指纹库中的一些AP可能会消失并且会出现一些新的AP。与此同时,无线信道具有时变性,这意味着在同一个位置收集的接收信号强度值也会随着时间(几周到几十周)而变化。然而,采用接收信号强度绝对值的位置指纹定位方法是基于接收信号强度变化较小的假设。因此,考虑到以上实际室内定位场景中的问题,大多数基于接收信号强度绝对值的定位方法在实践中将导致十分不稳定的定位精度,且随着环境的剧烈变化,定位精度急剧下降。此外,不同类型的设备收集的接收信号强度绝对值存在一定的差异(即使接收设备位于相同的位置),这也对精确的室内定位带来严峻的挑战。针对以上实际室内定位场景下的环境动态变化以及接收设备异构问题,以接收信号强度绝对值作为指纹的室内定位方法可能会遭遇很多困难,进而造成定位精度下降且非常不稳定。因此,出现了大量的以接收信号强度相对值作为指纹的室内定位方法,例如:一种无需校准的室内定位方法(calibration-freeindoor localization,FreeLoc)方法与一种处理环境动态问题(handling environmentaldynamics,HED)的室内定位方法。FreeLoc方法基于短期内测量的接收信号强度样本的众数作为指纹建立指纹库比较稳定的实验发现。虽然FreeLoc能够较好地处理接收设备异构问题,但是大量指纹库中的AP丢失将导致FreeLoc的定位精度较低。HED的室内定位方法基于容忍乱序的匹配算法(order-tolerance sequences based matching algorithm),旨在处理室内定位环境动态的问题,但是HED在大量指纹库中的AP丢失的实际室内场景下的性能急剧下降。这两种方法没有采用AP选择,不仅造成指纹库数据集冗余,而且这些冗余导致定位精度下降。与此同时,由于这两种方法在决定两个位置的相似度时为所有AP赋予相同的权重,而在超密集无线网络中存在大量冗余AP且AP动态变化,导致定位精度下降。
综上所述,现有技术存在的问题是:现有的基于位置指纹的室内定位方法,指纹数据库庞大,并且在超密集无线网络下指纹库中大量AP丢失时,定位精度较低且不稳定。
发明内容
针对现有技术存在的问题,本发明提供了一种超密集无线网络下基于指纹相似度的室内定位方法。
本发明是这样实现的,一种超密集无线网络下基于指纹相似度的室内定位方法,所述超密集无线网络下基于指纹相似度的室内定位方法包括离线阶段和在线阶段;
所述离线阶段选择表征室内环境中接收信号强度特征AP;接收信号强度相对值建立指纹库;
所述在线阶段设计的权重优先级准则,在确定两个位置的相似度时为更强信号强度的AP分配较大的权重。
进一步,所述离线阶段具体包括如下步骤:
步骤一,选择表征环境中接收信号强度特征的AP,记作集合S;
步骤二,根据接收信号强度相对值以S中的所有AP建立指纹库,记作
Figure BDA0001409634730000031
其中
Figure BDA0001409634730000032
与pi分别表示第i个参考点处的指纹值向量与坐标;其中
Figure BDA0001409634730000033
进一步,所述步骤一针对每个参考点的处理方法包括:
(1)收集能够扫描到的所有AP的接收信号强度样本并计算每个AP相应指纹值,指纹值表示AP处接收信号强度样本的众数;
(2)计算
Figure BDA0001409634730000034
Figure BDA0001409634730000035
表示APi处指纹值大于某个预设门限的参考点数目;
(3)根据
Figure BDA0001409634730000036
将所有AP按照降序的方式排序,选取前NAP个AP,记作集合S。
进一步,所述步骤二具体包括:
(1)计算fpi
Figure BDA0001409634730000037
表示第i个参考点处的指纹值向量,元素为S中所有AP指纹值,并按照降序方式排序;APj(j=1,...,NAP)处接收信号强度样本中中存在数目大于等于2的众数,选择接收信号强度值最大的众数作为其指纹值;
(2)根据fpi得到ranki
Figure BDA0001409634730000041
表示按照fpi相应指纹值顺序的BSSID向量;
(3)根据ranki得到rankSeti
Figure BDA0001409634730000042
是一个BSSID集合,包含NAP个AP子集,其中
Figure BDA0001409634730000043
为一个AP子集,包含指纹值低于δdif(dBm)的所有AP的集合,
Figure BDA0001409634730000044
其中参数δ的设置决定了FSIL对抗环境动态影响的有效性。
进一步,所述在线阶段具体包括如下步骤:
第一步,处理待测点收集的接收信号强度样本,依据离线阶段中建立指纹库的步骤处理在线待测位置收集的接收信号强度样本,记作φn=[fpn,rankn,rankSetn](n=1,2,...);
第二步,计算每个参考点的基础分,用
Figure BDA0001409634730000045
定量地表示rankn(TPn)与ranki(RPi(i=1,...,NRP))的指纹向量相似度;
Figure BDA0001409634730000046
越大,说明TPn与RPi的指纹相似度越高;
第三步,计算修正分数并在第二步的基础上修正
Figure BDA0001409634730000047
第四步,估计待测点的坐标。
进一步,所述第二步具体包括:
(1)如果rankn(TPn)与ranki(RPi)中前两个元素的交集为空集,则
Figure BDA0001409634730000048
反之,进行(2);
(2)为rankn中前δthd个AP计算对应的
Figure BDA0001409634730000049
并累加到
Figure BDA00014096347300000410
Figure BDA00014096347300000411
表示
Figure BDA00014096347300000412
Figure BDA00014096347300000413
的前δbase个元素组成的两个子集的交集元素个数,
Figure BDA00014096347300000414
Figure BDA00014096347300000415
表示同一个BSSID。
进一步,所述第三步具体包括:
(1)计算
Figure BDA0001409634730000051
并将相应的
Figure BDA0001409634730000052
加到
Figure BDA0001409634730000053
其中
Figure BDA0001409634730000054
是修正分数且与
Figure BDA0001409634730000055
成正比,
Figure BDA0001409634730000056
表示rankn(TPn)与ranki(RPi)中前Nse个元素组成的两个子集的的交集元素个数;
(2)计算
Figure BDA0001409634730000057
Figure BDA0001409634730000058
时,将相应的
Figure BDA0001409634730000059
加到
Figure BDA00014096347300000510
其中
Figure BDA00014096347300000511
是修正分数且与
Figure BDA00014096347300000512
成反比,当
Figure BDA00014096347300000513
时,
Figure BDA00014096347300000514
其中,
Figure BDA00014096347300000515
表示
Figure BDA00014096347300000516
在TPn与RPi的排名波动的距离。
进一步,所述第四步具体包括:
(1)根据分数
Figure BDA00014096347300000517
为所有参考点排序,选取分数最高的NK个参考点;
(2)以归一化的NK个参考点相应的分数
Figure BDA00014096347300000518
为权重,计算NK个参考点的加权平均坐标作为待测点的预测坐标。
本发明与现有技术相比在相同的超密集无线网络定位场景下具有以下优势:
本发明的超密集无线网络下基于指纹相似度的室内定位方法,可以在超密集无线网络中提供鲁棒的定位精度采用了简单有效的AP选择方法,能够简单高效地选择合适的AP,进而有效地表征室内定位环境中接收信号强度的特征。本发明采用接收信号强度相对值建立比较稳定的指纹库,以减轻环境动态的影响,进而提供更加鲁棒的定位精度。此外,FSIL还能够一定程度上减轻接收设备异构的影响。
本发明在线阶段定义的一种灵活且稳定的指纹相似度以估计超密集无线网络中不同位置之间距离的远近。在线阶段定义的
Figure BDA00014096347300000519
能够定量地描述rankn(TPn)与ranki(RPi(i=1,...,NRP))的指纹向量相似度。
Figure BDA00014096347300000520
越大,则说明TPn与RPi的指纹相似度越高,即TPn与RPi之间的距离越近。本发明在线阶段步骤3中的两个修正条件使得FSIL能够更好地对抗AP的动态变化与无线信道的时变性带来的问题。与此同时,采用的权重优先级准则在确定两个位置的相似度时为更强信号强度的AP提供更大的权重,进而减轻室内定位环境动态的影响,从而提高定位精度。尤其是当大量的AP丢失时,FSIL能够提供更加鲁棒的定位精度。
本发明的方法通过实验证明,图4和图5显示了实验结果,在丢失指纹库中5个AP的定位场景中,与FreeLoc和HED相比,FSIL的平均定位误差分别下降了18.39%和40.34%;FSIL的中值误差分别下降了12.14%和25.45%。在丢失指纹库中20个AP的定位场景中,与FreeLoc和HED相比,FSIL的平均定位误差分别下降了30.45%和37.19%;FSIL的中值误差分别下降了27.70%和30.63%。
附图说明
图1是本发明实施例提供的超密集无线网络下基于指纹相似度的室内定位方法流程图。
图2是本发明实施例提供的超密集无线网络下基于指纹相似度的室内定位方法实现流程图。
图3是本发明实施例提供的实验场景图。
图4是本发明实施例提供的定位精度性能的实验结果示意图。
图5是本发明实施例提供的中值误差和平均误差的实验结果示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明在动态变化的实际室内环境下降低定位误差并提供加鲁棒的定位精度,通过定义指纹相似度以估计超密集无线网络中不同位置之间距离的远近,采用简单高效的AP选择方法,在AP密集部署的超密集无线网络中,选择能够有效地表征环境中接收信号强度特征的AP;采用接收信号强度相对值建立了较稳定的指纹库,减轻环境动态的影响,提高定位精度。在线阶段,采用权重优先级准则,在确定两个位置的相似度时提供更大地权重给更强信号强度的AP,更好地对抗环境的动态问题,提高定位精度;尤其当大量的AP丢失时,FSIL能够提供更加鲁棒的定位精度。
下面结合附图对本发明的应用原理作详细的描述。
如图1所示,本发明实施例提供的超密集无线网络下基于指纹相似度的室内定位方法包括以下步骤:
S101:接入点(access point,AP)选择方法,在AP密集部署的超密网络中,选择能够有效地表征环境中接收信号强度特征的AP;
S102:通过采用接收信号强度相对值建立较稳定的指纹库;
S103:在线阶段采用权重优先级准则,在确定两个位置的相似度时提供更大地权重给更强信号强度的AP。
下面结合附图对本发明的应用原理作进一步的描述。
如图2所示,本发明本发明实施例提供的超密集无线网络下基于指纹相似度的室内定位方法包括离线阶段与在线阶段。
离线阶段包括如下步骤:
步骤1,AP选择:
设计的AP选择方法可以选择出能够有效地表征环境中接收信号强度特征的AP子集。针对每个参考点:
(1a)收集能够扫描到的所有AP的接收信号强度样本并计算每个AP相应指纹值,其中指纹值表示该AP处接收信号强度样本的众数;
(1b)计算
Figure BDA0001409634730000071
Figure BDA0001409634730000072
表示APi处指纹值大于某个预设门限的参考点数目;
(1c)根据
Figure BDA0001409634730000073
将所有AP按照降序的方式排序,选取前NAP个AP,记作集合S。注意应当选取合适的NAP,当NAP过大时,将造成指纹库数据量过多;存在一些不合适的AP可能使得定位精度下降。
步骤2,根据接收信号强度相对值建立指纹库:
以S中的所有AP建立指纹库,记作
Figure BDA0001409634730000081
其中
Figure BDA0001409634730000082
与pi分别表示第i个参考点处的指纹值向量与坐标。其中
Figure BDA0001409634730000083
(2a)计算fpi
Figure BDA0001409634730000084
表示第i个参考点处的指纹值向量,其中的元素为S中所有AP指纹值,并按照降序方式排序;APj(j=1,...,NAP)处接收信号强度样本中中存在数目大于等于2的众数,选择接收信号强度值最大的众数作为其指纹值;
(2b)根据fpi得到ranki
Figure BDA0001409634730000085
表示按照fpi相应指纹值顺序的BSSID向量;
(2c)根据ranki得到rankSeti
Figure BDA0001409634730000086
是一个BSSID集合,包含NAP个AP子集,其中
Figure BDA0001409634730000087
为一个AP子集,包含指纹值低于δdif(dBm)的所有AP的集合,
Figure BDA0001409634730000088
其中参数δ(dB)的设置决定了FSIL对抗环境动态影响的有效性。
表1
Figure BDA0001409634730000089
表1显示了RP1的指纹。首先,通过离线阶段步骤1中设计的AP选择方法选出6个AP(即APi(i=1,...,6))。然后,根据离线阶段步骤(2a)计算指纹值并按照降序的方式排序,记作指纹向量fp1。需要注意,在RP1处无法扫描到AP6,因此AP6的指纹值设置为-110dBm。之后,根据离线阶段步骤(2b)得到rank1。最后,根据离线阶段步骤(2c)得到RP1的rankSet1(其中δ=10(dB)),包含6个子集。例如,
Figure BDA0001409634730000091
包含的元素是AP2,AP1,AP3,AP5和AP6,其指纹值均低于δdif=-62(dBm)=-52(dBm)-10(dB)。
本发明的在线阶段具体实现包括如下步骤:
步骤1,处理待测点收集的接收信号强度样本:
依据离线阶段中建立指纹库的步骤处理在线待测位置收集的接收信号强度样本,记作φn=[fpn,rankn,rankSetn]。
步骤2,计算每个参考点的基础分:
Figure BDA0001409634730000092
定量地表示rankn(TPn)与ranki(RPi(i=1,...,NRP))的指纹向量相似度。若
Figure BDA0001409634730000093
越大,则说明TPn与RPi的指纹相似度越高。在此步骤中计算每个参考点的基础分;
(2a)如果rankn(TPn)与ranki(RPi)中前两个元素的交集为空集,则
Figure BDA0001409634730000094
反之,进行(2b);
(2b)为rankn中前δthd个AP计算对应的
Figure BDA0001409634730000095
并累加到
Figure BDA0001409634730000096
Figure BDA0001409634730000097
表示
Figure BDA0001409634730000098
Figure BDA0001409634730000099
的前δbase个元素组成的两个子集的交集元素个数,
Figure BDA00014096347300000910
Figure BDA00014096347300000911
是同一个BSSID;
步骤3,计算修正分数并在步骤2的基础上修正
Figure BDA00014096347300000912
(3a)计算
Figure BDA00014096347300000913
并将相应的
Figure BDA00014096347300000914
加到
Figure BDA00014096347300000915
其中
Figure BDA00014096347300000916
是修正分数且与
Figure BDA00014096347300000917
成正比,
Figure BDA00014096347300000918
表示
Figure BDA00014096347300000919
与ranki(RPi)中前Nse个元素组成的两个子集的交集元素个数;
(3b)计算
Figure BDA00014096347300000920
Figure BDA00014096347300000921
时,将相应的
Figure BDA00014096347300000922
加到
Figure BDA00014096347300000923
其中
Figure BDA00014096347300000924
是修正分数且与
Figure BDA00014096347300000925
成反比,当
Figure BDA00014096347300000926
时,
Figure BDA00014096347300000927
其中,
Figure BDA00014096347300000928
表示
Figure BDA00014096347300000929
在TPn与RPi的排名波动的距离。如,
Figure BDA0001409634730000101
在TPn的排名为p,在RPi的排名为1,则
Figure BDA0001409634730000102
步骤4,估计待测点的坐标:
(4a)根据分数
Figure BDA0001409634730000103
为所有参考点排序,选取分数最高的NK个参考点;
(4b)以归一化的NK个参考点相应的分数
Figure BDA0001409634730000104
为权重,计算NK个参考点的加权平均坐标作为待测点的预测坐标。
表2
Figure BDA0001409634730000105
如表2所示,定位场景中有一个待测点(即TPn)与三个参考点(即RPi(i=1,2,3))。根据在线阶段步骤2为RPi(i=1,2,3)计算基础分(δ=10dB,δthd=5和δbase=5),分别为10,8,0。然后,根据在线阶段步骤3为RPi(i=1,2,3)计算修正分数:根据在线阶段步骤(3a)计算
Figure BDA0001409634730000106
Figure BDA0001409634730000107
分别为4和3。因此,得到相应的修正分数:
Figure BDA0001409634730000108
Figure BDA0001409634730000109
因此,
Figure BDA00014096347300001010
Figure BDA00014096347300001011
根据在线阶段步骤(3b)计算
Figure BDA00014096347300001012
例如,AP4相应有:
Figure BDA00014096347300001013
Figure BDA00014096347300001014
因此,相应修正分数为
Figure BDA00014096347300001015
Figure BDA00014096347300001016
并加到相应分数。最终得到
Figure BDA00014096347300001017
Figure BDA00014096347300001018
Figure BDA00014096347300001019
最后,根据在线阶段步骤4为待测点预测坐标。根据在线阶段步骤(4a)选取参考点(NK=2),即RP1与RP2。根据在线阶段步骤(4b),则待测点(即TPn)的预测坐标为RP1与RP2的加权平均坐标。其中RP1与RP2的权重分别为
Figure BDA0001409634730000111
Figure BDA0001409634730000112
归一化结果。
下面结合实验对本发明的应用效果作详细的说明。
图3显示的实验场景是西安电子科技大学实验楼的一段从A到B的宽度为2.4m,长度为50.7m的走廊(见图2)。离线阶段,在两条平行的虚线上选取间隔为0.8m的128个参考点。在每个参考点处,收集100个接收信号强度样本并记录相应的坐标和BSSID列表。在线阶段,从A到B的实线上选择128个待测点,其间隔为0.4m。
室内定位实验中与本发明中的FSIL方法相比较的两种现有技术均是以接收信号强度相对值作为指纹的位置指纹定位方法:一种无需校准的室内定位方法(calibration-free indoor localization,FreeLoc)与一种处理环境动态问题(handlingenvironmental dynamics,HED)的室内定位方法。
图4和图5的实验结果显示本发明在AP密集部署的超密集无线网络中具有较高的定位精度。实验结果显示出三种方法在丢失指纹库中的5个AP和丢失指纹库中的20个AP场景中的定位精度。FSIL的定位精度高于FreeLoc和HED的定位精度,尤其在丢失20个AP的定位场景中。具体来说,在丢失5个AP的定位场景中,与FreeLoc和HED相比,FSIL的平均定位误差分别下降了18.39%和40.34%;FSIL的中值误差分别下降了12.14%和25.45%。在丢失20个AP的定位场景中,与FreeLoc和HED相比,FSIL的平均定位误差分别下降了30.45%和37.19%;FSIL的中值误差分别下降了27.70%和30.63%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种超密集无线网络下基于指纹相似度的室内定位方法,其特征在于,所述超密集无线网络下基于指纹相似度的室内定位方法包括离线阶段和在线阶段;
所述离线阶段具体包括如下步骤:
步骤一,选择表征环境中接收信号强度特征的AP,记作集合S;
步骤二,根据接收信号强度相对值以S中的所有AP建立指纹库,记作
Figure FDA0002494509040000011
其中
Figure FDA0002494509040000012
与pi分别表示第i个参考点处的指纹值向量与坐标;其中
Figure FDA0002494509040000013
所述离线阶段的步骤一针对每个参考点的处理方法包括:
(1)收集能够扫描到的所有AP的接收信号强度样本并计算每个AP相应指纹值,指纹值表示从AP接收信号强度样本的众数;
(2)计算
Figure FDA0002494509040000014
Figure FDA0002494509040000015
表示APi相应指纹值大于某个预设门限的参考点数目;
(3)根据
Figure FDA0002494509040000016
将所有AP按照降序的方式排序,选取前NAP个AP,记作集合S;
所述离线阶段的步骤二具体包括:
(1)计算fpi
Figure FDA0002494509040000017
表示第i个参考点处的指纹值向量,元素为S中所有AP指纹值,并按照降序方式排序;从APj(j=1,...,NAP)接收信号强度样本中中存在数目大于等于2的众数,选择接收信号强度值最大的众数作为其指纹值;
(2)根据fpi得到ranki
Figure FDA0002494509040000018
表示按照fpi相应指纹值顺序的BSSID向量;
(3)根据ranki得到rankSeti
Figure FDA0002494509040000019
是一个BSSID集合,包含NAP个AP子集,其中
Figure FDA00024945090400000110
为一个AP子集,包含指纹值低于δdif(dBm)的所有AP的集合,
Figure FDA00024945090400000111
其中参数δ的设置决定了所述超密集无线网络下基于指纹相似度的室内定位方法对抗环境动态影响的有效性;
所述在线阶段具体包括如下步骤:
第一步,处理待测点收集的接收信号强度样本,依据离线阶段中建立指纹库的步骤处理在线待测位置收集的接收信号强度样本,记作φn=[fpn,rankn,rankSetn](n=1,2,...);
第二步,计算每个参考点的基础分,用
Figure FDA0002494509040000021
定量地表示rankn(TPn)与ranki(RPi(i=1,...,NRP))的指纹向量相似度;
Figure FDA0002494509040000022
越大,说明TPn与RPi的指纹相似度越高;
第三步,计算修正分数并在第二步的基础上修正
Figure FDA0002494509040000023
第四步,估计待测点的坐标;
所述在线阶段的第二步具体包括:
(a)如果rankn(TPn)与ranki(RPi)中前两个元素的交集为空集,则
Figure FDA0002494509040000024
反之,进行(b);
(b)为rankn中前δthd个AP计算对应的
Figure FDA0002494509040000025
并累加到
Figure FDA0002494509040000026
Figure FDA0002494509040000027
表示
Figure FDA0002494509040000028
Figure FDA0002494509040000029
的前δbase个元素组成的两个子集的交集元素个数,
Figure FDA00024945090400000210
Figure FDA00024945090400000211
是同一个BSSID;
所述在线阶段的第三步具体包括:
(1)计算
Figure FDA00024945090400000212
并将相应的
Figure FDA00024945090400000213
加到
Figure FDA00024945090400000214
其中
Figure FDA00024945090400000215
是修正分数且与
Figure FDA00024945090400000216
成正比,
Figure FDA00024945090400000217
表示rankn(TPn)与ranki(RPi)中前Nse个元素组成的两个子集的交集元素个数;
(2)计算
Figure FDA00024945090400000218
Figure FDA00024945090400000219
时,将相应的
Figure FDA00024945090400000220
加到
Figure FDA00024945090400000221
其中
Figure FDA00024945090400000222
是修正分数且与
Figure FDA00024945090400000223
成反比,当
Figure FDA00024945090400000224
时,
Figure FDA00024945090400000225
其中,
Figure FDA00024945090400000226
表示
Figure FDA00024945090400000227
在TPn与RPi的排名波动的距离;
所述在线阶段的第四步具体包括:
(1)根据分数
Figure FDA0002494509040000031
为所有参考点排序,选取分数最高的NK个参考点;
(2)以归一化的NK个参考点相应的分数
Figure FDA0002494509040000032
为权重,计算NK个参考点的加权平均坐标作为待测点的预测坐标。
CN201710835306.2A 2017-09-15 2017-09-15 超密集无线网络下基于指纹相似度的室内定位方法 Active CN107613466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710835306.2A CN107613466B (zh) 2017-09-15 2017-09-15 超密集无线网络下基于指纹相似度的室内定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710835306.2A CN107613466B (zh) 2017-09-15 2017-09-15 超密集无线网络下基于指纹相似度的室内定位方法

Publications (2)

Publication Number Publication Date
CN107613466A CN107613466A (zh) 2018-01-19
CN107613466B true CN107613466B (zh) 2020-07-03

Family

ID=61060126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710835306.2A Active CN107613466B (zh) 2017-09-15 2017-09-15 超密集无线网络下基于指纹相似度的室内定位方法

Country Status (1)

Country Link
CN (1) CN107613466B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168563B (zh) * 2018-02-08 2021-06-29 西安建筑科技大学 一种基于WiFi的大型商场室内定位导航方法
CN108680898A (zh) * 2018-05-17 2018-10-19 网易(杭州)网络有限公司 室内定位方法、装置、介质及电子设备
CN108882335A (zh) * 2018-06-12 2018-11-23 Oppo广东移动通信有限公司 网络连接方法、装置及电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170697A (zh) * 2011-04-06 2011-08-31 北京邮电大学 一种室内定位方法及装置
CN102711239A (zh) * 2012-05-10 2012-10-03 电子科技大学 基于rss指纹数据库的二次模糊聚类室内定位方法
CN102752851A (zh) * 2012-06-29 2012-10-24 中国科学院深圳先进技术研究院 室内定位指纹库的指纹信息收集方法及系统
CN103916820A (zh) * 2014-03-31 2014-07-09 浙江大学 基于接入点稳定度的无线室内定位方法
WO2017181952A1 (zh) * 2016-04-19 2017-10-26 中兴通讯股份有限公司 定位方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170697A (zh) * 2011-04-06 2011-08-31 北京邮电大学 一种室内定位方法及装置
CN102711239A (zh) * 2012-05-10 2012-10-03 电子科技大学 基于rss指纹数据库的二次模糊聚类室内定位方法
CN102752851A (zh) * 2012-06-29 2012-10-24 中国科学院深圳先进技术研究院 室内定位指纹库的指纹信息收集方法及系统
CN103916820A (zh) * 2014-03-31 2014-07-09 浙江大学 基于接入点稳定度的无线室内定位方法
WO2017181952A1 (zh) * 2016-04-19 2017-10-26 中兴通讯股份有限公司 定位方法和装置

Also Published As

Publication number Publication date
CN107613466A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
CN107318084B (zh) 一种基于最优相似度的指纹定位方法及装置
Zheng et al. Exploiting fingerprint correlation for fingerprint-based indoor localization: A deep learning-based approach
CN107727095B (zh) 基于谱聚类和加权反向传播神经网络的3d室内定位方法
Sorour et al. Joint indoor localization and radio map construction with limited deployment load
CN107517446A (zh) 基于Wi‑Fi热点的室内定位方法及装置
CN109740499A (zh) 视频分割方法、视频动作识别方法、装置、设备及介质
CN107613466B (zh) 超密集无线网络下基于指纹相似度的室内定位方法
WO2014000090A1 (en) System, method and computer program for dynamic generation of a radio map
Gupta et al. Study of range free centroid based localization algorithm and its improvement using particle swarm optimization for wireless sensor networks under log normal shadowing
Alfakih et al. Improved Gaussian mixture modeling for accurate Wi-Fi based indoor localization systems
Jia et al. A DNN-based WiFi-RSSI indoor localization method in IoT
Subakti et al. Indoor Localization with Fingerprint Feature Extraction
CN107104747B (zh) 无线时变信道中的多径分量的分簇方法
CN111836188B (zh) 一种基于Wi-Fi RSS的在线协同定位及系统
CN108574927B (zh) 一种移动终端定位方法及装置
CN111148217B (zh) 一种定位方法、装置及电子设备
Malekzadeh et al. Gaussian mixture-based indoor localization via Bluetooth low energy sensors
KR20140119333A (ko) 위치 정확도 향상을 위한 위치 측위 방법 및 장치
Liu et al. Novel robust indoor device-free moving-object localization and tracking using machine learning with Kalman filter and smoother
CN111356072A (zh) 一种室内定位的位置估计方法、装置及可读存储介质
Li et al. Optimal wifi aps deployment for localization and coverage based on virtual force
Pasha et al. Enhanced fingerprinting based indoor positioning using machine learning
CN109040948B (zh) 一种位置候选集合生成方法及其高精度融合定位方法
Zhang et al. Improved KNN algorithm with historical information fusion for indoor positioning
CN111356225A (zh) 无线传感器网络的节点定位方法、装置和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant