CN107611965A - A kind of power system economy containing UPFC and static security comprehensive optimization method - Google Patents

A kind of power system economy containing UPFC and static security comprehensive optimization method Download PDF

Info

Publication number
CN107611965A
CN107611965A CN201710834915.6A CN201710834915A CN107611965A CN 107611965 A CN107611965 A CN 107611965A CN 201710834915 A CN201710834915 A CN 201710834915A CN 107611965 A CN107611965 A CN 107611965A
Authority
CN
China
Prior art keywords
mrow
msub
upfc
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710834915.6A
Other languages
Chinese (zh)
Other versions
CN107611965B (en
Inventor
吴熙
殷天然
高正平
范子恺
周正宇
朱小龙
洪莎莎
王章轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Southeast University
State Grid Jiangsu Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Southeast University
State Grid Jiangsu Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Southeast University, State Grid Jiangsu Electric Power Co Ltd, Economic and Technological Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710834915.6A priority Critical patent/CN107611965B/en
Publication of CN107611965A publication Critical patent/CN107611965A/en
Application granted granted Critical
Publication of CN107611965B publication Critical patent/CN107611965B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention discloses a kind of power system economy containing UPFC and static security comprehensive optimization method.Because security of system is prior to system operation economy, optimization process in the present invention is divided into inside and outside two layers, for outer layer using system operation expense as object function, internal layer is that static system safety index is object function, object function inside and outside the form connection by increasing penalty term.The present invention considers the Static Security Constraints of system N 1, because UPFC has a variety of power flowcontrol patterns, and different control models has different responses when safety failure occurs for system, therefore the selection of UPFC control models is applied in whole optimization process by the present invention.Solved using particle cluster algorithm, internal layer target function value under UPFC difference control models is calculated every generation individual, UPFC optimal control parameters and control model are selected, result of calculation shows that this method can significantly improve system operation economy and static security.

Description

A kind of power system economy containing UPFC and static security comprehensive optimization method
Technical field
The present invention relates to power system security and control field, more particularly to a kind of power system economy containing UPFC with Static security comprehensive optimization method.
Background technology
With the development of FACTS (FACTS) technology, increasing power electronics transmission facility is answered Power system is used, quietly changes the power transmission mode of conventional electric power system.THE UPFC (UPFC) is FACTS equipment In Typical Representative, there is control circuit trend, stable busbar voltage, improve the ability of the stability of a system, it is powerful, for electricity The operation of Force system provides new control and regulation means.Meanwhile with the continuous development of power system, the economy of power system Property and security seem more and more important, in order to more reasonably utilize existing equipment for power transmission and distribution, while give full play to UPFC's Control ability to the comprehensive optimization method of the economy of power system containing UPFC and safety, it is necessary to deploy research.
After UPFC power flow algorithms are established by Power-injected method, UPFC control parameter has three:Side note in parallel Enter electric current, series side equivalent voltage amplitude and phase angle, side Injection Current in parallel is mainly for stablizing side bus voltage and string in parallel The exchange of active power between side in parallel, the amplitude and phase angle of series side equivalent voltage source are used to be controlled Line Flow. Therefore UPFC access not only brings new control parameter to system load flow Optimized model, while adds constraints, it will Improve the complexity of tide optimization.
In addition, for the power system containing UPFC, when carrying out power flowcontrol, its control targe can be UPFC Line Flow, busbar voltage and its phase angle, line impedance.According to the difference of UPFC control targes, UPFC has four kinds of different controls Molding formula, it is respectively:Constant dc power control, phase angle adjustment control, impedance-compensated control and voltage-regulation control.In view of UPFC There is the control characteristic of different trends under different control models, influences of the UPFC to system load flow depends on it and control mould Formula, especially in the case where safety failure occurs in system.Therefore, UPFC control models will have an impact to the security of system, Generally the constant dc power control pattern based on UPFC, only optimization UPFC are determining power mould for research research in terms of existing optimization containing UPFC Control targe and control parameter under formula, and deficiency is considered to the situation of other three kinds of control models.
There is certain paradox in the economy and security of power system, rationally effective optimisation strategy seems extremely heavy Will, this method proposes a kind of method of electric power system optimization containing UPFC for considering power system economy and security.
The content of the invention
In order to solve above-mentioned problem, the present invention provides a kind of tidal current computing method of consideration UPFC control models, Because power system security is prior to economy, the present invention is interior using being handled by the way of two layers inside and outside optimization process is divided into Layer optimization static system security, outer layer optimize the system operation economy, and with security constraint economy.Internal layer establishes quiet State safety evaluation index considers the selection of tetra- kinds of control models of UPFC as object function;Outer layer uses systematic running cost And penalty term caused by internal layer object function is as object function.Using PSO Algorithm, for up to this purpose, the present invention A kind of power system economy containing UPFC and static security comprehensive optimization method are provided, comprised the following steps:
(1) grid data, generator output and payload related data are read;
(2) Population Size, maximum iteration and particle rapidity maximum correlation PSO algorithm essential informations are set, just The position of each particle of beginningization and speed, the positional information of particle includes Traditional control parameter here and UPFC tri- is controlled and become Amount, i.e. [Vgen1,…Vgen5,Pgen1,…Pgen5,T1,…T4,C1,C2,Vsese,Vk];
(3) each particle of calculating corresponds to the system load flow under the method for operation, and computing system operating cost is outer layer target letter Control targe under numerical value and each control models of UPFC, and record and whether there is overload situations;
(4) to the particle in the absence of overload situations, by Sensitivity Analysis Method, the trend after each circuit breaking is carried out Calculate, then further Calculation Estimation index PI, is ranked up to failure.
(5) sequence concentrated according to forecast failure carries out N-1 static security verifications.Calculate respectively under four kinds of control models Internal layer target function value after N-1 failures, until no longer there is circuit overload phenomenon in some post-fault system, take and be computed The maximum of object function carrys out the quality of more each control model under each failure crossed;
(6) particle is evaluated according to principle of the security of system prior to economy, including particle itself and particle Between comparison.Compare whether particle overloads in normal state first, next compares the overload feelings of the system after N-1 Condition, the equilibrium degree of system load flow distribution is compared again, finally the economic index of particle is compared, according to the above Result of the comparison, the individual optimal pbest data of each particle are updated, and the optimal solution in pbest is replaced into global optimum Original data in gbest, pbest and gbest include Traditional control variable, UPFC control parameters and its control model;
(7) position and the velocity vector of each particle are updated by particle cluster algorithm;
(8) whether verification reaches maximum iteration, if not up to maximum iteration, goes to step (5), otherwise goes to Step (9);
(9) optimum results of final UPFC control parameters and control model are exported.
Further, model optimization is in step 2;
Wherein variable is optimized for:
[Vgen1,…Vgen5,Pgen1,…Pgen5,T1,…T4,C1,C2,Vsese,Vk] (2);
In formula, Vgen、PgenFor generator voltage and active power output, T is the position of OLTC taps, and C is shunt compensation The capacity of capacitor, Vsese,VkIt is UPFC control variable.
Further, equality constraint is carried out to model in step 2;
For without UPFC nodes, meeting following trend balance:
In formula, i=1,2 ... N do not include the node at UPFC both ends, and k ∈ i represent the generator being connected with bus i, PG Contributed for generated power, PLi、QLiFor the load on bus i, Gij、BijFor the conductance and susceptance on circuit i-j, θijFor circuit I-j both ends phase angle difference, i.e. θijij
For the bus of UPFC installations, it is s, r that note, which is connected bus with UPFC, then bus s and r power balance equations are as follows:
In formula, Ps(upfc)、Qs(upfc)Injecting power for UPFC to bus s, Pr(upfc)、Qr(upfc)It is UPFC to bus r's Injecting power;
Because UPFC can not produce active power in itself, so having internal constraint in itself for UPFC:
Psh+Pse=0 (5).
Further, inequality constraints is carried out to model in step 2;
Control the constraint of variable:
State variable constrains:
Restricted including load bus busbar voltage and generator reactive is contributed and restricted:
Vmin≤V≤Vmax(7);
QGmin≤QG≤QGmax (8)。
Further, the out-of-limit circuit of system is total under the out-of-limit circuit sum of system, N-1 states under step 6 normal operation Count with this three-level evaluation index of static system margin of safety to form static system safety evaluation function;
It is f that if circuit sum is overloaded under system health1(x) it is f that circuit sum, is overloaded under system N-1 states2(x), Static system margin of safety f3(x), it is assumed that system has n bar circuits, and bus has k bars, and the load factor on i-th line road is λi, i-th The voltage of bus is Vi, busbar voltage up and down be limited to Vi min, Vi maxIf generator has m platforms, the i-th generator output is Pi+jQi, on Lower limit is Pi min+jQi min, Pi max+jQi max, system operating point Q to circuit static security limit L M distance are dline, bus electricity The margin of safety of pressure is dbus, defining static system margin of safety is:
f3(x)=1/dline+dgen+dbus(9);
Wherein,
Further, Operation of Electric Systems economy is weighed using Operation of Electric Systems fee forecast P (x), using increasing Add the form and security of system of penalty term, the security of system is weighed using three-level evaluation index above, when Exist under system health and more prescribe a time limit, then abandon this group solution, system trend occurs and more prescribed a time limit after N-1, then to economy Index makes corresponding punishment, while in order to make static system margin of safety as high as possible, add-on system is quiet in object function State security margin index, form following object function:
Complex optimum target:
F (x)=[N2(x)r+P(x)]f3(x) (13);
In formula, P (x) is system operation expense, f3(x) it is the inverse of static system margin of safety, N2(x) after being system N-1 Circuit overload maximum number, r are penalty coefficient, PlossFor system losses.
Further, it is as follows using static security fault sequencing method in step 5:
The Overload for the reflection system for establishing following scalar function PI to integrate:
In formula:PiFor the active power on circuit i, PicFor transmission capacity limits on circuit i, αiTo be in parallel in circuit i Way, ωiTo reflect the weight coefficient of circuit i importance, NL is system branch sum;
When system does not have overload,It is smaller no more than 1, PI indexs;When circuit overload in system be present, Overload circuitMore than 1, PI indexs will become very big after square effect, therefore the index can reflect the static peace of system Quan Xing;
After kth bar circuit disconnects, the trend being calculated by Sensitivity Analysis Method above on i-th line road is P′i, i=1,2 ... NL and i ≠ k, this evaluation function for being are:
Then before and after circuit breaking, evaluation index variable quantity is:
ΔPIk=PI '-PI (18);
Circuit all in system is subjected to break calculation, is ranked up to obtaining Δ PI, the order is forecast failure Concentrate the order of each failure.
The invention discloses a kind of power system economy containing UPFC and static security comprehensive optimization method, due to system Security is prior to system operation economy, and the optimization process in the present invention is divided into inside and outside two layers, and outer layer is with systematic running cost With being that static system safety index is object function for object function, internal layer, mesh inside and outside the form connection by increasing penalty term Scalar functions.The present invention considers system N-1 Static Security Constraints, because UPFC has a variety of power flowcontrol patterns, and it is different Control model has different responses when safety failure occurs for system, therefore the present invention runs through the selection of UPFC control models In whole optimization process.Solved using particle cluster algorithm, every generation individual is calculated under UPFC difference control models Internal layer target function value, selects UPFC optimal control parameters and control model, and result of calculation shows that this method can be carried substantially High system operation economy and static security.
Brief description of the drawings
Fig. 1 is UPFC power system economies and static security comprehensive optimization method flow;
Fig. 2 is test system wiring diagram;
Fig. 3 is UPFC power injection model figures;
Fig. 4 is UPFC structural representations;
Fig. 5 is iteration convergence figure;
Fig. 6 is UPFC series side equivalent circuit diagrams;
Fig. 7 is UPFC voltage mode control phasor diagrams;
Fig. 8 is UPFC Phase angle control pattern phasor diagrams;
Fig. 9 is the impedance-compensated control model phasor diagrams of UPFC;
Figure 10 is UPFC constant dc power control pattern phasor diagrams.
Embodiment
The present invention is described in further detail with embodiment below in conjunction with the accompanying drawings:
The present invention provides a kind of tidal current computing method of consideration UPFC control models, due to power system security prior to Economy, the present invention are handled using being divided into optimization process by the way of inside and outside two layers, and internal layer optimizes static system security, outer layer Optimize the system operation economy, and with security constraint economy.Internal layer establishes static security evaluation index as target letter Number, while consider the selection of tetra- kinds of control models of UPFC;Outer layer is punished using caused by systematic running cost and internal layer object function Item is penalized as object function.Using PSO Algorithm.
The present invention provides a kind of tidal current computing method of consideration UPFC control models as shown in Figure 1, comprises the following steps that:
(1) grid data, generator output and payload related data are read;
(2) Population Size, maximum iteration and particle rapidity maximum correlation PSO algorithm essential informations are set, just The position of each particle of beginningization and speed, the positional information of particle includes Traditional control parameter here and UPFC tri- is controlled and become Amount, i.e. [Vgen1,…Vgen5,Pgen1,…Pgen5,T1,…T4,C1,C2,Vsese,Vk];
(3) each particle of calculating corresponds to the system load flow under the method for operation, computing system operating cost (outer layer object function Value) and each control models of UPFC under control targe, and record whether there is overload situations;
(4) to the particle in the absence of overload situations, by Sensitivity Analysis Method, the trend after each circuit breaking is carried out Calculate, then further Calculation Estimation index PI, is ranked up to failure.
(5) sequence concentrated according to forecast failure carries out N-1 static security verifications.Calculate respectively under four kinds of control models Internal layer target function value after N-1 failures, until no longer there is circuit overload phenomenon in some post-fault system, take and be computed The maximum of object function carrys out the quality of more each control model under each failure crossed;
(6) particle is evaluated according to principle of the security of system prior to economy, including particle itself and particle Between comparison.Compare whether particle overloads in normal state first, next compares the overload feelings of the system after N-1 Condition, the equilibrium degree of system load flow distribution is compared again, finally the economic index of particle is compared, according to the above Result of the comparison, individual optimal (pbest) data of each particle are updated, and the optimal solution in pbest is replaced into global optimum (gbest) inner original data, pbest and gbest include Traditional control variable, UPFC control parameters and its control model;
(7) position and the velocity vector of each particle are updated by particle cluster algorithm;
(8) whether verification reaches maximum iteration, if not up to maximum iteration, goes to step (5), otherwise goes to Step (9);
(9) optimum results of final UPFC control parameters and control model are exported.
Each related detailed content is as follows:
1. Optimized model:
2. optimized variable:
[Vgen1,…Vgen5,Pgen1,…Pgen5,T1,…T4,C1,C2,Vsese,Vk] (2);
In formula, Vgen、PgenFor generator voltage and active power output, T is the position of OLTC taps, C is shunt compensation The capacity of capacitor, Vsese,VkIt is UPFC control variable.
3. equality constraint:
For without UPFC nodes, meeting following trend balance:
In formula, i=1,2 ... N (node for not including UPFC both ends), k ∈ i represent the generator being connected with bus i, PG Contributed for generated power, PLi、QLiFor the load on bus i, Gij、BijFor the conductance and susceptance on circuit i-j, θijFor circuit I-j both ends phase angle difference, i.e. θijij
For the bus of UPFC installations, it is s, r that note, which is connected bus with UPFC, then bus s and r power balance equations are as follows:
In formula, Ps(upfc)、Qs(upfc)Injecting power for UPFC to bus s, Pr(upfc)、Qr(upfc)It is UPFC to bus r's Injecting power.
Because UPFC can not produce active power in itself, so having internal constraint in itself for UPFC:
Psh+Pse=0 (5);
4. inequality constraints:
Control the constraint of variable:
State variable constrains:
Restricted including load bus busbar voltage and generator reactive is contributed and restricted:
Vmin≤V≤Vmax(7);
QGmin≤QG≤QGmax(8);
The present invention is with the out-of-limit circuit sum of system under the out-of-limit circuit sum of system under normal operation, N-1 states and is System static security nargin this three-level evaluation index forms static system safety evaluation function.
It is f that if circuit sum is overloaded under system health1(x) it is f that circuit sum, is overloaded under system N-1 states2(x), Static system margin of safety f3(x).Assuming that system has n bar circuits, bus has k bars, and the load factor on i-th line road is λi, i-th The voltage of bus is Vi, busbar voltage up and down be limited to Vi min, Vi maxIf generator has m platforms, the i-th generator output is Pi+jQi, on Lower limit is Pi min+jQi min, Pi max+jQi max, system operating point Q to circuit static security limit L M distance are dline, bus electricity The margin of safety of pressure is dbus.Defining static system margin of safety is:
f3(x)=1/dline+dgen+dbus(9);
Wherein,
In order to consider the economy of system and security, the present invention using Operation of Electric Systems fee forecast P (x) come Weigh Operation of Electric Systems economy.In addition, form meter and security of system of the present invention using increase penalty term, using above Three-level evaluation index the security of system weighed, more prescribe a time limit, then abandon when existing under system health This group solution, there is trend and more prescribed a time limit in system after N-1, then corresponding punishment is made to economic indicator, while in order to make system quiet State margin of safety is as high as possible, the add-on system static security margin index in object function, forms following object function:
Complex optimum target:
F (x)=[N2(x)r+P(x)]f3(x) (13);
In formula, P (x) is system operation expense, f3(x) it is the inverse of static system margin of safety, N2(x) after being system N-1 Circuit overload maximum number, r are penalty coefficient, PlossFor system losses.
The present invention is as follows using static security fault sequencing method:
The Overload for the reflection system for establishing following scalar function PI to integrate:
In formula:PiFor the active power on circuit i, PicFor transmission capacity limits on circuit i, αiTo be in parallel in circuit i Way, ωiTo reflect the weight coefficient of circuit i importance, NL is system branch sum.
When system does not have overload,It is smaller no more than 1, PI indexs;When circuit overload in system be present, mistake Charge circuitMore than 1, PI indexs will become very big after square effect.Therefore the index can reflect the static security of system Property.
After kth bar circuit disconnects, the trend being calculated by Sensitivity Analysis Method above on i-th line road is P′i, i=1,2 ... NL and i ≠ k.This evaluation function for being is:
Then before and after circuit breaking, evaluation index variable quantity is:
ΔPIk=PI '-PI (18);
Circuit all in system is subjected to break calculation, is ranked up to obtaining Δ PI, the order is forecast failure Concentrate the order of each failure.
The present invention chooses IEEE30 bus test systems and carries out calculating analysis, and system wiring figure is as shown in Figure 2.UPFC is installed Between circuit 4-6, addition UPFC outlets side bus 31, UPFC equivalent circuit diagram is as shown in figure 3, system reference power is 100MVA, other schematic diagrames are as shown in Figure 5-10.
PSO algorithm parameters are as follows:Inertia coeffeicent w=0.7298, accelerator coefficient c1=1.4962, c2=1.4962, population rule Mould POP=50, maximum iteration Num=30, the system operation expense order of magnitude being calculated by chapter 2, by penalty coefficient r2It is arranged to 10000.Iteration convergence figure is as shown in Figure 4.
The value of each control variable is as shown in table 1 after final optimization pass, and each optimizing index is as shown in table 2, is tied from calculating Fruit can see, this group of parameter after normal condition and N-1 in system be not present overload circuit, and system possess preferably it is quiet State margin of safety and operating cost are horizontal.
The control parameter result (p.u.) of table 1
Each index after the optimization of table 2
UPFC the preferred of control model is illustrated below.During using this group of control parameter, failure is ranked up, Take forward 5 failures of faulty middle sequence, calculate each control models of UPFC security of system after the disconnection of following circuit Index, as a result as shown in table 3.When UPFC uses constant dc power control pattern, system occurs without overload, and static system is abundant safely Highest is spent, therefore selects UPFC phase angle adjustment control patterns.
Internal layer target function value of table 3 UPFC, the tetra- kinds of control models after N-1 failures
The above described is only a preferred embodiment of the present invention, it is not the limit for making any other form to the present invention System, and any modification made according to technical spirit of the invention or equivalent variations, still fall within present invention model claimed Enclose.

Claims (7)

1. a kind of power system economy containing UPFC and static security comprehensive optimization method, comprise the following steps, its feature exists In:
(1) grid data, generator output and payload related data are read;
(2) Population Size, maximum iteration and particle rapidity maximum correlation PSO algorithm essential informations, initialization are set The position of each particle and speed, the positional information of particle includes Traditional control parameter here and UPFC tri- controls variables, That is [Vgen1,…Vgen5,Pgen1,…Pgen5,T1,…T4,C1,C2,Vsese,Vk];
(3) each particle of calculating corresponds to the system load flow under the method for operation, and computing system operating cost is outer layer target function value And the control targe under each control models of UPFC, and record and whether there is overload situations;
(4) to the particle in the absence of overload situations, by Sensitivity Analysis Method, the trend after each circuit breaking is counted Calculate, then further Calculation Estimation index PI, is ranked up to failure.
(5) sequence concentrated according to forecast failure carries out N-1 static security verifications.The N-1 under four kinds of control models is calculated respectively Internal layer target function value after failure, until no longer there is circuit overload phenomenon in some post-fault system, take and be computed Each failure under the maximum of object function carry out the quality of more each control model;
(6) particle is evaluated according to principle of the security of system prior to economy, including particle itself is between particle Comparison.Comparing whether particle overloads in normal state first, next compares the overload situations of the system after N-1, The equilibrium degree of system load flow distribution is compared again, finally the economic index of particle is compared, according to above ratio Compared with result, update the individual optimal pbest data of each particle, and the optimal solution in pbest is replaced into global optimum gbest In original data, pbest and gbest include Traditional control variable, UPFC control parameters and its control model;
(7) position and the velocity vector of each particle are updated by particle cluster algorithm;
(8) whether verification reaches maximum iteration, if not up to maximum iteration, goes to step (5), otherwise goes to step (9);
(9) optimum results of final UPFC control parameters and control model are exported.
2. one kind power system economy containing UPFC according to claim 1 and static security comprehensive optimization method, its It is characterised by:
Model optimization is in step 2;
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>min</mi> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munder> <mi>g</mi> <mo>&amp;OverBar;</mo> </munder> <mo>&amp;le;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mover> <mi>g</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Wherein variable is optimized for:
[Vgen1,…Vgen5,Pgen1,…Pgen5,T1,…T4,C1,C2,Vsese,Vk] (2);
In formula, Vgen、PgenFor generator voltage and active power output, T is the position of OLTC taps, and C is Shunt compensation capacitor The capacity of device, Vsese,VkIt is UPFC control variable.
3. one kind power system economy containing UPFC according to claim 2 and static security comprehensive optimization method, its It is characterised by:
Equality constraint is carried out to model in step 2;
For without UPFC nodes, meeting following trend balance:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;P</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>&amp;Element;</mo> <mi>i</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;Q</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>&amp;Element;</mo> <mi>i</mi> </mrow> </munder> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
In formula, i=1,2 ... N do not include the node at UPFC both ends, and k ∈ i represent the generator being connected with bus i, PGTo generate electricity Machine active power output, PLi、QLiFor the load on bus i, Gij、BijFor the conductance and susceptance on circuit i-j, θijFor circuit i-j two Hold phase angle difference, i.e. θijij
For the bus of UPFC installations, it is s, r that note, which is connected bus with UPFC, then bus s and r power balance equations are as follows:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>&amp;Element;</mo> <mi>s</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>L</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&amp;theta;</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>&amp;Element;</mo> <mi>s</mi> </mrow> </munder> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>L</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&amp;theta;</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>s</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;P</mi> <mi>r</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>&amp;Element;</mo> <mi>r</mi> </mrow> </munder> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>L</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>r</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&amp;theta;</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;Q</mi> <mi>v</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>&amp;Element;</mo> <mi>i</mi> </mrow> </munder> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>L</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>r</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>V</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&amp;theta;</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>r</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
In formula, Ps(upfc)、Qs(upfc)Injecting power for UPFC to bus s, Pr(upfc)、Qr(upfc)For injections of the UPFC to bus r Power;
Because UPFC can not produce active power in itself, so having internal constraint in itself for UPFC:
Psh+Pse=0 (5).
4. one kind power system economy containing UPFC according to claim 2 and static security comprehensive optimization method, its It is characterised by:
Inequality constraints is carried out to model in step 2;
Control the constraint of variable:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>G</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>V</mi> <mi>G</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>V</mi> <mrow> <mi>G</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mi>G</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mi>min</mi> </msub> <mo>&amp;le;</mo> <mi>T</mi> <mo>&amp;le;</mo> <msub> <mi>T</mi> <mrow> <mi>G</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>min</mi> </msub> <mo>&amp;le;</mo> <mi>C</mi> <mo>&amp;le;</mo> <msub> <mi>C</mi> <mi>max</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;le;</mo> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>min</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>i</mi> <mi>q</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>max</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
State variable constrains:
Restricted including load bus busbar voltage and generator reactive is contributed and restricted:
Vmin≤V≤Vmax(7);
QGmin≤QG≤QGmax (8)。
5. one kind power system economy containing UPFC according to claim 1 and static security comprehensive optimization method, its It is characterised by:
The out-of-limit circuit sum of system and static system under system out-of-limit circuit sum, N-1 states under step 6 normal operation Margin of safety this three-level evaluation index forms static system safety evaluation function;
It is f that if circuit sum is overloaded under system health1(x) it is f that circuit sum, is overloaded under system N-1 states2(x), system Static security nargin f3(x), it is assumed that system has n bar circuits, and bus has k bars, and the load factor on i-th line road is λi, i-th bus Voltage be Vi, busbar voltage up and down be limited to Vi min, Vi maxIf generator has m platforms, the i-th generator output is Pi+jQi, bound ForSystem operating point Q to circuit static security limit L M distance are dline, busbar voltage Margin of safety be dbus, defining static system margin of safety is:
f3(x)=1/dline+dgen+dbus(9);
Wherein,
<mrow> <msub> <mi>d</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mo>|</mo> <mo>|</mo> <mi>Q</mi> <mo>-</mo> <mi>L</mi> <mi>M</mi> <mo>|</mo> <mo>|</mo> <mo>=</mo> <msqrt> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <msub> <mi>d</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mi>min</mi> </msubsup> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <msub> <mi>d</mi> <mrow> <mi>g</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>Q</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>i</mi> <mi>max</mi> </msubsup> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
6. one kind power system economy containing UPFC according to claim 5 and static security comprehensive optimization method, its It is characterised by:
Operation of Electric Systems economy is weighed using Operation of Electric Systems fee forecast P (x), using the form of increase penalty term And security of system, the security of system is weighed using three-level evaluation index above, when under system health Exist and more prescribe a time limit, then abandon this group solution, system trend occurs and more prescribed a time limit after N-1, then economic indicator is made accordingly Punishment, while in order to make static system margin of safety as high as possible, the add-on system static security margin index in object function, Form following object function:
Complex optimum target:
F (x)=[N2(x)r+P(x)]f3(x) (13);
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>g</mi> </msub> </munderover> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;eta;P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mi>l</mi> </mrow> </munderover> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;lsqb;</mo> <msubsup> <mi>V</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
In formula, P (x) is system operation expense, f3(x) it is the inverse of static system margin of safety, N2(x) circuit after being system N-1 Maximum number is overloaded, r is penalty coefficient, PlossFor system losses.
7. one kind power system economy containing UPFC according to claim 1 and static security comprehensive optimization method, its It is characterised by:
It is as follows using static security fault sequencing method in step 5:
The Overload for the reflection system for establishing following scalar function PI to integrate:
<mrow> <mi>P</mi> <mi>I</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </munderover> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>P</mi> <mi>i</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
In formula:PiFor the active power on circuit i, PicFor transmission capacity limits on circuit i, αiFor way in parallel in circuit i, ωiTo reflect the weight coefficient of circuit i importance, NL is system branch sum;
When system does not have overload,It is smaller no more than 1, PI indexs;When circuit overload in system be present, overload CircuitMore than 1, PI indexs will become very big after square effect, therefore the index can reflect the static security of system;
After kth bar circuit disconnects, the trend being calculated by Sensitivity Analysis Method above on i-th line road is Pi', i= 1,2 ... NL and i ≠ k, this evaluation function for being are:
<mrow> <msup> <mi>PI</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <munderover> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mrow> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>k</mi> </mrow> <mrow> <mi>N</mi> <mi>L</mi> </mrow> </munderover> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>P</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Then before and after circuit breaking, evaluation index variable quantity is:
ΔPIk=PI '-PI (18);
Circuit all in system is subjected to break calculation, is ranked up to obtaining Δ PI, the order is that forecast failure is concentrated The order of each failure.
CN201710834915.6A 2017-09-15 2017-09-15 UPFC-containing power system economic and static safety comprehensive optimization method Active CN107611965B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710834915.6A CN107611965B (en) 2017-09-15 2017-09-15 UPFC-containing power system economic and static safety comprehensive optimization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710834915.6A CN107611965B (en) 2017-09-15 2017-09-15 UPFC-containing power system economic and static safety comprehensive optimization method

Publications (2)

Publication Number Publication Date
CN107611965A true CN107611965A (en) 2018-01-19
CN107611965B CN107611965B (en) 2021-11-19

Family

ID=61060296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710834915.6A Active CN107611965B (en) 2017-09-15 2017-09-15 UPFC-containing power system economic and static safety comprehensive optimization method

Country Status (1)

Country Link
CN (1) CN107611965B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390388A (en) * 2018-02-24 2018-08-10 国电南瑞科技股份有限公司 Eliminate the aid decision computational methods of THE UPFC near region apparatus overload
CN108416107A (en) * 2018-02-05 2018-08-17 电子科技大学 A kind of promotion Particles Moving finite element algorithm applied to PIC
CN109149584A (en) * 2018-09-29 2019-01-04 东南大学 Improve IPFC power injection model constringent method in Load flow calculation
CN110277786A (en) * 2019-07-25 2019-09-24 东南大学 Flow controller addressing and constant volume method between a kind of line
CN110661264A (en) * 2019-09-03 2020-01-07 吉林大学 Safety constraint optimal power flow calculation method based on particle swarm algorithm with inertial weight
CN110661265A (en) * 2019-09-19 2020-01-07 吉林大学 Safety constraint optimal power flow calculation method based on branch circuit breaking distribution factor
CN111697588A (en) * 2020-06-08 2020-09-22 东南大学 Prevention control method considering IPFC control mode
CN111882126A (en) * 2020-07-24 2020-11-03 贵州电网有限责任公司 N-1-1 static security check optimization method and system
CN114389270A (en) * 2022-01-21 2022-04-22 东南大学 Power flow optimization method for power system considering control characteristics of double-circuit IPFC

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470948A (en) * 2015-11-24 2016-04-06 国家电网公司 Power injection model of power flow controller under direct current power flow model and addressing method thereof
CN106655194A (en) * 2016-11-22 2017-05-10 国网江苏省电力公司电力科学研究院 UPFC-considered ATC calculation method of electric power system including wind power
CN106684857A (en) * 2016-09-05 2017-05-17 国网江苏省电力公司电力科学研究院 Linear optimal power flow model containing unified power flow controller
CN107147124A (en) * 2017-07-14 2017-09-08 国网江苏省电力公司经济技术研究院 A kind of method of UPFC access systems, the node power injection models of UPFC five and tidal current computing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470948A (en) * 2015-11-24 2016-04-06 国家电网公司 Power injection model of power flow controller under direct current power flow model and addressing method thereof
CN106684857A (en) * 2016-09-05 2017-05-17 国网江苏省电力公司电力科学研究院 Linear optimal power flow model containing unified power flow controller
CN106655194A (en) * 2016-11-22 2017-05-10 国网江苏省电力公司电力科学研究院 UPFC-considered ATC calculation method of electric power system including wind power
CN107147124A (en) * 2017-07-14 2017-09-08 国网江苏省电力公司经济技术研究院 A kind of method of UPFC access systems, the node power injection models of UPFC five and tidal current computing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHIGAO HUANG ET: "An Improved Power Injection Model for UPFC", 《THE 7TH ANNUAL IEEE INTERNATIONAL CONFERENCE》 *
李立 等: "FACTS 对电力系统静态安全性影响评价指标体系研究", 《电力系统保护与控制》 *
范子恺 等: "UPFC 抑制系统区域间低频振荡研究", 《江苏电机工程》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416107A (en) * 2018-02-05 2018-08-17 电子科技大学 A kind of promotion Particles Moving finite element algorithm applied to PIC
CN108390388A (en) * 2018-02-24 2018-08-10 国电南瑞科技股份有限公司 Eliminate the aid decision computational methods of THE UPFC near region apparatus overload
CN108390388B (en) * 2018-02-24 2021-06-18 国电南瑞科技股份有限公司 Auxiliary decision calculation method for eliminating overload of near-zone equipment of unified power flow controller
CN109149584A (en) * 2018-09-29 2019-01-04 东南大学 Improve IPFC power injection model constringent method in Load flow calculation
CN110277786A (en) * 2019-07-25 2019-09-24 东南大学 Flow controller addressing and constant volume method between a kind of line
CN110661264A (en) * 2019-09-03 2020-01-07 吉林大学 Safety constraint optimal power flow calculation method based on particle swarm algorithm with inertial weight
CN110661265A (en) * 2019-09-19 2020-01-07 吉林大学 Safety constraint optimal power flow calculation method based on branch circuit breaking distribution factor
CN111697588A (en) * 2020-06-08 2020-09-22 东南大学 Prevention control method considering IPFC control mode
CN111697588B (en) * 2020-06-08 2022-09-09 东南大学 Prevention control method considering IPFC control mode
CN111882126A (en) * 2020-07-24 2020-11-03 贵州电网有限责任公司 N-1-1 static security check optimization method and system
CN114389270A (en) * 2022-01-21 2022-04-22 东南大学 Power flow optimization method for power system considering control characteristics of double-circuit IPFC

Also Published As

Publication number Publication date
CN107611965B (en) 2021-11-19

Similar Documents

Publication Publication Date Title
CN107611965A (en) A kind of power system economy containing UPFC and static security comprehensive optimization method
CN103761690B (en) Appraisal procedure based on voltage powerless control system in network system
CN103036230B (en) A kind of Dynamic Equivalence of the alternating current-direct current series-parallel connection bulk power grid based on engineer applied
CN107425527A (en) A kind of THE UPFC static security prevention and control method
CN102222919B (en) Power system reactive power optimization method based on improved differential evolution algorithm
CN107103433B (en) Distributed power supply absorption capacity calculation method based on hierarchical partition idea
CN103441506B (en) Method for multi-target coordination reactive power optimization control of distributed wind farm in different time scales
Dorostkar‐Ghamsari et al. Optimal distributed static series compensator placement for enhancing power system loadability and reliability
CN107394772B (en) Electric power system black start recovery multi-objective optimization method considering comprehensive node weight
CN105514997B (en) The electric energy quality monitoring point collocation method of meter and distributed power source
CN103870695A (en) Judgment method for voltage level of high power accessing power grid
CN106532710A (en) Microgrid power flow optimization method considering voltage stability constraint
CN107679289A (en) A kind of dynamic passive compensation collocation method for reducing multi-infeed HVDC commutation failure risk
CN106469914A (en) A kind of net capability computational methods of flexibility power distribution network
CN104156531A (en) Fault current limiter distribution point optimization and capacity selection method taking operation loss into consideration
CN105490288B (en) A kind of 220kV electric network reactive compensations Optimal Configuration Method
CN103050983B (en) A kind of economic operation optimization method for regional power grid based on hybrid algorithm
CN110458375B (en) Power system economic dispatching method considering power grid power flow distribution equilibrium degree
CN110649626B (en) Receiving-end power grid layered optimization load shedding method and system
CN104732302A (en) Multistage electromagnetic loop circuit optimized loop-opening method based on immunity algorithm
Zhang et al. Impact of dynamic load models on transient stability-constrained optimal power flow
Lin et al. A physical-data combined power grid dynamic frequency prediction methodology based on adaptive neuro-fuzzy inference system
CN107769187A (en) A kind of Optimal Configuration Method suitable for voltage-type DC power flow controller
CN111404163A (en) Electromagnetic looped network open-loop method
CN104578057B (en) A kind of consider source flow path containing wind-powered electricity generation line voltage Pilot bus recognition methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant