CN107611762A - 一种宽调谐、窄线宽、高效率的中红外光参量振荡器 - Google Patents

一种宽调谐、窄线宽、高效率的中红外光参量振荡器 Download PDF

Info

Publication number
CN107611762A
CN107611762A CN201710959419.3A CN201710959419A CN107611762A CN 107611762 A CN107611762 A CN 107611762A CN 201710959419 A CN201710959419 A CN 201710959419A CN 107611762 A CN107611762 A CN 107611762A
Authority
CN
China
Prior art keywords
optical fiber
ring oscillator
pulse
oscillator
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710959419.3A
Other languages
English (en)
Inventor
邢廷伦
胡舒武
王礼
熊振东
崔庆哲
魏蒙恩
吴先友
江海河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201710959419.3A priority Critical patent/CN107611762A/zh
Publication of CN107611762A publication Critical patent/CN107611762A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种宽调谐、窄线宽、高效率的中红外光参量振荡器,该光参量振荡器由2μm光纤激光器激光器泵浦源,环形腔振荡器,种子自注入系统以及FP标准具温度控制单元构成,本发明具备高重频(100kHz)、窄线宽(pm)、窄脉宽(ns)、高功率(10W)等特点,本发明解决了目前光参量振荡器输出线宽很宽、转换效率低等问题。为大气环境监测、特殊环境远距离监测等领域提供了可靠、高效、便捷的中红外光源。

Description

一种宽调谐、窄线宽、高效率的中红外光参量振荡器
技术领域
本发明涉及中红外激光光源领域,具体是一种宽调谐、窄线宽、高效率的中红外光参量振荡器。
背景技术
5-8μm中红外激光在大气环境监测、特殊环境远距离监测以及高分辨率高精度光谱学研究等诸多领域有重要的应用价值。在实际应用中,为了在激光探测中获得高的分辨率以及激光远距离传输过程中的回波信号仍具有足够检测的强度,不仅对激光光源的峰值功率有特定的要求,同时也对激光的光谱宽度提出了严格的要求。在获取5-8 μm中红外激光的技术中,采用非线性光学变频技术的光参量振荡器因高效率、高便捷、宽调谐等优点获得了较快的发展和广泛的应用。然而,采用光参量技术获取5~8 μm参量光的过程中,自由运转光参量系统激光输出的光谱宽度很宽,一般高达十几纳米甚至几十纳米,难以满足实际应用。
为了获取窄线宽的5~8 μm中红外激光,可以在光学振荡器中采用选频元件(光栅、标准具),例如,可以在激光器的谐振腔内直接插入透射式的滤波器,但是,采用腔内插入透射式标准具的方法直接控制激光的线宽可导致严重的腔内额外损耗,这样,不仅会提高光参量振荡器的振荡阈值还会降低中红外激光的转换效率。因此,采用新型的技术手段获取高转换效率、窄线宽、宽调谐的5~8 μm中红外激光在实际应用中具有极其重要的战略意义。
目前,查阅相关的文献,暂时未发现一种高重频、宽调谐、窄线宽的5~8 μm中红外参量振荡器的报道。
发明内容
本发明的目的是提供一种宽调谐、窄线宽、高效率的中红外光参量振荡器,以解决现有技术没有高重频、宽调谐、窄线宽的5~8 μm中红外参量振荡器的问题。
为了达到上述目的,本发明所采用的技术方案为:
一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:包括2μm光纤激光器激光器泵浦源、环形腔振荡器、种子自注入系统以及FP标准具温度控制单元,其中:
2μm光纤激光器激光器泵浦源单元为脉冲2μm光纤激光器;
环形腔振荡器单元包括依次设置在脉冲2μm光纤激光器出射光路上的环形振荡器输入镜、ZGP光学非线性晶体、环形振荡器输出镜,以及位于脉冲2μm光纤激光器出射光路外的环形振荡器腔镜,其中环形振荡器输入镜、环形振荡器输出镜的中心位于脉冲2μm光纤激光器出射光路的光轴上,且环形振荡器输入镜、环形振荡器的光轴分别与脉冲2μm光纤激光器出射光路的光轴呈60°夹角,
ZGP光学非线性晶体中心轴线与脉冲2μm光纤激光器出射光路的光轴重合,且ZGP光学非线性晶体放置于可实现±30°旋转的夹具中,环形振荡器腔镜的光轴垂直于脉冲2μm光纤激光器出射光路的光轴,且环形振荡器腔镜与环形振荡器输入镜、环形振荡器输出镜呈正三角形分布,环形振荡器输入镜、环形振荡器输出镜各自一面分别朝向环形振荡器腔镜一面;
种子自注入系统单元包括第一光纤耦合镜,光纤窄带滤波器,延时光纤、光纤标准具和第二光纤耦合镜,第一光纤耦合镜、第二光纤耦合镜各自一端分别朝向环形振荡器腔镜另一面,第一光纤耦合镜另一端通过光纤窄带滤波器与延时光纤一端耦合连接,延时光纤另一端与光纤标准具一端耦合连接,光纤标准具另一端与第二光纤耦合镜另一端耦合连接;
FP标准具温度控制单元包括温度传感器、热沉及保温层、陶瓷加热片、智能温控器及恒压电源,种子自注入系统单元中光纤标准具置于热沉及保温层中,陶瓷加热片紧贴热沉及保温层一侧,温度传感器紧贴热沉及保温层另一侧,陶瓷加热片和温度传感器分别与智能温控器连接,恒压电源分别供电至陶瓷加热片和智能温控器。
所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:脉冲2μm光纤激光器为掺Tm离子和Ho离子的脉冲光纤激光器,输出波长为1.94~2 μm波段,输出激光为线偏振光,其脉冲重复频率为100 kHz,脉冲宽度为50 ns,输出功率为50W。
所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:环形腔振荡器单元中,环形振荡器输入镜的基底材料为硅、或硒化锌、或硫化锌,环形振荡器输入镜一面镀有60°对1.9~2 μm高透膜、另一面镀有单面对2.5~3.5μm高反膜,高透膜的透过率高达98%以上,高反膜的反射率高达99%以上;
ZGP光学非线性晶体尺寸大小为6 mm*6 mm*20 mm,最大非线性系数74pm/V,激光损伤阈值高于100M/cm2,ZGP光学非线性晶体两个端面分别镀有对1.9~2 μm波段高透膜、对5~8 μm波段高透膜,其透过率均高达99%以上;
环形振荡器输出镜的基底材料为硅、或硒化锌、或硫化锌,环形振荡器输出镜一面镀有60°单面对1.9~2 μm和波段5~8 μm波段高透膜、另一面镀有对2.5~3.5μm高反膜,高透膜的透过率高达98%以上,高反膜的反射率高达99%以上;
环形振荡器腔镜单面对2.5~3.5μm波段部分反射,其透过率为10~15%。
所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:种子自注入系统单元中,第一光纤耦合镜、第二光纤耦合镜分别为高耦合效率的中红外波段光纤耦合器,其对2.5~3.5μm红外激光的耦合效率高达95%。
所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:种子自注入系统单元中,光纤窄带滤波器为高透过率、窄带、宽调谐的中红外波段光纤滤波器,其对2.5~3.5μm红外激光的透过率高达95%,透过带宽为1nm,中心波长调谐范围为2.4~3.6μm;
光纤标准具的基底材料为白宝石、或蓝宝石、或熔石英,其精细度高达200,自由光谱范围为1nm;
延时光纤为中红外波段线偏振光纤,其材料为硫化物或者氟化物玻璃光纤或者为光子晶体光纤,其插入损耗小于0.005 dB/m,使用波段为2.4~3.6 μm,光纤芯径为100~600 μm,长度为特定长度以实现精确的延时。
所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:还包括设置在脉冲2μm光纤激光器和环形振荡器输入镜之间的半波片和光隔离器,脉冲2μm光纤激光器的出射光依次经过半波片、光隔离器到达环形振荡器输入镜,由光隔离器和半波片组成光开关,控制输入到光参量振荡器中的泵浦功率,其中:
半波片的使用波段1.9~2 μm,半波片双面分别镀有对1.9~2 μm波段高透膜,其透过率高于99%;
光隔离器的使用波段为1.9~2 μm,其光隔离去高达50dB,透过率高达95%。
本发明长波(闲频光)中红外激光的线宽压窄基理,为了实现高转换效率的长波(闲频光)中红外激光输出,采用间接线宽压窄技术,即采用窄线宽的泵浦光泵浦光参量振荡器,采用线宽控制技术对振荡信号光进行线宽压窄,通过窄线宽的泵浦光与窄线宽的振荡信号光的相互作用实现高转换效率长波(闲频光)中红外激光的窄线宽输出。
本发明提供宽调谐、窄线宽、高效率的中红外参量振器,该中红外参量振荡器具有高重复频率、窄线宽、高效率、高能量(mJ)、输出功率稳定以及光学质量优良等特点。本发明采用的2μm光纤激光器作为泵浦源有效地提高光参量振荡器的转换效率和便捷性;本发明采用ZGP晶体,具有大的非线性系数,同时采用脉冲的泵浦光,有益于提高中红外长波(闲频光)转换效率,本发明采用自种子注入技术实现单谐振信号光的窄线宽振荡;本发明采用线宽间接控制技术实现长波(闲频光)的窄线宽、高效率输出。
本发明与现有技术相比的优点在于:
首先,本发明采用窄线宽的2μm脉冲光纤激光器泵浦源抽运ZGP晶体,有助于获取窄线宽的长波中红外(闲频光)激光输出,同时提高整体系统的便捷性;其次,本发明采用间接压窄的技术方案,有助于获取高转换效率的长波中红外(闲频光)激光输出,避免直接压窄带来的额外损耗影响中红外(闲频光)的转换效率;再者,采用压窄部分输出振荡信号光作为种子信号再次注入到振荡信号腔的技术手段获取振荡信号光的窄线宽振荡;最后,采用光纤延时的技术手段,将前脉冲的信号有效地延时,作为下一脉冲的种子信号重新注入到振荡信号腔内。
附图说明
图1为本发明结构原理图。
图2为本发明环形腔振荡器单元光路部分局部结构图。
具体实施方式
如图1、图2所示,一种宽调谐、窄线宽、高效率的中红外光参量振荡器,包括2μm光纤激光器激光器泵浦源、环形腔振荡器、种子自注入系统以及FP标准具温度控制单元,其中:
2μm光纤激光器激光器泵浦源单元为脉冲2μm光纤激光器1;
环形腔振荡器单元包括依次设置在脉冲2μm光纤激光器1出射光路上的环形振荡器输入镜4、ZGP光学非线性晶体5、环形振荡器输出镜6,以及位于脉冲2μm光纤激光器1出射光路外的环形振荡器腔镜7,其中环形振荡器输入镜4、环形振荡器输出镜6的中心位于脉冲2μm光纤激光器1出射光路的光轴上,且环形振荡器输入镜4、环形振荡器6的光轴分别与脉冲2μm光纤激光器1出射光路的光轴呈60°夹角,ZGP光学非线性晶体5中心轴线与脉冲2μm光纤激光器1出射光路的光轴重合,且ZGP光学非线性晶体5放置于可实现±30°旋转的夹具中,环形振荡器腔镜7的光轴垂直于脉冲2μm光纤激光器1出射光路的光轴,且环形振荡器腔镜7与环形振荡器输入镜4、环形振荡器输出镜6呈正三角形分布,环形振荡器输入镜4、环形振荡器输出镜6各自一面分别朝向环形振荡器腔镜7一面;
种子自注入系统单元包括第一光纤耦合镜8,光纤窄带滤波器9,延时光纤10、光纤标准具12和第二光纤耦合镜11,第一光纤耦合镜8、第二光纤耦合镜11各自一端分别朝向环形振荡器腔镜7另一面,第一光纤耦合镜8另一端通过光纤窄带滤波器9与延时光纤10一端耦合连接,延时光纤10另一端与光纤标准具12一端耦合连接,光纤标准具12另一端与第二光纤耦合镜11另一端耦合连接;
FP标准具温度控制单元包括温度传感器13、热沉及保温层14、陶瓷加热片15、智能温控器16及恒压电源17,种子自注入系统单元中光纤标准具12置于热沉及保温层14中,陶瓷加热片15紧贴热沉及保温层14一侧,温度传感器13紧贴热沉及保温层14另一侧,陶瓷加热片15和温度传感器13分别与智能温控器16连接,恒压电源17分别供电至陶瓷加热片15和智能温控器16。
本发明中,脉冲2μm光纤激光器1为掺Tm离子和Ho离子的脉冲光纤激光器,输出波长为1.94~2 μm波段,输出激光为线偏振光,其脉冲重复频率为100 kHz,脉冲宽度为50ns,输出功率为50W。
本发明环形腔振荡器单元中,环形振荡器输入镜4的基底材料为硅、或硒化锌、或硫化锌,环形振荡器输入镜4一面镀有60°对1.9~2 μm高透膜、另一面镀有单面对2.5~3.5μm高反膜,高透膜的透过率高达98%以上,高反膜的反射率高达99%以上;
ZGP光学非线性晶体5尺寸大小为6 mm*6 mm*20 mm,最大非线性系数74pm/V,激光损伤阈值高于100M/cm2,ZGP光学非线性晶体5两个端面分别镀有对1.9~2 μm波段高透膜、对5~8 μm波段高透膜,其透过率均高达99%以上;
环形振荡器输出镜6的基底材料为硅、或硒化锌、或硫化锌,环形振荡器输出镜6一面镀有60°单面对1.9~2 μm和波段5~8 μm波段高透膜、另一面镀有对2.5~3.5μm高反膜,高透膜的透过率高达98%以上,高反膜的反射率高达99%以上;
环形振荡器腔镜7单面对2.5~3.5μm波段部分反射,其透过率为10~15%。
本发明种子自注入系统单元中,第一光纤耦合镜8、第二光纤耦合镜11分别为高耦合效率的中红外波段光纤耦合器,其对2.5~3.5μm红外激光的耦合效率高达95%。
本发明种子自注入系统单元中,光纤窄带滤波器9为高透过率、窄带、宽调谐的中红外波段光纤滤波器,其对2.5~3.5μm红外激光的透过率高达95%,透过带宽为1nm,中心波长调谐范围为2.4~3.6 μm;
光纤标准具12的基底材料为白宝石、或蓝宝石、或熔石英,其精细度高达200,自由光谱范围为1nm;
延时光纤10为中红外波段线偏振光纤,其材料为硫化物或者氟化物玻璃光纤或者为光子晶体光纤,其插入损耗小于0.005 dB/m,使用波段为2.4~3.6 μm,光纤芯径为100~600μm,长度为特定长度以实现精确的延时。
本发明还包括设置在脉冲2μm光纤激光器1和环形振荡器输入镜4之间的半波片2和光隔离器3,脉冲2μm光纤激光器1的出射光依次经过半波片2、光隔离器3到达环形振荡器输入镜4,由光隔离器3和半波片2组成光开关,控制输入到光参量振荡器中的泵浦功率,其中:
半波片2的使用波段1.9~2 μm,半波片2双面分别镀有对1.9~2 μm波段高透膜,其透过率高于99%;
光隔离器3的使用波段为1.9~2 μm,其光隔离去高达50dB,透过率高达95%。

Claims (6)

1.一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:包括2μm光纤激光器激光器泵浦源、环形腔振荡器、种子自注入系统以及FP标准具温度控制单元,其中:
2μm光纤激光器激光器泵浦源单元为脉冲2μm光纤激光器;
环形腔振荡器单元包括依次设置在脉冲2μm光纤激光器出射光路上的环形振荡器输入镜、ZGP光学非线性晶体、环形振荡器输出镜,以及位于脉冲2μm光纤激光器出射光路外的环形振荡器腔镜,其中环形振荡器输入镜、环形振荡器输出镜的中心位于脉冲2μm光纤激光器出射光路的光轴上,且环形振荡器输入镜、环形振荡器的光轴分别与脉冲2μm光纤激光器出射光路的光轴呈60°夹角,
ZGP光学非线性晶体中心轴线与脉冲2μm光纤激光器出射光路的光轴重合,且ZGP光学非线性晶体放置于可实现±30°旋转的夹具中,环形振荡器腔镜的光轴垂直于脉冲2μm光纤激光器出射光路的光轴,且环形振荡器腔镜与环形振荡器输入镜、环形振荡器输出镜呈正三角形分布,环形振荡器输入镜、环形振荡器输出镜各自一面分别朝向环形振荡器腔镜一面;
种子自注入系统单元包括第一光纤耦合镜,光纤窄带滤波器,延时光纤、光纤标准具和第二光纤耦合镜,第一光纤耦合镜、第二光纤耦合镜各自一端分别朝向环形振荡器腔镜另一面,第一光纤耦合镜另一端通过光纤窄带滤波器与延时光纤一端耦合连接,延时光纤另一端与光纤标准具一端耦合连接,光纤标准具另一端与第二光纤耦合镜另一端耦合连接;
FP标准具温度控制单元包括温度传感器、热沉及保温层、陶瓷加热片、智能温控器及恒压电源,种子自注入系统单元中光纤标准具置于热沉及保温层中,陶瓷加热片紧贴热沉及保温层一侧,温度传感器紧贴热沉及保温层另一侧,陶瓷加热片和温度传感器分别与智能温控器连接,恒压电源分别供电至陶瓷加热片和智能温控器。
2.根据权利要求1所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:脉冲2μm光纤激光器为掺Tm离子和Ho离子的脉冲光纤激光器,输出波长为1.94~2 μm波段,输出激光为线偏振光,其脉冲重复频率为100 kHz,脉冲宽度为50 ns,输出功率为50W。
3.根据权利要求1所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:环形腔振荡器单元中,环形振荡器输入镜的基底材料为硅、或硒化锌、或硫化锌,环形振荡器输入镜一面镀有60°对1.9~2 μm高透膜、另一面镀有单面对2.5~3.5μm高反膜,高透膜的透过率高达98%以上,高反膜的反射率高达99%以上;
ZGP光学非线性晶体尺寸大小为6 mm*6 mm*20 mm,最大非线性系数74pm/V,激光损伤阈值高于100M/cm2,ZGP光学非线性晶体两个端面分别镀有对1.9~2 μm波段高透膜、对5~8 μm波段高透膜,其透过率均高达99%以上;
环形振荡器输出镜的基底材料为硅、或硒化锌、或硫化锌,环形振荡器输出镜一面镀有60°单面对1.9~2 μm和波段5~8 μm波段高透膜、另一面镀有对2.5~3.5μm高反膜,高透膜的透过率高达98%以上,高反膜的反射率高达99%以上;
环形振荡器腔镜单面对2.5~3.5μm波段部分反射,其透过率为10~15%。
4.根据权利要求1所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:种子自注入系统单元中,第一光纤耦合镜、第二光纤耦合镜分别为高耦合效率的中红外波段光纤耦合器,其对2.5~3.5μm红外激光的耦合效率高达95%。
5.根据权利要求1所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:种子自注入系统单元中,光纤窄带滤波器为高透过率、窄带、宽调谐的中红外波段光纤滤波器,其对2.5~3.5μm红外激光的透过率高达95%,透过带宽为1nm,中心波长调谐范围为2.4~3.6 μm;
光纤标准具的基底材料为白宝石、或蓝宝石、或熔石英,其精细度高达200,自由光谱范围为1nm;
延时光纤为中红外波段线偏振光纤,其材料为硫化物或者氟化物玻璃光纤或者为光子晶体光纤,其插入损耗小于0.005 dB/m,使用波段为2.4~3.6 μm,光纤芯径为100~600 μm,长度为特定长度以实现精确的延时。
6.根据权利要求1所述的一种宽调谐、窄线宽、高效率的中红外光参量振荡器,其特征在于:还包括设置在脉冲2μm光纤激光器和环形振荡器输入镜之间的半波片和光隔离器,脉冲2μm光纤激光器的出射光依次经过半波片、光隔离器到达环形振荡器输入镜,由光隔离器和半波片组成光开关,控制输入到光参量振荡器中的泵浦功率,其中:
半波片的使用波段1.9~2 μm,半波片双面分别镀有对1.9~2 μm波段高透膜,其透过率高于99%;
光隔离器的使用波段为1.9~2 μm,其光隔离去高达50dB,透过率高达95%。
CN201710959419.3A 2017-10-16 2017-10-16 一种宽调谐、窄线宽、高效率的中红外光参量振荡器 Pending CN107611762A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710959419.3A CN107611762A (zh) 2017-10-16 2017-10-16 一种宽调谐、窄线宽、高效率的中红外光参量振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710959419.3A CN107611762A (zh) 2017-10-16 2017-10-16 一种宽调谐、窄线宽、高效率的中红外光参量振荡器

Publications (1)

Publication Number Publication Date
CN107611762A true CN107611762A (zh) 2018-01-19

Family

ID=61078418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710959419.3A Pending CN107611762A (zh) 2017-10-16 2017-10-16 一种宽调谐、窄线宽、高效率的中红外光参量振荡器

Country Status (1)

Country Link
CN (1) CN107611762A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267301A (zh) * 2018-03-15 2018-07-10 中国人民解放军国防科技大学 基于光学参量振荡器的中红外高反射光学元件测试装置及测试方法
CN110556696A (zh) * 2019-08-20 2019-12-10 中国科学技术大学 注入式光参量振荡装置及方法
CN111162439A (zh) * 2019-12-19 2020-05-15 中国科学院合肥物质科学研究院 一种高转换效率的中红外光参量振荡器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064748A1 (en) * 2001-09-20 2007-03-22 Sergey Mirov Mid-IR laser instrument for analyzing a gaseous sample and method for using the same
CN103944049A (zh) * 2014-03-26 2014-07-23 中国工程物理研究院应用电子学研究所 一种小型化三腔镜环形腔中红外光参量振荡器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064748A1 (en) * 2001-09-20 2007-03-22 Sergey Mirov Mid-IR laser instrument for analyzing a gaseous sample and method for using the same
CN103944049A (zh) * 2014-03-26 2014-07-23 中国工程物理研究院应用电子学研究所 一种小型化三腔镜环形腔中红外光参量振荡器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F.GANIKHANOV ET AL: "Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator", 《J.OPT.SOC.AM.B》 *
LI WANG ET AL.: "Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%", 《OPTICS EXPRESS》 *
M. RAHM ET AL: "widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding", 《2005 CONFERENCE ON LASERS & ELECTRO-OPTICS(CLEO)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267301A (zh) * 2018-03-15 2018-07-10 中国人民解放军国防科技大学 基于光学参量振荡器的中红外高反射光学元件测试装置及测试方法
CN108267301B (zh) * 2018-03-15 2023-04-18 中国人民解放军国防科技大学 基于光学参量振荡器的中红外高反射光学元件测试装置及测试方法
CN110556696A (zh) * 2019-08-20 2019-12-10 中国科学技术大学 注入式光参量振荡装置及方法
CN111162439A (zh) * 2019-12-19 2020-05-15 中国科学院合肥物质科学研究院 一种高转换效率的中红外光参量振荡器

Similar Documents

Publication Publication Date Title
CN106711745B (zh) 宽调谐、窄线宽纳秒脉冲双共振中红外参量振荡器
CN107579413B (zh) 一种扩展全固态连续波单频激光器调谐范围的方法
CN100358192C (zh) 非周期极化晶体双波长光学参量振荡器产生太赫兹的装置
CN107611762A (zh) 一种宽调谐、窄线宽、高效率的中红外光参量振荡器
CN106856292B (zh) 基于外差拍频锁定的种子注入2μm波段单频脉冲光参量振荡器
US7016103B2 (en) Multiwavelength light source using an optical parametric oscillator
CN105261922A (zh) 紧凑的宽光谱、可独立调谐双波长参量振荡器
KR102487511B1 (ko) 다결정 매질에서의 무작위 위상 정합에 기초한 광학 파라메트릭 장치
CN108183387A (zh) 一种用于激光器的光学参量振荡器系统
CN104950546B (zh) 一种利用参量转换技术产生中波红外激光输出的方法
CN107482425A (zh) 一种高重频、单纵模、窄脉宽2.79um的激光泵浦源
CN106654835B (zh) 多种子注入腔内差频实现多波长中红外光学参量振荡器
CN107994448B (zh) 一种白光激光器
CN104022436A (zh) 一种基于拉曼转换的多波长固体激光器
CN109742648A (zh) 基于外腔光参量振荡和受激拉曼散射效应的红外固体激光器
CN205212162U (zh) 基于波导结构的内调制太赫兹源
CN103368053B (zh) 一种LD泵浦的单频脉冲1645nm固体激光器
JP2013127545A (ja) 半導体波長変換素子および赤外光発振光源
CN101521349A (zh) 一种白光量子点光纤激光器
CN108155553B (zh) 增益谱带快速切换且精细可调的光参量振荡器
CN203895739U (zh) 一种用于产生高平均功率准连续脉冲绿光激光的装置
CN109768464A (zh) 一种低噪声高效率深紫外连续激光器
CN100394652C (zh) 以级联超晶格为变频晶体的全固态准白光激光器的设置方法
CN106340797B (zh) 基于体光栅构成环形腔光学参量振荡器的2μm可调谐激光器
CN111755943B (zh) 一种基于脉冲激光器泵浦的光学参量振荡器及工作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180119