CN107610141B - 一种基于深度学习的遥感图像语义分割方法 - Google Patents

一种基于深度学习的遥感图像语义分割方法 Download PDF

Info

Publication number
CN107610141B
CN107610141B CN201710788814.XA CN201710788814A CN107610141B CN 107610141 B CN107610141 B CN 107610141B CN 201710788814 A CN201710788814 A CN 201710788814A CN 107610141 B CN107610141 B CN 107610141B
Authority
CN
China
Prior art keywords
layer
remote sensing
image
sensing image
semantic segmentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710788814.XA
Other languages
English (en)
Other versions
CN107610141A (zh
Inventor
陈佳
胡丹
余卫宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710788814.XA priority Critical patent/CN107610141B/zh
Publication of CN107610141A publication Critical patent/CN107610141A/zh
Application granted granted Critical
Publication of CN107610141B publication Critical patent/CN107610141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种基于深度学习的遥感图像语义分割方法中,步骤为:为每种物类目标分配RGB值和灰度值,获取原始遥感图像,选取出物类目标并上色、灰度化以及赋予灰度值处理,得到标签图像,对原始遥感图像进行数据增强以及边缘提取,得到边缘提取后的图像;将原始遥感图像和边缘提取后的图像训练样本对完全卷积神经网络进行训练,得到最佳语义分割网络模型,将测试遥感图像输入最佳语义分割网络模型中,获取到语义分割结果图像;为语义分割结果图像进行上色处理,得到最终语义分割结果图像,根据最终语义分割结果图像中的RGB值获取物类目标。本发明方法具有遥感图像语义分割准确率高以及适用性广的优点。

Description

一种基于深度学习的遥感图像语义分割方法
技术领域
本发明涉及图像处理技术领域,特别涉及一种基于深度学习的遥感图像语义分割方法。
背景技术
图像语义分割融合了传统的图像分割和目标识别两个任务,其目的是将图像分割成若干组具有某种特定语义含义的像素区域,并识别出每个区域的类别,最终获得一幅具有像素语义标注的图像。该技术是计算机视觉的三大核心研究问题之一,是计算机视觉和模式识别领域非常具有挑战性的研究方向。图像语义分割与图像分割的最大区别在于,图像分割仅仅完成图像像素聚类,而图像语义分割在完成像素聚类后进一步对类别进行识别,给予类别语义信息。因此图像语义分割是在图像分割基础上在进行类别识别。
现有的常用图像分割算法包括:基于颜色和亮度的分割方法、基于区域的分割方法、基于图论的分割方法和基于能量泛函的分割方法。基于颜色和亮度的分割方法是通过图像的颜色或亮度对每个像素点进行划分,如K-Means算法即是将图像看作是由RGB三维特征组成的点集,对图像的所有像素点进行聚类实现分割目的;基于区域的分割方法,包含区域生长法和分水岭法,是按照相似性准则将图像分割为多个区域。基于图论的分割方法将图像映射为带权无向图,移除特定的边,将图划分为若干个子图实现图像分割;基于能量泛函的分割方法主要包括活动轮廓模型以及其衍生方法。上述方法通常需要先验条件进行初始化,如K-means算法在分割图像前需指定分割区域的数量、分水岭方法必须指定分割部分的关键点、活动轮廓模型需设置初始化轮廓,这些先验条件要求都局限了图像分割研究的发展。
遥感图像较之其他类别的图像更需要准确的捕捉到图像中的主要目标,从而快速提取图像重要信息。如在遥感图像中分割识别出大量的飞机,则可推测此遥感图像为机场图像,若分割识别出大量规律停放的车辆,则可推测此遥感图像为停车场图像。但是对于遥感图像,由于其数据获取较难且图像清晰度不高,这两大特点导致针对遥感图像的语义分割任务无法通过以上传统方法达到满意效果。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种分割准确率高的基于深度学习的遥感图像语义分割方法,该分割方法不需要先验条件进行初始化且不受先验条件限制,针对遥感图像的分割问题具有较强的适用性。
本发明的目的通过下述技术方案实现:一种基于深度学习的遥感图像语义分割方法,步骤如下:
步骤S1、分别为每种物类目标分配RGB值和灰度值;获取一定数量的原始遥感图像作为训练样本,针对于每张原始遥感图像,选取出物类目标,并根据该物类目标所分配的RGB值对该物类目标进行上色处理,得到标记遥感图像;然后对标记遥感图像进行灰度化处理,并且根据其中物类目标所分配的灰度值对该物类目标的每个像素点重新赋予灰度值,从而得到原始遥感图像训练样本对应的标签图像;
步骤S2、针对于步骤S1中获取到的原始遥感图像进行数据增强处理,然后进行图像的边缘提取得到边缘提取后的图像,将边缘提取后的图像作为训练样本;
步骤S3、将原始遥感图像训练样本和边缘提取后的图像训练样本作为输入对完全卷积神经网络进行训练,得到最佳语义分割网络模型;
步骤S4、将待分割语义的测试遥感图像输入至步骤S3获取到的最佳语义分割网络模型中,通过最佳语义分割网络模型获取到带相应灰度值的语义分割结果图像;
步骤S5、查找每种物类目标所分配的RGB值和灰度值的对应关系,根据语义分割结果图像中灰度值所对应的RGB值为语义分割结果图像进行上色处理,得到最终语义分割结果图像;查找每种物类目标所分配的RGB值,然后根据最终语义分割结果图像中的RGB值获取到待分割语义的测试遥感图像对应的物类目标。
优选的,步骤S1中针对每张原始遥感图像,根据先验知识通过手工分割方法将其中的物类目标选取出来,并且将背景的RGB值置为零。
优选的,步骤S2中,针对于步骤S1中获取到的每张标签图像分别进行数据增强处理的过程如下:
步骤S21、首先将原始遥感图像进行梯度增强处理;
步骤S22、然后将梯度增强处理后的原始遥感图像进行多尺度缩放处理;
步骤S23、最后针对多尺度缩放处理后的原始遥感图像进行镜像操作。
更进一步的,步骤S21中原始遥感图像进行梯度为15度的增强处理,使得原始遥感图像数据扩大至24倍;
步骤S22中将梯度增强处理后的原始遥感图像进行0.6、0.9和1.4尺寸缩放处理,使得梯度增强处理后的原始遥感图像数据扩大至96倍;
步骤S23中针对多尺度缩放处理后的原始遥感图像进行镜像操作,使得多尺度缩放处理后的原始遥感图像数据扩大至192倍。
优选的,步骤S2中,通过Canny算子进行图像的边缘提取。
更进一步的,所述Canny算子进行图像的边缘提取过程中,所使用到的信噪比SNR计算公式如下:
Figure BDA0001398683900000031
其中,G(-x)为边缘函数;f(x)为滤波器的脉冲响应,(-w,+w)为边界;σ为高斯均方差;
所述Canny算子进行图像的边缘提取过程中,所使用到的定位精度Location计算公式如下:
Figure BDA0001398683900000032
其中,G′(-x)、f′(x)分别对应为G(-x)、f(x)的一阶导数;
所述Canny算子进行图像的边缘提取过程中,单边缘响应准则如下:
Figure BDA0001398683900000041
即满足检测算子脉冲响应导数的零交叉点间的平均距离d(f′)等于f(x)的二阶导数f″(x)。
优选的,步骤S3中所述完全卷积神经网络由基础卷积神经网络结构构建得到,所述完全卷积神经网络的输入层至输出层之间依次为第一卷积层、第一池化层、第二卷积层、第二池化层、第三卷积层、第三池化层、第四卷积层、第四池化层、第五卷积层、第五池化层、第一全链接层、第二全链接层、第一反卷积层、第二反卷积层和第三反卷积层;其中第一卷积层、第一池化层、第二卷积层、第二池化层、第三卷积层、第三池化层、第四卷积层、第四池化层、第五卷积层、第五池化层、第一全链接层和第二全链接层依次连接;第一全链接层和第二全链接层之后分别对应连接第一丢弃层和第二丢弃层;
第二全链接层通过Score_fr卷积层连接第一反卷积层的输入,第四池化层的输出连接第一尺寸修正层的输入,第一反卷积层的输出和第一尺寸修正层的输出分别连接第一Eltwise相加层的输入;第一Eltwise相加层的输出连接第二反卷积层的输入,第二反卷积层的输出连接第二Eltwise相加层的输入,第三池化层的输出经过第二尺寸修正层连接第二Eltwise相加层的输入,第二Eltwise相加层的输出连接第三反卷积层的输入,第三反卷积层的输出连接第三尺寸修正层的输入,第三尺寸修正层同时输入完全卷积神经网络接收到的遥感图像;第三尺寸修正层的输出连接softmaxloss损失值计算层,同时softmaxloss损失值计算层输入完全卷积神经网络接收到的标签图像。
优选的,步骤S3中,完全卷积神经网络进行训练得到最佳语义分割网络模型的具体过程如下:
将原始遥感图像训练样本以及边缘提取后的图像训练样本通过单通道的方式输入至完全卷积神经网络中进行网络参数训练,得到第一语义分割网络模型;
先将边缘提取后的图像训练样本输入完全卷积神经网络中进行网络参数训练,训练完成后保存上述训练得到的网络参数;然后将原始遥感图像训练样本作为输入进行二次训练,得到第二语义分割网络模型;
将原始遥感图像训练样本以及边缘提取后的图像训练样本通过双通道同时输入至完全卷积神经网络中进行网络参数训练,使得完全卷积神经网络同时学习遥感图像以及边缘提取后的图像,得到第三语义分割网络模型;
通过原始遥感图像训练样本和/或边缘提取后的图像训练样本针对第一语义分割网络模型、第二语义分割网络模型和第二语义分割网络模型进行验证,将验证识别准确率最高的其中一个语义分割网络模型作为最佳语义分割网络模型。
优选的,步骤S1中分别为每种物类目标分配RGB值和灰度值,具体为:当物类目标为背景时,为其分配RGB值分别为0、0、0,为其分配的灰度值为0;当物类目标为飞机时,为其分配RGB值分别为0、128、0,为其分配的灰度值为1;当物类目标为棒球场时,为其分配RGB值分别为128、128、0,为其分配的灰度值为2;当物类目标为高速公路时,为其分配RGB值分别为0、0、128,为其分配的灰度值为3;当物类目标为船只时,为其分配RGB值分别为128、0、128,为其分配的灰度值为4;当物类目标为十字路口时,为其分配RGB值分别为0、128、128,为其分配的灰度值为5;当物类目标为天桥时,为其分配RGB值分别为128、128、128,为其分配的灰度值为6;当物类目标为汽车时,为其分配RGB值分别为64、0、0,为其分配的灰度值为7;当物类目标为储蓄罐时,为其分配RGB值分别为192、0、0,为其分配的灰度值为8;当物类目标为网球场时,为其分配RGB值分别为62、128、0,为其分配的灰度值为9;当物类目标为海滩时,为其分配RGB值分别为192、128、0,为其分配的灰度值为10。
优选的,步骤S1中,获取的所有原始遥感图像中包括10种物类目标,其中每类物类目标包括100张原始遥感图像中,每张原始遥感图像中包括一种物类目标。本发明相对于现有技术具有如下的优点及效果:
(1)本发明遥感图像语义分割方法中,首先获取一定数量的原始遥感图像作为训练样本,并且选取出每个训练样本的物类目标,然后对物类目标进行上色处理、灰度化处理以及重新赋予灰度值等操作,从而得到原始遥感图像训练样本对应的标签图像。同时针对于原始遥感图像进行数据增强以及边缘提取后,得到边缘提取后的图像,将边缘提取后的图像也作为训练样本。将原始遥感图像训练样本和边缘提取后的图像训练样本作为完全卷积神经网络的输入对进行完全卷积神经网络训练,得到最佳语义分割网络模型;将待分割语义的测试遥感图像输入最佳语义分割网络模型中,获取到带相应灰度值的语义分割结果图像;为语义分割结果图像进行相应上色处理,得到最终语义分割结果图像,查找每种物类目标所分配的RGB值,然后根据最终语义分割结果图像中的RGB值获取到待分割语义的测试遥感图像对应的物类目标。可见,本发明基于深度学习理论,通过对大量遥感图像进行网络训练和学习,得到最佳语义分割网络模型,从而实现待测遥感图像语义信息的分割;本发明方法不需要先验条件进行初始化且不受先验条件限制,具有遥感图像语义信息分割准确率高的优点,针对遥感图像的分割问题具有较强的适用性。并且本发明可批量处理遥感图像,获得图像主要内容并辅助完成图像预处理工作。
(2)本发明遥感图像语义分割方法中,完全卷积神经网络的输入层至输出层之间依次为第一卷积层、第一池化层、第二卷积层、第二池化层、第三卷积层、第三池化层、第四卷积层、第四池化层、第五卷积层、第五池化层、第一全链接层、第二全链接层、第一反卷积层、第二反卷积层和第三反卷积层;其中本发明完全卷积神经网络采用反卷积层代替了基础卷积神经网络中的损失值计算层,实现将卷积计算后学习得到的遥感特征图像(heatmap)重构至原始图像尺寸,从而得到语义分割结果。
附图说明
图1是本发明方法流程图。
图2a是各原始遥感图像;
图2b是图2a中各原始遥感图像对应的边缘提取后的图像。
图2c是图2a中各原始遥感图像中物类目标被上色后的标记遥感图像。
图3是本发明完全卷积神经网络的结构图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
本实施例公开了一种基于深度学习的遥感图像语义分割方法,如图1所示,步骤如下:
步骤S1、分别为每种物类目标分配RGB值和灰度值;同时,获取一定数量的原始遥感图像作为训练样本,针对于每张原始遥感图像,根据先验知识通过手工分割方法将其中的物类目标选取出来,并且将背景置零。同时根据该物类目标所分配的RGB值对该物类目标进行上色处理,得到标记遥感图像;然后对标记遥感图像进行灰度化处理,并且根据其中物类目标所分配的灰度值对该物类目标中的每个像素点重新赋予灰度值,从而得到原始遥感图像训练样本对应的标签图像;本实施例中灰度值范围为0~N,N为物类目标的种类数。
本实施例在本步骤中获取的所有原始遥感图像中包括10种物类目标,其中每类物类目标包括100张原始遥感图像中,每张原始遥感图像中包括一种物类目标。
步骤S2、针对于步骤S1中获取到的原始遥感图像进行数据增强处理,然后进行图像的边缘提取得到边缘提取后的图像,将边缘提取后的图像作为训练样本;
如图2a所示为各原始遥感图像,如图2b所示为图2a中各原始遥感图像边缘提取后的图像。
在本实施例该步骤中,针对于步骤S1中获取到的每张标签图像分别进行数据增强处理的过程如下:
步骤S21、首先将原始遥感图像进行梯度15度的增强处理,使得原始遥感图像数据扩大至24倍;
步骤S22、然后将梯度增强处理后的原始遥感图像进行多尺度缩放处理;本实施例中将梯度增强处理后的原始遥感图像进行0.6、0.9和1.4三种尺寸的缩放处理,使得梯度增强处理后的原始遥感图像数据扩大至96倍;
步骤S23、最后针对多尺度缩放处理后的原始遥感图像进行镜像操作,使得多尺度缩放处理后的原始遥感图像数据扩大至192倍。得到约19万张训练及验证样本。在本实施例中,将所有图像数据按照4:6比例分别进行完全卷积神经网络的训练和验证。
另外本实施例该步骤中,Canny算子进行图像的边缘提取过程中,所使用到的信噪比SNR计算公式如下:
Figure BDA0001398683900000081
其中,G(-x)为边缘函数;f(x)为滤波器的脉冲响应,(-w,+w)为边界;σ为高斯均方差;易知,信噪比值越大,边缘提取效果越好。
Canny算子进行图像的边缘提取过程中,所使用到的定位精度Location计算公式如下:
Figure BDA0001398683900000082
其中,G′(-x)、f′(x)分别对应为G(-x)、f(x)的一阶导数;易知,定位精度Location值越大,边缘提取效果越好。
Canny算子进行图像的边缘提取过程中,单边缘响应准则如下:
Figure BDA0001398683900000083
即保证单边缘仅一个图像像素响应,满足检测算子脉冲响应导数的零交叉点间的平均距离d(f′)等于f(x)的二阶导数f″(x)。
步骤S3、将原始遥感图像训练样本和边缘提取后的图像训练样本作为输入对完全卷积神经网络进行训练,得到最佳语义分割网络模型;
步骤S4、将待分割语义的测试遥感图像输入至步骤S3获取到的最佳语义分割网络模型中,通过最佳语义分割网络模型获取到带相应灰度值的语义分割结果图像;
步骤S5、查找每种物类目标所分配的RGB值和灰度值的对应关系,根据语义分割结果图像中灰度值所对应的RGB值为语义分割结果图像进行上色处理,得到最终语义分割结果图像;查找每种物类目标所分配的RGB值,然后根据最终语义分割结果图像中的RGB值获取到待分割语义的测试遥感图像对应的物类目标。
其中本实施例中每种物类目标分配的RGB值和灰度值如表1所示:
表1
物类目标 R G B 标签
背景 0 0 0 0
飞机 0 128 0 1
棒球场 128 128 0 2
高速公路 0 0 128 3
船只 128 0 128 4
十字路口 0 128 128 5
天桥 128 128 128 6
汽车 64 0 0 7
储蓄罐 192 0 0 8
网球场 62 128 0 9
海滩 192 128 0 10
由表1可知,当物类目标为背景时,即无物类目标时,为其分配RGB值分别为0、0、0,为其分配的灰度值为0;当物类目标为飞机时,为其分配RGB值分别为0、128、0,为其分配的灰度值为1;当物类目标为棒球场时,为其分配RGB值分别为128、128、0,为其分配的灰度值为2;当物类目标为高速公路时,为其分配RGB值分别为0、0、128,为其分配的灰度值为3;当物类目标为船只时,为其分配RGB值分别为128、0、128,为其分配的灰度值为4;当物类目标为十字路口时,为其分配RGB值分别为0、128、128,为其分配的灰度值为5;当物类目标为天桥时,为其分配RGB值分别为128、128、128,为其分配的灰度值为6;当物类目标为汽车时,为其分配RGB值分别为64、0、0,为其分配的灰度值为7;当物类目标为储蓄罐时,为其分配RGB值分别为192、0、0,为其分配的灰度值为8;当物类目标为网球场时,为其分配RGB值分别为62、128、0,为其分配的灰度值为9;当物类目标为海滩时,为其分配RGB值分别为192、128、0,为其分配的灰度值为10。
步骤S1中,当原始遥感图像中选取出的物类目标为飞机时,将原始遥感图像中的飞机按照RGB值为0、128、0进行上色,即上色为绿色。依次类推,当原始遥感图像中选取出的物类目标为表1中的其他时,按照对应的RGB值进行上色。如图2a所示为各原始遥感图像,如图2c所示为图2a中各原始遥感图像中物类目标被上色后得到的标记遥感图像。其中各原始遥感图像中的背景的RGB值被置为零,即处理为黑色。
如图3所示,在本实施例中,完全卷积神经网络由基础卷积神经网络结构构建得到,构建得到的完全卷积神经网络包括卷积层(convolutional layer)、池化层(poolinglayer)、全连接层(full connection layer)、丢弃层(dropout_layer)和反卷积层(deconvolution_layer),具体是,从输入层至输出层依次为第一卷积层conv1、第一池化层pool1、第二卷积层conv2、第二池化层pool2、第三卷积层conv3、第三池化层poo3、第四卷积层conv4、第四池化层pool4、第五卷积层conv5、第五池化层pool5、第一全链接层fc1、第二全链接层fc2、第一反卷积层upscore2、第二反卷积层upscore_pool4和第三反卷积层upscore8;其中第一卷积层conv1、第一池化层pool1、第二卷积层conv2、第二池化层pool2、第三卷积层conv3、第三池化层poo3、第四卷积层conv4、第四池化层pool4、第五卷积层conv5、第五池化层pool5、第一全链接层fc1、第二全链接层fc2依次连接;
本实施例中,第一卷积层conv1和第二卷积层conv2均包含两次卷积操作,第三卷积层conv3、第四卷积层conv4和第五卷积层conv5均包含三次卷积操作,每次卷积操作后通过ReLu函数激活图像特征得到特征映射图,每个卷积层后均连接池化层。
本实施例中,第一全链接层fc1、第二全链接层fc2之后分别对应连接第一丢弃层Dropout_layer1和第二丢弃层Dropout_layer2;通过第一丢弃层和第二丢弃层随机丢弃部分网络连接,减轻网络结构并抑制网络训练过拟合。
本实施例中,第二全链接层fc2的输出连接Score_fr卷积层的输入,得到与输入遥感图像对应的遥感特征图像(heatmap);Score_fr卷积层的输出连接第一反卷积层upscore2的输入,第一反卷积层upscore2对Score_fr卷积层输出的特征图扩大两倍尺寸。第四池化层的输出连接第一尺寸修正层Score_pool4c的输入,通过第一尺寸修正层Score_pool4c对第四池化层pool4输出的特征图进行尺寸修正;第一反卷积层upscore2的输出和第一尺寸修正层Score_pool4c的输出分别连接第一Eltwise相加层fuse_pool4的输入,通过第一Eltwise相加层fuse_pool4得到尺寸扩大两倍且结合了浅层(第四池化层pool4层)图像特征信息的特征图。
第一Eltwise相加层fuse_pool4的输出连接第二反卷积层upscore_pool4的输入,通过第二反卷积层upscore_pool4对第一Eltwise相加层fuse_pool4所得结果扩大两倍尺寸;第二反卷积层upscore_pool4的输出连接第二Eltwise相加层的输入,第三池化层pool3的输出经过第二尺寸修正层连接第二Eltwise相加层fuse_pool3的输入,使得第二反卷积层upscore_pool4输出特征图与静尺寸修正后的第三池化层pool3特征图相加得到得到尺寸扩大四倍且结合了两层浅层(第四池化层pool4、第三池化层pool3层)图像特征信息的特征图。
第二Eltwise相加层fuse_pool3的输出连接第三反卷积层upscore8的输入,第三次反卷积操作对以上所得特征图扩大八倍尺寸,得到与原始遥感图像尺寸一致的特征图。其中第三尺寸修正层Score同时输入完全卷积神经网络接收到的遥感图像;第三尺寸修正层Score的输出连接softmaxloss损失值计算层,同时softmaxloss损失值计算层输入完全卷积神经网络接收到的标签图像。
在本实施例上述步骤S3中,完全卷积神经网络进行训练得到最佳语义分割网络模型的具体过程如下:
将原始遥感图像训练样本以及边缘提取后的图像训练样本通过单通道的方式输入至完全卷积神经网络中进行网络参数训练,得到第一语义分割网络模型;
先将边缘提取后的图像训练样本输入完全卷积神经网络中进行网络参数训练,训练完成后保存上述训练得到的网络参数;然后将原始遥感图像训练样本作为输入进行二次训练,得到第二语义分割网络模型;
将原始遥感图像训练样本以及边缘提取后的图像训练样本通过双通道同时输入至完全卷积神经网络中进行网络参数训练,使得完全卷积神经网络同时学习遥感图像以及边缘提取后的图像,得到第三语义分割网络模型;
通过原始遥感图像训练样本和/或边缘提取后的图像训练样本针对第一语义分割网络模型、第二语义分割网络模型和第二语义分割网络模型进行验证,将验证识别准确率最高的其中一个语义分割网络模型作为最佳语义分割网络模型。在本实施例中可以通过步骤S23获取到的验证样本对第一语义分割网络模型、第二语义分割网络模型和第二语义分割网络模型进行验证。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。发明技术主要针对彩色图片,本发明中的黑白图片只为专利申请展示。

Claims (8)

1.一种基于深度学习的遥感图像语义分割方法,其特征在于,步骤如下:
步骤S1、分别为每种物类目标分配RGB值和灰度值;获取一定数量的原始遥感图像作为训练样本,针对于每张原始遥感图像,选取出物类目标,并根据该物类目标所分配的RGB值对该物类目标进行上色处理,得到标记遥感图像;然后对标记遥感图像进行灰度化处理,并且根据其中物类目标所分配的灰度值对该物类目标的每个像素点重新赋予灰度值,从而得到原始遥感图像训练样本对应的标签图像;
步骤S2、针对于步骤S1中获取到的原始遥感图像进行数据增强处理,然后进行图像的边缘提取得到边缘提取后的图像,将边缘提取后的图像作为训练样本;
步骤S3、将原始遥感图像训练样本和边缘提取后的图像训练样本作为输入对完全卷积神经网络进行训练,得到最佳语义分割网络模型;
步骤S3中所述完全卷积神经网络由基础卷积神经网络结构构建得到,所述完全卷积神经网络的输入层至输出层之间依次为第一卷积层、第一池化层、第二卷积层、第二池化层、第三卷积层、第三池化层、第四卷积层、第四池化层、第五卷积层、第五池化层、第一全链接层、第二全链接层、第一反卷积层、第二反卷积层和第三反卷积层;其中第一卷积层、第一池化层、第二卷积层、第二池化层、第三卷积层、第三池化层、第四卷积层、第四池化层、第五卷积层、第五池化层、第一全链接层和第二全链接层依次连接;第一全链接层和第二全链接层之后分别对应连接第一丢弃层和第二丢弃层;
第二全链接层通过Score_fr卷积层连接第一反卷积层的输入,第四池化层的输出连接第一尺寸修正层的输入,第一反卷积层的输出和第一尺寸修正层的输出分别连接第一Eltwise相加层的输入;第一Eltwise相加层的输出连接第二反卷积层的输入,第二反卷积层的输出连接第二Eltwise相加层的输入,第三池化层的输出经过第二尺寸修正层连接第二Eltwise相加层的输入,第二Eltwise相加层的输出连接第三反卷积层的输入,第三反卷积层的输出连接第三尺寸修正层的输入,第三尺寸修正层同时输入完全卷积神经网络接收到的遥感图像;第三尺寸修正层的输出连接softmaxloss损失值计算层,同时softmaxloss损失值计算层输入完全卷积神经网络接收到的标签图像;
步骤S3中,完全卷积神经网络进行训练得到最佳语义分割网络模型的具体过程如下:
将原始遥感图像训练样本以及边缘提取后的图像训练样本通过单通道的方式输入至完全卷积神经网络中进行网络参数训练,得到第一语义分割网络模型;
先将边缘提取后的图像训练样本输入完全卷积神经网络中进行网络参数训练,训练完成后保存上述训练得到的网络参数;然后将原始遥感图像训练样本作为输入进行二次训练,得到第二语义分割网络模型;
将原始遥感图像训练样本以及边缘提取后的图像训练样本通过双通道同时输入至完全卷积神经网络中进行网络参数训练,使得完全卷积神经网络同时学习遥感图像以及边缘提取后的图像,得到第三语义分割网络模型;
通过原始遥感图像训练样本和/或边缘提取后的图像训练样本针对第一语义分割网络模型、第二语义分割网络模型和第三语义分割网络模型进行验证,将验证识别准确率最高的其中一个语义分割网络模型作为最佳语义分割网络模型;
步骤S4、将待分割语义的测试遥感图像输入至步骤S3获取到的最佳语义分割网络模型中,通过最佳语义分割网络模型获取到带相应灰度值的语义分割结果图像;
步骤S5、查找每种物类目标所分配的RGB值和灰度值的对应关系,根据语义分割结果图像中灰度值所对应的RGB值为语义分割结果图像进行上色处理,得到最终语义分割结果图像;查找每种物类目标所分配的RGB值,然后根据最终语义分割结果图像中的RGB值获取到待分割语义的测试遥感图像对应的物类目标。
2.根据权利要求1所述的基于深度学习的遥感图像语义分割方法,其特征在于,步骤S1中针对每张原始遥感图像,根据先验知识通过手工分割方法将其中的物类目标选取出来,并且将背景的RGB值置为零。
3.根据权利要求1所述的基于深度学习的遥感图像语义分割方法,其特征在于,步骤S2中,针对于步骤S1中获取到的每张标签图像分别进行数据增强处理的过程如下:
步骤S21、首先将原始遥感图像进行梯度增强处理;
步骤S22、然后将梯度增强处理后的原始遥感图像进行多尺度缩放处理;
步骤S23、最后针对多尺度缩放处理后的原始遥感图像进行镜像操作。
4.根据权利要求3所述的基于深度学习的遥感图像语义分割方法,其特征在于,步骤S21中原始遥感图像进行梯度为15度的增强处理,使得原始遥感图像数据扩大至24倍;
步骤S22中将梯度增强处理后的原始遥感图像进行0.6、0.9和1.4尺寸缩放处理,使得梯度增强处理后的原始遥感图像数据扩大至96倍;
步骤S23中针对多尺度缩放处理后的原始遥感图像进行镜像操作,使得多尺度缩放处理后的原始遥感图像数据扩大至192倍。
5.根据权利要求1所述的基于深度学习的遥感图像语义分割方法,其特征在于,步骤S2中,通过Canny算子进行图像的边缘提取。
6.根据权利要求5所述的基于深度学习的遥感图像语义分割方法,其特征在于,所述Canny算子进行图像的边缘提取过程中,所使用到的信噪比SNR计算公式如下:
Figure FDA0002349563100000031
其中,G(-x)为边缘函数;f(x)为滤波器的脉冲响应,(-w,+w)为边界;σ为高斯均方差;
所述Canny算子进行图像的边缘提取过程中,所使用到的定位精度Location计算公式如下:
Figure FDA0002349563100000032
其中,G′(-x)、f′(x)分别对应为G(-x)、f(x)的一阶导数;
所述Canny算子进行图像的边缘提取过程中,单边缘响应准则如下:
Figure FDA0002349563100000033
即满足检测算子脉冲响应导数的零交叉点间的平均距离d(f′)等于f(x)的二阶导数f″(x)。
7.根据权利要求1所述的基于深度学习的遥感图像语义分割方法,其特征在于,步骤S1中分别为每种物类目标分配RGB值和灰度值,具体为:当物类目标为背景时,为其分配RGB值分别为0、0、0,为其分配的灰度值为0;当物类目标为飞机时,为其分配RGB值分别为0、128、0,为其分配的灰度值为1;当物类目标为棒球场时,为其分配RGB值分别为128、128、0,为其分配的灰度值为2;当物类目标为高速公路时,为其分配RGB值分别为0、0、128,为其分配的灰度值为3;当物类目标为船只时,为其分配RGB值分别为128、0、128,为其分配的灰度值为4;当物类目标为十字路口时,为其分配RGB值分别为0、128、128,为其分配的灰度值为5;当物类目标为天桥时,为其分配RGB值分别为128、128、128,为其分配的灰度值为6;当物类目标为汽车时,为其分配RGB值分别为64、0、0,为其分配的灰度值为7;当物类目标为储蓄罐时,为其分配RGB值分别为192、0、0,为其分配的灰度值为8;当物类目标为网球场时,为其分配RGB值分别为62、128、0,为其分配的灰度值为9;当物类目标为海滩时,为其分配RGB值分别为192、128、0,为其分配的灰度值为10。
8.根据权利要求1-7中任一项所述的基于深度学习的遥感图像语义分割方法,其特征在于,步骤S1中,获取的所有原始遥感图像中包括10种物类目标,其中每类物类目标包括100张原始遥感图像中,每张原始遥感图像中包括一种物类目标。
CN201710788814.XA 2017-09-05 2017-09-05 一种基于深度学习的遥感图像语义分割方法 Active CN107610141B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710788814.XA CN107610141B (zh) 2017-09-05 2017-09-05 一种基于深度学习的遥感图像语义分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710788814.XA CN107610141B (zh) 2017-09-05 2017-09-05 一种基于深度学习的遥感图像语义分割方法

Publications (2)

Publication Number Publication Date
CN107610141A CN107610141A (zh) 2018-01-19
CN107610141B true CN107610141B (zh) 2020-04-03

Family

ID=61055990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710788814.XA Active CN107610141B (zh) 2017-09-05 2017-09-05 一种基于深度学习的遥感图像语义分割方法

Country Status (1)

Country Link
CN (1) CN107610141B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12013917B2 (en) 2019-05-17 2024-06-18 Fj Dynamics Technology Co., Ltd Method for constructing a convolution neural network based on farmland images, electronic device using the same

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108230243B (zh) * 2018-02-09 2021-04-27 福州大学 一种基于显著性区域检测模型背景虚化方法
CN110232394B (zh) * 2018-03-06 2021-08-10 华南理工大学 一种多尺度图像语义分割方法
CN108564587A (zh) * 2018-03-07 2018-09-21 浙江大学 一种基于全卷积神经网络的大范围遥感影像语义分割方法
CN110298211B (zh) * 2018-03-21 2021-03-23 北京大学 一种基于深度学习和高分辨率遥感影像的河网提取方法
CN108830854A (zh) * 2018-03-22 2018-11-16 广州多维魔镜高新科技有限公司 一种图像分割方法及存储介质
CN108491889A (zh) * 2018-04-02 2018-09-04 深圳市易成自动驾驶技术有限公司 图像语义分割方法、装置及计算机可读存储介质
CN108664974A (zh) * 2018-04-03 2018-10-16 华南理工大学 一种基于rgbd图像与全残差网络的语义分割方法
CN108895981B (zh) * 2018-05-29 2020-10-09 南京怀萃智能科技有限公司 一种三维测量方法、装置、服务器和存储介质
CN108764342B (zh) * 2018-05-29 2021-05-14 广东技术师范学院 一种对于眼底图中视盘和视杯的语义分割方法
CN109063569B (zh) * 2018-07-04 2021-08-24 北京航空航天大学 一种基于遥感影像的语义级变化检测方法
CN109241872B (zh) * 2018-08-20 2022-03-18 电子科技大学 基于多级网络的图像语义快速分割方法
CN110569698B (zh) * 2018-08-31 2023-05-12 创新先进技术有限公司 一种图像目标检测及语义分割方法和装置
CN109389051A (zh) * 2018-09-20 2019-02-26 华南农业大学 一种基于卷积神经网络的建筑物遥感图像识别方法
CN111105449B (zh) * 2018-10-09 2023-05-02 财团法人工业技术研究院 深度估计装置、自动驾驶车辆及其深度估计方法
CN109858487B (zh) * 2018-10-29 2023-01-17 温州大学 基于分水岭算法和图像类别标签的弱监督语义分割方法
CN111145178A (zh) * 2018-11-06 2020-05-12 电子科技大学 高分辨率遥感图像多尺度分割方法
CN109934163B (zh) * 2018-12-27 2022-07-08 北京航空航天大学 一种基于场景先验和特征再融合的航空图像车辆检测方法
CN109801293B (zh) * 2019-01-08 2023-07-14 平安科技(深圳)有限公司 遥感影像分割方法、装置及存储介质、服务器
CN109872331A (zh) * 2019-01-30 2019-06-11 天津大学 一种基于深度学习的遥感图像数据自动识别分类方法
CN109800736B (zh) * 2019-02-01 2023-07-21 东北大学 一种基于遥感影像和深度学习的道路提取方法
CN109993766A (zh) * 2019-03-18 2019-07-09 南京理工大学 基于深度学习的砂石图像粒径检测方法
CN110084817B (zh) * 2019-03-21 2021-06-25 西安电子科技大学 基于深度学习的数字高程模型生产方法
CN110110682B (zh) * 2019-05-14 2023-04-18 西安电子科技大学 遥感图像的语义立体重构方法
CN110969182A (zh) * 2019-05-17 2020-04-07 丰疆智能科技股份有限公司 基于农田图像的卷积神经网络构建方法及其系统
CN110197505B (zh) * 2019-05-30 2022-12-02 西安电子科技大学 基于深度网络及语义信息的遥感图像双目立体匹配方法
CN110211111A (zh) * 2019-05-31 2019-09-06 上海联影医疗科技有限公司 一种血管提取的方法、装置、图像处理设备及存储介质
CN110321877B (zh) * 2019-06-04 2022-09-16 中北大学 一种三目后视镜和三目视觉安全驾驶方法和系统
CN110197182A (zh) * 2019-06-11 2019-09-03 中国电子科技集团公司第五十四研究所 基于上下文信息和注意力机制的遥感影像语义分割方法
CN110276402B (zh) * 2019-06-25 2021-06-11 北京工业大学 一种基于深度学习语义边界增强的盐体识别方法
CN110796673B (zh) * 2019-10-31 2023-02-24 Oppo广东移动通信有限公司 图像分割方法及相关产品
CN111210451B (zh) * 2019-11-29 2023-05-16 苏州优纳医疗器械有限公司 一种在全数字切片图像中提取幽门螺杆菌形态的方法
CN113095109A (zh) * 2019-12-23 2021-07-09 中移(成都)信息通信科技有限公司 一种农作物叶面识别模型训练方法、识别方法及装置
CN111160442B (zh) * 2019-12-24 2024-02-27 上海联影智能医疗科技有限公司 图像分类方法、计算机设备和存储介质
CN111368843B (zh) * 2020-03-06 2022-06-10 电子科技大学 一种基于语义分割的冰上湖提取的方法
CN111666949B (zh) * 2020-06-16 2023-06-20 南京大学 一种基于迭代分割的图像语义分割方法
CN113919491A (zh) * 2020-07-10 2022-01-11 北京君正集成电路股份有限公司 一种借助heatmap协助训练分类网络的方法
CN112288755A (zh) * 2020-11-26 2021-01-29 深源恒际科技有限公司 基于视频的车辆外观部件深度学习分割方法和系统
CN113177956B (zh) * 2021-05-11 2024-06-14 南通大学 一种面向无人机遥感影像的语义分割方法
CN113409322B (zh) * 2021-06-18 2022-03-08 中国石油大学(华东) 面向遥感影像语义分割的深度学习训练样本增强方法
CN115797633B (zh) * 2022-12-02 2023-06-27 中国科学院空间应用工程与技术中心 一种遥感图像分割方法、系统、存储介质和电子设备
CN116486273B (zh) * 2023-06-20 2023-09-01 南昌工程学院 一种小样本遥感图像水体信息提取方法
CN116758401B (zh) * 2023-08-16 2023-10-27 阳光学院 基于深度学习和遥感图像的城市内河水质评估方法
CN117612026B (zh) * 2023-11-24 2024-06-07 北京邮电大学 一种基于遥感影像道路提取的路径预测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893945A (zh) * 2016-03-29 2016-08-24 中国科学院自动化研究所 一种遥感图像目标识别方法
CN106372648A (zh) * 2016-10-20 2017-02-01 中国海洋大学 基于多特征融合卷积神经网络的浮游生物图像分类方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893945A (zh) * 2016-03-29 2016-08-24 中国科学院自动化研究所 一种遥感图像目标识别方法
CN106372648A (zh) * 2016-10-20 2017-02-01 中国海洋大学 基于多特征融合卷积神经网络的浮游生物图像分类方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于改进全卷积神经网络的航拍图像语义分类方法;易盟 等;《计算机工程》;20170508;第1-5页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12013917B2 (en) 2019-05-17 2024-06-18 Fj Dynamics Technology Co., Ltd Method for constructing a convolution neural network based on farmland images, electronic device using the same

Also Published As

Publication number Publication date
CN107610141A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
CN107610141B (zh) 一种基于深度学习的遥感图像语义分割方法
CN109446992B (zh) 基于深度学习的遥感影像建筑物提取方法及系统、存储介质、电子设备
CN107564025B (zh) 一种基于深度神经网络的电力设备红外图像语义分割方法
CN106778835B (zh) 融合场景信息和深度特征的遥感图像机场目标识别方法
CN106599773B (zh) 用于智能驾驶的深度学习图像识别方法、系统及终端设备
JP6710135B2 (ja) 細胞画像の自動分析方法及びシステム
CN108537239B (zh) 一种图像显著性目标检测的方法
CN109344825A (zh) 一种基于卷积神经网络的车牌识别方法
CN111898523A (zh) 一种基于迁移学习的遥感图像特种车辆目标检测方法
CN105989334B (zh) 基于单目视觉的道路检测方法
CN104598885B (zh) 街景图像中的文字标牌检测与定位方法
CN111967313B (zh) 一种深度学习目标检测算法辅助的无人机图像标注方法
CN112488046B (zh) 一种基于无人机高分辨率影像的车道线提取方法
CN108305260B (zh) 一种图像中角点的检测方法、装置及设备
CN109409384A (zh) 基于细粒度图像的图像识别方法、装置、介质及设备
CN106408030A (zh) 基于中层语义属性和卷积神经网络的sar图像分类方法
CN110503613A (zh) 基于级联空洞卷积神经网络的面向单幅图像去雨方法
CN111105389B (zh) 融合Gabor滤波器与卷积神经网络的路面裂缝的检测方法
CN113240623B (zh) 一种路面病害检测方法及装置
CN113392930B (zh) 基于多层次分治网络的交通标志目标检测方法
CN113723377A (zh) 一种基于ld-ssd网络的交通标志检测方法
CN111027538A (zh) 一种基于实例分割模型的集装箱检测方法
CN111126127A (zh) 一种多级空间上下文特征指导的高分辨率遥感影像分类方法
CN110852327A (zh) 图像处理方法、装置、电子设备及存储介质
CN112084890A (zh) 基于gmm和cqfl的多尺度识别交通信号标志的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant