CN107608166A - Light supply apparatus and projection type image display apparatus - Google Patents
Light supply apparatus and projection type image display apparatus Download PDFInfo
- Publication number
- CN107608166A CN107608166A CN201710519311.2A CN201710519311A CN107608166A CN 107608166 A CN107608166 A CN 107608166A CN 201710519311 A CN201710519311 A CN 201710519311A CN 107608166 A CN107608166 A CN 107608166A
- Authority
- CN
- China
- Prior art keywords
- light
- plate
- light source
- source device
- dichroic mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2073—Polarisers in the lamp house
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2066—Reflectors in illumination beam
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Projection Apparatus (AREA)
- Liquid Crystal (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Transforming Electric Information Into Light Information (AREA)
Abstract
提供一种光源装置以及投射型显示装置,光源装置利用从固体光源射出的光的偏振特性并使用了耐久性优异的低成本的相位差板,投射型显示装置使用了该光源装置。在光源装置(40)中,从半导体激光器(21)射出的P偏振的蓝色光透过聚光透镜(23)、透镜(26)、透镜(27)、第1扩散板(28)而入射到分色镜(29)。分色镜(29)使P偏振的蓝色光的一部分透过,并反射剩余的光。透过了分色镜(29)的蓝色光由聚光透镜(36)聚光而成为会聚光,并透过四分之一波片(38)而入射到反射板(39)。由反射板反射而成为发散光的蓝色光透过四分之一波片(38)并入射到聚光透镜(36)而变换为平行光。
Provided are a light source device using polarization properties of light emitted from a solid-state light source and using a low-cost phase difference plate with excellent durability, and a projection display device using the light source device. In the light source device (40), the P-polarized blue light emitted from the semiconductor laser (21) passes through the condenser lens (23), the lens (26), the lens (27), and the first diffuser plate (28) and enters the dichroic mirror (29). The dichroic mirror (29) transmits part of the P-polarized blue light and reflects the remaining light. The blue light transmitted through the dichroic mirror (29) is condensed by the condensing lens (36) to become converging light, and passes through the quarter-wave plate (38) to enter the reflection plate (39). The blue light reflected by the reflector and turned into divergent light passes through the quarter-wave plate (38) and enters the condenser lens (36) to be converted into parallel light.
Description
技术领域technical field
本发明涉及用照明光对在小型的灯泡上形成的图像进行照射,通过投射透镜在屏幕上进行放大投射的投射型显示装置。The present invention relates to a projection display device that irradiates an image formed on a small light bulb with illumination light, and projects it on a screen through a projection lens in an enlarged manner.
背景技术Background technique
作为使用了反射镜偏转型的数字微镜器件(DMD)、液晶面板的灯泡的投射型显示装置的光源,公开了很多使用了长寿命的半导体激光器、发光二极管的固体光源的光源装置。其中,在专利文献1中公开了一种光源装置,该光源装置小型,并且利用从固体光源射出的光的偏振特性,将来自固体光源的光高效地进行聚光。As light sources for projection display devices using mirror deflection type digital micromirror devices (DMDs) and light bulbs for liquid crystal panels, many light source devices using solid-state light sources such as long-life semiconductor lasers and light emitting diodes are disclosed. Among them, Patent Document 1 discloses a light source device that is compact and efficiently condenses light from a solid-state light source by utilizing the polarization characteristics of light emitted from the solid-state light source.
此外,在专利文献2中公开了一种小型且高效的光源装置,该光源装置使用了二分之一波片,二分之一波片变换来自固定光源的光的偏振方位,将入射到分色镜的P偏振分量和S偏振分量控制为一定比率。In addition, Patent Document 2 discloses a compact and highly efficient light source device using a half-wave plate that converts the polarization orientation of light from a fixed light source and converts the light incident to the The P polarization component and the S polarization component of the color mirror are controlled to a certain ratio.
在先技术文献prior art literature
专利文献patent documents
专利文献1:JP特开2012-137744号公报Patent Document 1: JP-A-2012-137744
专利文献2:JP特开2014-209184号公报Patent Document 2: JP Unexamined Publication No. 2014-209184
发明内容Contents of the invention
本发明提供一种利用从固体光源射出的光的偏振特性并使用了耐久性优异且低成本的相位差板的光源装置、和使用了该光源装置的投射型显示装置。The present invention provides a light source device utilizing the polarization characteristics of light emitted from a solid-state light source and using a highly durable and low-cost phase difference plate, and a projection display device using the light source device.
本发明的第1光源装置具备:固体光源;对来自固体光源的光进行聚光的聚光元件;将线偏振光变换为圆偏振光的相位差板;和反射板,相位差板在聚光元件与反射板之间,配置在会聚光或发散光入射的位置。The first light source device of the present invention is provided with: a solid light source; a condensing element for condensing light from the solid light source; a retardation plate for converting linearly polarized light into circularly polarized light; Between the element and the reflector, it is arranged at a position where convergent light or divergent light is incident.
此外,本发明的第2光源装置具备:固体光源;变换来自固体光源的光的偏振方位,将P偏振和S偏振分量的光控制为一定比率的相位差板;和对来自相位差板的光进行偏振分离的分色镜,相位差板在固体光源与分色镜之间,配置在会聚光或发散光入射的位置。In addition, the 2nd light source device of the present invention has: solid light source; Transform the polarization orientation of the light from solid light source, the phase difference plate that the light of P polarization and S polarization component is controlled to a certain ratio; The dichroic mirror for polarization separation, the retardation plate is arranged between the solid light source and the dichroic mirror, and is arranged at the incident position of converging light or divergent light.
发明效果Invention effect
根据本发明,由于通过将相位差板配置构成于光聚光的位置,从而能够构成小型且廉价的光源装置,因此能够实现长寿命、明亮且低成本的投射型显示装置。According to the present invention, since a small and inexpensive light source device can be configured by arranging and configuring the retardation plate at a light-condensing position, a long-life, bright, and low-cost projection display device can be realized.
附图说明Description of drawings
图1是本发明的实施方式1中的光源装置的结构图。FIG. 1 is a configuration diagram of a light source device in Embodiment 1 of the present invention.
图2是表示实施方式1中的分色镜的分光特性的图。FIG. 2 is a graph showing the spectral characteristics of the dichroic mirror in Embodiment 1. FIG.
图3是表示相位差板的偏振光透射率的角度依存特性的图。FIG. 3 is a graph showing the angle-dependent characteristics of the polarized light transmittance of the retardation film.
图4是本发明的实施方式2中的光源装置的结构图。4 is a configuration diagram of a light source device in Embodiment 2 of the present invention.
图5是表示实施方式2中的分色镜的分光特性的图。FIG. 5 is a graph showing spectral characteristics of a dichroic mirror in Embodiment 2. FIG.
图6是本发明的实施方式3中的投射型显示装置的结构图。6 is a configuration diagram of a projection display device in Embodiment 3 of the present invention.
图7是本发明的实施方式4中的投射型显示装置的结构图。7 is a configuration diagram of a projection display device in Embodiment 4 of the present invention.
符号说明Symbol Description
21、51 半导体激光器21, 51 semiconductor laser
22、52 散热板22, 52 heat sink
23、53 聚光透镜23, 53 condenser lens
24、54 散热片24, 54 heat sink
25、55 光束25, 55 beams
26、27 透镜26, 27 lens
28、60 第1扩散板28, 60 1st diffuser plate
29、61 分色镜29, 61 dichroic mirror
30、31、36、56、59、62、63、68 聚光透镜30, 31, 36, 56, 59, 62, 63, 68 condenser lens
32、64 荧光体层32, 64 Phosphor layer
33、65 铝基板33, 65 aluminum substrate
34、66 电动机34, 66 electric motor
35、67 荧光板35, 67 fluorescent plate
37、69 第2扩散板37, 69 Second diffusion plate
38 四分之一波片38 quarter wave plate
39、71 反射板39, 71 reflector
40、72 光源装置40, 72 light source device
57 反射镜57 reflector
58 二分之一波片58 half wave plate
70 四分之一波片70 quarter wave plate
80、90 投射型显示装置80, 90 Projection display device
100 聚光透镜100 condenser lens
101 棒101 sticks
102、209、210 中继透镜102, 209, 210 relay lens
103、206、207、208 反射镜103, 206, 207, 208 Reflectors
104、211、212、213 场透镜104, 211, 212, 213 field lenses
105 全反射棱镜105 total reflection prism
106 空气层106 air layer
107 彩色棱镜107 colored prisms
108、204 蓝反射分色镜108, 204 blue reflective dichroic mirror
109 红反射分色镜109 red reflecting dichroic mirror
110、111、112 DMD110, 111, 112 DMDs
113、224 投射透镜113, 224 projection lens
200 第1透镜阵列板200 1st lens array plate
201 第2透镜阵列板201 2nd lens array plate
202 偏振变换元件202 Polarization conversion element
203 重叠用透镜203 Overlapping lens
205 绿反射分色镜205 green reflective dichroic mirror
214、215、216 入射侧偏振光板214, 215, 216 Incident side polarizer
217、218、219 液晶面板217, 218, 219 LCD panel
220、221、222 射出侧偏振光板220, 221, 222 Exit side polarizing plate
223 色合成棱镜223 color composite prism
具体实施方式Detailed ways
以下,适当参照附图,对实施方式详细进行说明。但是,存在省略过于详细的说明的情况。例如,存在省略对于已经众所周知的事项的详细说明、实质上相同的结构的重复说明的情况。这是为了避免下面的说明变得过于冗长,使本领域技术人员容易理解。Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, an overly detailed description may be omitted. For example, detailed descriptions of already well-known items and repeated descriptions of substantially the same configurations may be omitted. This is to avoid the following description from being too lengthy and to make it easy for those skilled in the art to understand.
另外,附图以及下面的说明是为了本领域技术人员充分理解本发明而提供的,旨不在通过这些内容对权利要求书所记载的主题进行限定。In addition, the drawings and the following descriptions are provided for those skilled in the art to fully understand the present invention, and they are not intended to limit the subject matter described in the claims.
(实施方式1)(Embodiment 1)
图1是本发明的实施方式1所涉及的光源装置的结构图。实施方式1的光源装置40包括:作为固体光源的半导体激光器21、散热板22、聚光透镜23、散热片24、透镜26、透镜27、第1扩散板28、分色镜29、作为第1聚光元件的聚光透镜30、31、由形成了反射膜以及荧光体层32的铝基板33和电动机34构成的荧光板35、作为第2聚光元件的聚光透镜36、第2扩散板37、作为相位差板的四分之一波片38、以及反射板39。在图1中示出了从固体光源射出的各光束25的样态和向分色镜29入射以及射出的光的偏振方向。FIG. 1 is a configuration diagram of a light source device according to Embodiment 1 of the present invention. The light source device 40 of Embodiment 1 includes: a semiconductor laser 21 as a solid light source, a heat sink 22, a condenser lens 23, a heat sink 24, a lens 26, a lens 27, a first diffusion plate 28, a dichroic mirror 29, and a first Condensing lenses 30 and 31 of the converging element, a fluorescent plate 35 composed of an aluminum substrate 33 on which a reflective film and a phosphor layer 32 are formed, and a motor 34, a converging lens 36 as a second converging element, and a second diffuser plate 37. A quarter-wave plate 38 as a phase difference plate, and a reflection plate 39. FIG. 1 shows the state of each light beam 25 emitted from the solid-state light source and the polarization direction of the light entering and exiting the dichroic mirror 29 .
将呈方形配置了24个(6×4)的半导体激光器21和聚光透镜23以固定间隔二维地配置在散热板上。散热片24用于冷却半导体激光器21。半导体激光器21发出具有447nm~462nm的波长宽度的蓝色光,并射出线偏振光。将各半导体激光器配置为从半导体激光器21射出的偏振光相对于分色镜29的入射面成为P偏振光。Twenty-four (6×4) semiconductor lasers 21 and condenser lenses 23 arranged in a square shape are two-dimensionally arranged on the heat sink at constant intervals. The heat sink 24 is used to cool the semiconductor laser 21 . The semiconductor laser 21 emits blue light having a wavelength width of 447 nm to 462 nm, and emits linearly polarized light. Each semiconductor laser is arranged so that the polarized light emitted from the semiconductor laser 21 becomes P-polarized light on the incident plane of the dichroic mirror 29 .
从多个半导体激光器21射出的光通过对应的聚光透镜23,分别被聚光并变换为平行的光束25。光束25群通过凸面的透镜26和凹面的透镜27,进一步被小径化,入射到第1扩散板28。第1扩散板28是玻璃制的,由表面的微细的凹凸形状使光扩散。作为成为扩散光的最大强度的50%的半值角宽度的扩散角度小至大约3度,保持偏振特性。从第1扩散板28射出的光入射到分色镜29。The light emitted from the plurality of semiconductor lasers 21 passes through the corresponding condensing lenses 23 , and is respectively condensed and converted into parallel light beams 25 . The light beams 25 are further reduced in diameter by the convex lens 26 and the concave lens 27 , and enter the first diffuser plate 28 . The first diffuser plate 28 is made of glass, and diffuses light by the fine concavo-convex shape on the surface. The diffusion angle, which is the half-value angle width that becomes 50% of the maximum intensity of the diffused light, is as small as about 3 degrees, and the polarization characteristics are maintained. The light emitted from the first diffuser 28 enters the dichroic mirror 29 .
图2中示出分色镜的分光特性。分光特性示出了相对于波长的透射率。分色镜的分光特性是使波长447~462nm的半导体激光的P偏振以一定比率透过(平均18%)、反射(平均82%)并使S偏振以95%以上的高反射率反射的特性。进而,绿色光以及红色光的P偏振、S偏振均是以96%以上的高透射率透过的特性。The spectral characteristics of the dichroic mirror are shown in FIG. 2 . Spectral characteristics show transmittance with respect to wavelength. The spectroscopic characteristics of the dichroic mirror are to transmit (18% on average) and reflect (82% on average) the P polarization of the semiconductor laser with a wavelength of 447 to 462nm, and to reflect the S polarization at a high reflectance of 95% or more. . Furthermore, both P polarization and S polarization of green light and red light are transmitted with a high transmittance of 96% or more.
由分色镜29反射的82%的P偏振的蓝色光由聚光透镜30、31进行聚光,若将光强度相对于峰值强度而成为13.5%的直径定义为光点直径,则重叠为光点直径为1.5mm~2.5mm的点光,并入射到荧光板35。第1扩散板28使光扩散以使该点光的直径成为所希望的直径。82% of the P-polarized blue light reflected by the dichroic mirror 29 is condensed by the condenser lenses 30 and 31, and if the diameter at which the light intensity becomes 13.5% of the peak intensity is defined as the spot diameter, the superimposed light becomes The spot light with a spot diameter of 1.5 mm to 2.5 mm enters the fluorescent plate 35 . The first diffuser plate 28 diffuses the light so that the diameter of the spot light becomes a desired diameter.
荧光板35是具备形成了反射膜以及荧光体层32的铝基板33和处于中央部的电动机34的能够控制旋转的圆形基板。荧光板35的反射膜是反射可见光的金属膜或者电介质膜,形成在铝基板上。进而在反射膜上形成荧光体层32。在荧光体层32中形成了由蓝色光进行激励而发射包含绿色、红色分量的黄色光的Ce激活YAG类黄色荧光体。该荧光体的晶体母体的代表性的化学组织是Y3Al5O12。荧光体层32形成为圆环状。由点光激励的荧光体层32发射包含绿色、红色分量的光的黄色光。荧光板35是铝基板,并且通过使其旋转,从而能够抑制激励光所引起的荧光体层32的温度上升,能够稳定地维持荧光变换效率。The phosphor plate 35 is a controllable circular substrate including an aluminum substrate 33 on which a reflective film and a phosphor layer 32 are formed, and a motor 34 in the center. The reflective film of the phosphor plate 35 is a metal film or a dielectric film that reflects visible light, and is formed on an aluminum substrate. Further, the phosphor layer 32 is formed on the reflective film. A Ce-activated YAG-based yellow phosphor that is excited by blue light and emits yellow light including green and red components is formed in the phosphor layer 32 . A representative chemical structure of the crystal matrix of the phosphor is Y 3 Al 5 O 12 . Phosphor layer 32 is formed in an annular shape. Phosphor layer 32 excited by spot light emits yellow light including light of green and red components. The phosphor plate 35 is an aluminum substrate, and by rotating the phosphor plate 35 , the temperature rise of the phosphor layer 32 caused by the excitation light can be suppressed, and the phosphor conversion efficiency can be stably maintained.
入射到荧光体层32的光对绿色、红色分量的色光进行荧光发光,从荧光板35射出。此外,向反射膜侧发射的光由反射膜反射,从荧光板35射出。从荧光板35射出的绿色光以及红色光成为自然光(非偏振光),再次由聚光透镜30、31进行聚光,并变换为大致平行光后,透过分色镜29。The light incident on the phosphor layer 32 fluoresces green and red color lights and is emitted from the phosphor plate 35 . In addition, the light emitted toward the reflective film side is reflected by the reflective film and emitted from the fluorescent plate 35 . The green light and red light emitted from the fluorescent plate 35 become natural light (non-polarized light), which is again condensed by the condensing lenses 30 and 31 , converted into approximately parallel light, and transmitted through the dichroic mirror 29 .
另一方面,透过分色镜29的18%的P偏振的蓝色光入射到作为第2聚光元件的聚光透镜36,被聚光而成为会聚光。聚光透镜36的焦点距离设为聚光角度成为40度以下,在反射板39的附近形成聚光点。由聚光透镜36聚光的会聚光入射到第2扩散板37。第2扩散板37使入射的光进行扩散,使光强度分布均匀化,并且消除激光的散斑。第2扩散板37在薄板的玻璃表面由微细的凹凸形状形成了扩散面。第2扩散板37是如下的扩散板,即,在扩散面的1次的透射光具有大致4度的扩散角度,并维持偏振特性。透过了第2扩散板37的光入射到作为相位差板的四分之一波片38。四分之一波片38是在半导体激光器21的发光中心波长附近相位差成为1/4波长的相位差板。On the other hand, 18% of the P-polarized blue light transmitted through the dichroic mirror 29 enters the condensing lens 36 as the second condensing element, and is condensed to become converged light. The focal length of the condensing lens 36 is such that the condensing angle is 40 degrees or less, and a condensing point is formed in the vicinity of the reflection plate 39 . The condensed light condensed by the condensing lens 36 enters the second diffuser plate 37 . The second diffusion plate 37 diffuses the incident light, uniformizes the light intensity distribution, and eliminates speckle of the laser light. The second diffusion plate 37 has a diffusion surface formed of fine concavo-convex shapes on the glass surface of the thin plate. The second diffusion plate 37 is a diffusion plate in which the primary transmitted light on the diffusion surface has a diffusion angle of approximately 4 degrees and maintains polarization characteristics. The light transmitted through the second diffuser 37 enters a quarter-wave plate 38 as a phase difference plate. The quarter-wave plate 38 is a retardation plate with a phase difference of 1/4 wavelength around the emission center wavelength of the semiconductor laser 21 .
在将图1中的P偏振方向设为0度的情况下,四分之一波片38将光轴配置在45度。四分之一波片38是利用了基于电介质材料的斜向蒸镀的双折射的薄膜相位差板(参照JP特开2012-242449公报)。薄膜相位差板由无机材料构成,耐久性、可靠性与水晶等无机光学晶体同样优异。此外,薄膜波长板由于以与光的波长相比足够薄的膜厚层叠形成,因而成为在斜向蒸镀层整体具有一个光轴的相位差板。因此,相位差相对于入射角的变化与水晶等无机光学晶体的相位差板相比,非常小。When the P polarization direction in FIG. 1 is set to 0 degrees, the quarter wave plate 38 arranges the optical axis at 45 degrees. The quarter-wave plate 38 is a thin-film retardation plate utilizing birefringence by oblique vapor deposition of a dielectric material (see JP 2012-242449 A). Thin-film retardation plates are made of inorganic materials, and are as durable and reliable as inorganic optical crystals such as crystals. In addition, since the thin-film wavelength plate is laminated with a film thickness sufficiently thinner than the wavelength of light, it becomes a retardation plate having one optical axis in the entire obliquely deposited layer. Therefore, the change of the phase difference with respect to the incident angle is very small compared with a phase difference plate of an inorganic optical crystal such as crystal.
图3中示出薄膜相位差板(实线)和水晶相位差板(虚线)中的偏振光透射率的角度依赖性的一例。将使线偏振光入射到相位差板并变换为圆偏振光之后的一个线偏振光分量的透射率作为偏振光透射率,示出了相对于入射角的偏振光透射率。将入射角为0度的情况下的偏振光透射率设为1.0来进行了标准化。薄膜相位差板在入射角为±30度的范围下的偏振光透射率下降6%,相对于此,水晶相位差板在入射角为±5度的范围下的偏振光透射率下降12%。因为薄膜相位差板是入射角依赖性非常小的相位差板,所以即使配置在会聚光或发散光入射的位置,也能够将入射的线偏振光高效地变换为圆偏振光。此外,由于配置在会聚光或发散光入射的位置,因此与以往的配置在平行光入射的位的情况相比,四分之一波片38的尺寸能够小型化为1/2以下的尺寸,四分之一波片能够大幅降低成本。FIG. 3 shows an example of the angular dependence of the polarized light transmittance in a film retardation film (solid line) and a crystal retardation film (dashed line). The transmittance of one linearly polarized light component after the linearly polarized light is made incident on the retardation plate and converted into circularly polarized light is defined as the polarized light transmittance, and the polarized light transmittance with respect to the incident angle is shown. Normalization was performed by setting the polarized light transmittance when the incident angle was 0 degrees to 1.0. The polarized light transmittance of the film retardation film decreased by 6% in the range of the incident angle of ±30 degrees, while the polarized light transmittance of the crystal retardation plate decreased by 12% in the range of the incident angle of ±5 degrees. Since the film retardation film has a very small incidence angle dependence, it can efficiently convert incident linearly polarized light into circularly polarized light even if it is placed at a position where converging or diverging light is incident. In addition, since it is arranged at a position where converging light or diverging light is incident, the size of the quarter-wave plate 38 can be reduced to 1/2 or less in size compared with the conventional case where it is placed at a position where parallel light is incident. Quarter wave plates can significantly reduce costs.
透过四分之一波片38并变换为圆偏振光的光由形成了铝或电介质多层膜等的反射膜的反射板39使相位反转,作为逆向的圆偏振光成为发散光,透过四分之一波片38而变换为S偏振光。进而,由于在四分之一波片38与反射板39之间,不配置扰乱偏振光的构件,因此能够高效地从P偏振光变换为S偏振光。The light transmitted through the quarter-wave plate 38 and converted into circularly polarized light is reversed in phase by the reflector 39 formed with a reflective film such as aluminum or a dielectric multilayer film, and becomes divergent light as reversed circularly polarized light. After passing through a quarter-wave plate 38, it is converted into S polarized light. Furthermore, since no member disturbing the polarized light is arranged between the quarter-wave plate 38 and the reflecting plate 39, it is possible to efficiently convert the P-polarized light into the S-polarized light.
由四分之一波片38变换后的S偏振光再次由第2扩散板37进行扩散后,由聚光透镜36变换为平行光,并由分色镜29进行反射。The S-polarized light converted by the quarter-wave plate 38 is diffused again by the second diffuser 37 , converted into parallel light by the condenser lens 36 , and reflected by the dichroic mirror 29 .
这样,来自荧光板35的荧光光和高效地进行偏振变换后的蓝色光由分色镜29进行合成,作为白色光而射出。通过荧光发光的包含绿色、红色分量的黄色光和半导体激光器21的蓝色光,从而能够得到良好的白平衡的发光特性。该发光光谱特性即使通过投射型显示装置的光学系统分离为蓝、绿、红的3原色光,也能够得到所希望的色度坐标的单色光。In this way, the fluorescent light from the fluorescent plate 35 and the efficiently polarized blue light are synthesized by the dichroic mirror 29 and emitted as white light. A light emission characteristic with a good white balance can be obtained by fluorescently emitting yellow light including green and red components and blue light from the semiconductor laser 21 . Even if this emission spectrum characteristic is separated into three primary color lights of blue, green, and red by the optical system of the projection display device, monochromatic light with desired chromaticity coordinates can be obtained.
对于四分之一波片使用薄膜相位差板来进行了说明,但也可以使用利用了由与光的波长同等以下的微细周期构造产生的双折射的微细构造性相位差板。微细构造性相位差板由于与光的波长同等以下的微细构造,因而与图3所示的薄膜相位差板同样,偏振光透射率的入射角度依存特性小,能够配置在会聚光入射的位置。The quarter-wave plate has been described using a thin-film retardation plate, but a microstructural retardation plate utilizing birefringence caused by a fine periodic structure equal to or less than the wavelength of light may also be used. The fine-structure retardation plate has a fine structure equal to or less than the wavelength of light, and thus, like the thin-film retardation film shown in FIG. 3 , the incident angle dependence of the polarized light transmittance is small, and it can be arranged at a position where concentrated light is incident.
如上所述,本发明的光源装置由于通过分色镜将来自多个半导体激光器的光进行分离,将由分离出的一方的光进行激励发光的绿色光、红色光和由配置在会聚光入射的位置的小型的相位差板进行偏振变换后的另一方的光即蓝色光高效地聚光并合成而得到白色光,因此能够构成小型、高效且廉价的光源装置。As described above, the light source device of the present invention separates the light from a plurality of semiconductor lasers by the dichroic mirror, and the green light and the red light that are excited and emitted by the separated light are arranged at the position where the converging light is incident. The blue light, which is the other light after polarization conversion by a small retardation plate, is efficiently condensed and synthesized to obtain white light, so that a small, efficient, and inexpensive light source device can be constructed.
(实施方式2)(Embodiment 2)
图4是本发明的实施方式2所涉及的光源装置的结构图。4 is a configuration diagram of a light source device according to Embodiment 2 of the present invention.
实施方式2的光源装置72包括:半导体激光器51、散热板52、聚光透镜53、散热片54、聚光透镜56、59、反射镜57、作为第1相位差板的二分之一波片58、第1扩散板60、分色镜61、作为第1聚光元件的聚光透镜62、63、荧光板67、作为第2聚光元件的聚光透镜68、第2扩散板69、作为第2相位差板的四分之一波片70、以及反射板71。在图中示出了从固体光源射出的各光束55的样态和向分色镜61入射以及射出的光的偏振方向。荧光板67由形成了反射膜以及荧光体层64的铝基板65和电动机66构成。The light source device 72 of Embodiment 2 includes: a semiconductor laser 51, a heat sink 52, a condenser lens 53, a heat sink 54, a condenser lens 56, 59, a reflection mirror 57, and a half-wave plate as a first retardation plate. 58. The first diffuser plate 60, dichroic mirror 61, condensing lenses 62, 63 as the first condensing element, fluorescent plate 67, condensing lens 68 as the second condensing element, the second diffuser 69, as The quarter-wave plate 70 and the reflection plate 71 of the second retardation plate. The state of each light beam 55 emitted from the solid-state light source and the polarization direction of the light entering and exiting the dichroic mirror 61 are shown in the figure. The phosphor plate 67 is composed of an aluminum substrate 65 on which a reflective film and a phosphor layer 64 are formed, and a motor 66 .
与本发明的实施方式1的光源装置40相同的结构是半导体激光器51、散热板52、聚光透镜53、散热片54、第1扩散板60、聚光透镜62、63、荧光板67、聚光透镜68、第2扩散板69、作为第2相位差板的四分之一波片70、反射板71。The same structure as the light source device 40 of Embodiment 1 of the present invention is a semiconductor laser 51, a radiator plate 52, a condenser lens 53, a radiator fin 54, a first diffuser plate 60, condenser lenses 62, 63, a fluorescent plate 67, a condenser An optical lens 68 , a second diffusion plate 69 , a quarter-wave plate 70 as a second retardation plate, and a reflection plate 71 .
将呈方形配置了24个(6×4)的半导体激光器51和聚光透镜53以固定间隔二维地配置在散热板52上。散热片54用于冷却半导体激光器51。半导体激光器51发出具有447nm~462nm的波长宽度的蓝色光,并射出线偏振光。在图4中将各半导体激光器配置为从半导体激光器51射出的偏振光在不经由相位差板的状态下,相对于分色镜61的入射面成为P偏振光。从多个半导体激光器51射出的光通过对应的聚光透镜53,分别被聚光并变换为平行的光束55。光束55群由凸面的聚光透镜56进行聚光,并由反射镜57进行反射。反射后的会聚光进行聚光后,成为发散光并入射到作为第1相位差板的二分之一波片58。向二分之一波片58的光的入射角为40度以下。二分之一波片58是在半导体激光器51的发光中心波长附近相位差成为1/2波长的相位差板。二分之一波片58在将图4中的P偏振方向设为0度的情况下,将光轴配置为32.5度。二分之一波片58对旋转方向设置调整机构,使得能够调整其光轴的配置角度。Twenty-four (6×4) semiconductor lasers 51 and condenser lenses 53 arranged in a square shape are two-dimensionally arranged on the radiator plate 52 at constant intervals. The heat sink 54 is used to cool the semiconductor laser 51 . The semiconductor laser 51 emits blue light having a wavelength width of 447 nm to 462 nm, and emits linearly polarized light. In FIG. 4 , each semiconductor laser is arranged so that the polarized light emitted from the semiconductor laser 51 becomes P-polarized light on the incident surface of the dichroic mirror 61 without passing through the retardation plate. The light emitted from the plurality of semiconductor lasers 51 passes through the corresponding condensing lens 53 , and is respectively condensed and converted into parallel light beams 55 . The group of light beams 55 is condensed by a convex condensing lens 56 and reflected by a reflection mirror 57 . The reflected converging light is condensed, becomes divergent light, and enters the half-wave plate 58 as the first retardation plate. The incident angle of light to the half-wave plate 58 is 40 degrees or less. The half-wave plate 58 is a retardation plate with a phase difference of 1/2 wavelength in the vicinity of the emission center wavelength of the semiconductor laser 51 . In the half-wave plate 58 , when the P polarization direction in FIG. 4 is set to 0 degrees, the optical axis is arranged at 32.5 degrees. The half-wave plate 58 is provided with an adjustment mechanism for the rotation direction so that the arrangement angle of its optical axis can be adjusted.
来自半导体激光器51的P偏振光通过二分之一波片58从而偏振方位变换为65度,P偏振分量的光强度成为18%,S偏振分量的光强度成为82%。The P-polarized light from the semiconductor laser 51 passes through the half-wave plate 58 to convert the polarization azimuth to 65 degrees, the light intensity of the P-polarized component becomes 18%, and the light intensity of the S-polarized component becomes 82%.
二分之一波片58是利用了基于电介质材料的斜向蒸镀的双折射的薄膜相位差板。薄膜相位差板由无机材料构成,耐久性、可靠性与水晶等无机光学晶体同样优异。此外,薄膜波长板由于以与光的波长相比足够薄的膜厚层叠形成,因而相位差相对于光的入射角的变化与水晶等无机光学晶体的相位差板相比,非常小。因此,即使在配置在会聚或发散的光入射的位置的情况下,也能够高效地对来自半导体激光器51的P偏振方位进行旋转变换。此外,由于将二分之一波片58配置在会聚光入射的位置,因此与以往的配置在平行光入射的位置的情况相比,二分之一波片58的尺寸能够小型化为1/2以下,二分之一波片能够大幅降低成本。The half-wave plate 58 is a thin-film retardation plate utilizing birefringence by oblique vapor deposition of a dielectric material. Thin-film retardation plates are made of inorganic materials, and are as durable and reliable as inorganic optical crystals such as crystals. In addition, since thin-film wave plates are stacked with a film thickness sufficiently thinner than the wavelength of light, the change in phase difference with respect to the incident angle of light is very small compared to a phase plate of inorganic optical crystals such as crystal. Therefore, even when it is arranged at a position where converging or diverging light is incident, it is possible to efficiently perform rotational conversion of the P polarization azimuth from the semiconductor laser 51 . In addition, since the half-wave plate 58 is arranged at the position where the condensed light is incident, the size of the half-wave plate 58 can be reduced to 1/2 compared with the conventional arrangement at the position where the parallel light is incident. Below 2, the half-wave plate can greatly reduce the cost.
透过二分之一波片58的光由聚光透镜59变换为大致平行光,入射到第1扩散板60,被扩散并入射到分色镜61。The light transmitted through the half-wave plate 58 is converted into approximately parallel light by the condensing lens 59 , enters the first diffuser plate 60 , is diffused, and enters the dichroic mirror 61 .
图5中示出分色镜61的分光透射率特性。分色镜61具有如下特性:透射率为50%的波长在S偏振光时为465nm而在P偏振光时为442nm,并且使蓝色光透过、反射而对于包含绿色、红色分量的色光以96%以上使其透过。入射到分色镜61的光的S偏振分量被反射,P偏振分量透过。由于将二分之一波片58的光轴配置为32.5度,因此入射光的偏振方位成为65度,S偏振分量和P偏振分量的光强度分别成为82%、18%。The spectral transmittance characteristic of the dichroic mirror 61 is shown in FIG. 5 . The dichroic mirror 61 has the following characteristics: the wavelength at which the transmittance is 50% is 465 nm when S polarized light is 442 nm when P polarized light, and makes blue light transmit and reflect, and has a wavelength of 96 nm for color light containing green and red components. % above to make it through. The S-polarized component of light incident on the dichroic mirror 61 is reflected, and the P-polarized component is transmitted. Since the optical axis of the half-wave plate 58 is arranged at 32.5 degrees, the polarization azimuth of the incident light is 65 degrees, and the light intensities of the S-polarization component and the P-polarization component are 82% and 18%, respectively.
由分色镜61反射的S偏振的光由聚光透镜62、63进行聚光,重叠为光强度相对于峰值强度而成为13.5%的直径为1.5mm~2.5mm的点光,并入射到荧光板67。第1扩散板60使光扩散以使该点光的直径成为所希望的直径。荧光板67是具备形成了反射膜以及荧光体层64的铝基板65和处于中央部的电动机66的能够控制旋转的圆形基板。荧光板67的反射膜是反射可见光的金属膜或者电介质膜,形成在铝基板上。进而在反射膜上形成荧光体层64。在荧光体层64中形成了由蓝色光进行激励而发射包含绿色、红色分量的黄色光的Ce激活YAG类黄色荧光体。该荧光体的晶体母体的代表性的化学组织是Y3Al5O12。荧光体层64形成为圆环状。The S-polarized light reflected by the dichroic mirror 61 is condensed by the condensing lenses 62 and 63, superimposed into spot lights with a diameter of 1.5 mm to 2.5 mm whose light intensity is 13.5% of the peak intensity, and enters the fluorescent light. Plate 67. The first diffuser plate 60 diffuses the light so that the diameter of the spot light becomes a desired diameter. The phosphor plate 67 is a controllable circular substrate including an aluminum substrate 65 on which a reflective film and a phosphor layer 64 are formed, and a motor 66 at the center. The reflective film of the phosphor plate 67 is a metal film or a dielectric film that reflects visible light, and is formed on an aluminum substrate. Furthermore, the phosphor layer 64 is formed on the reflective film. A Ce-activated YAG-based yellow phosphor that is excited by blue light and emits yellow light including green and red components is formed in the phosphor layer 64 . A representative chemical structure of the crystal matrix of the phosphor is Y 3 Al 5 O 12 . Phosphor layer 64 is formed in an annular shape.
由点光激励的荧光体层64发射包含绿色、红色分量的光的黄色光。荧光板67是铝基板,并且通过使其旋转,从而能够抑制激励光所引起的荧光体层64的温度上升,能够稳定地维持荧光变换效率。入射到荧光体层64的光对绿色、红色分量的色光进行荧光发光,从荧光板67射出。此外,向反射膜侧发射的光由反射膜反射,从荧光板67射出。从荧光板67射出的绿色光以及红色光成为自然光,再次由聚光透镜62、63进行聚光,并变换为大致平行光后,透过分色镜61。Phosphor layer 64 excited by spot light emits yellow light including light of green and red components. The phosphor plate 67 is an aluminum substrate, and by rotating the phosphor plate 67 , the temperature rise of the phosphor layer 64 caused by the excitation light can be suppressed, and the phosphor conversion efficiency can be stably maintained. The light incident on the phosphor layer 64 fluoresces green and red color light components and is emitted from the phosphor plate 67 . In addition, the light emitted toward the reflective film side is reflected by the reflective film and emitted from the fluorescent plate 67 . The green light and red light emitted from the fluorescent plate 67 become natural light, which is again condensed by the condensing lenses 62 and 63 , converted into approximately parallel light, and then transmitted through the dichroic mirror 61 .
另一方面,透过分色镜61的18%的P偏振的蓝色光入射到作为第2聚光元件的聚光透镜68,进行聚光。聚光透镜68的焦点距离设为聚光角度成为40度以下,在反射板71的附近形成聚光点。由聚光透镜68聚光的会聚光入射到第2扩散板69。第2扩散板69使入射的光进行扩散,使光强度分布均匀化,并且消除激光的散斑。第2扩散板69在薄板的玻璃表面由微细的凹凸形状形成了扩散面。第2扩散板69是如下的扩散板,即,在扩散面的1次的透射光具有大致4度的扩散角度,并维持偏振特性。On the other hand, 18% of the P-polarized blue light transmitted through the dichroic mirror 61 enters the condenser lens 68 as the second condenser element, and is condensed. The focal length of the condensing lens 68 is such that the condensing angle is 40 degrees or less, and a condensing point is formed in the vicinity of the reflection plate 71 . The condensed light condensed by the condensing lens 68 enters the second diffuser plate 69 . The second diffuser plate 69 diffuses incident light, uniformizes the light intensity distribution, and eliminates speckle of laser light. The second diffusion plate 69 has a diffusion surface formed of fine concavo-convex shapes on the glass surface of the thin plate. The second diffuser 69 is a diffuser in which the primary transmitted light on the diffuser surface has a diffusion angle of approximately 4 degrees and maintains polarization characteristics.
透过了第2扩散板69的光入射到作为第2相位差板的四分之一波片70。四分之一波片70是在半导体激光器51的发光中心波长附近相位差成为1/4波长的相位差板。在将图4中的P偏振方向设为0度的情况下,四分之一波片70将光轴配置在45度。四分之一波片70是利用了基于电介质材料的斜向蒸镀的双折射的薄膜相位差板。薄膜相位差板由无机材料构成,耐久性、可靠性与水晶等无机光学晶体同样优异。The light transmitted through the second diffuser 69 enters the quarter-wave plate 70 as the second retardation plate. The quarter-wave plate 70 is a retardation plate with a phase difference of 1/4 wavelength near the emission center wavelength of the semiconductor laser 51 . When the P polarization direction in FIG. 4 is set to 0 degrees, the quarter wave plate 70 arranges the optical axis at 45 degrees. The quarter-wave plate 70 is a thin-film retardation plate utilizing birefringence by oblique vapor deposition of a dielectric material. Thin-film retardation plates are made of inorganic materials, and are as durable and reliable as inorganic optical crystals such as crystals.
透过四分之一波片70并变换为圆偏振光的光由形成了铝或电介质多层膜等的反射膜的反射板71使相位反转,作为逆向的圆偏振光成为发散光,透过四分之一波片70而变换为S偏振光。进而,由于在四分之一波片70与反射板71之间,不配置扰乱偏振光的构件,因此能够高效地从P偏振光变换为S偏振光。The light transmitted through the quarter-wave plate 70 and converted into circularly polarized light is phase-inverted by the reflector 71 formed with a reflective film such as aluminum or a dielectric multilayer film, and becomes divergent light as reversed circularly polarized light. After passing through the quarter-wave plate 70, it is converted into S polarized light. Furthermore, since no member disturbing the polarized light is arranged between the quarter-wave plate 70 and the reflecting plate 71, it is possible to efficiently convert the P-polarized light into the S-polarized light.
由四分之一波片70变换的S偏振光再次由第2扩散板69进行扩散后,由聚光透镜68变换为平行光,并由分色镜61进行反射。The S-polarized light converted by the quarter-wave plate 70 is diffused again by the second diffuser 69 , converted into parallel light by the condenser lens 68 , and reflected by the dichroic mirror 61 .
这样,来自荧光板67的荧光光和高效地进行偏振变换后的蓝色光由分色镜61进行合成,作为白色光而射出。通过荧光发光的包含绿色、红色分量的黄色光和半导体激光器51的蓝色光,从而能够得到良好的白平衡的发光特性。该发光光谱特性即使通过投射型显示装置的光学系统分离为蓝、绿、红的3原色光,也能够得到所希望的色度坐标的单色光。In this way, the fluorescent light from the fluorescent plate 67 and the efficiently polarized blue light are synthesized by the dichroic mirror 61 and emitted as white light. A light emission characteristic with a good white balance can be obtained by fluorescently emitting yellow light including green and red components and blue light from the semiconductor laser 51 . Even if this emission spectrum characteristic is separated into three primary color lights of blue, green, and red by the optical system of the projection display device, monochromatic light with desired chromaticity coordinates can be obtained.
在本发明的实施方式1中,蓝色光的分离比率由分色镜29的蓝色波段的透射率特性来决定,在分离比率上会稍有偏差。另一方面,在本发明的实施方式2中,由于使用能够调整光轴的配置角度的二分之一波片58来控制对分色镜61进行透过、反射的蓝色光的分离比率,因而分离比率的偏差非常小。因此,白平衡特性的偏差变得非常小。In Embodiment 1 of the present invention, the separation ratio of blue light is determined by the transmittance characteristics of the dichroic mirror 29 in the blue wavelength range, and the separation ratio varies slightly. On the other hand, in Embodiment 2 of the present invention, since the half-wave plate 58 capable of adjusting the arrangement angle of the optical axis is used to control the separation ratio of the blue light transmitted and reflected by the dichroic mirror 61, The deviation of the separation ratio is very small. Therefore, the deviation of the white balance characteristic becomes very small.
对于二分之一波片58使用薄膜相位差板来进行了说明,但也可以使用利用了由与光的波长同等以下的微细周期构造产生的双折射的微细构造性相位差板。The half-wave plate 58 has been described using a thin-film retardation plate, but a fine-structured retardation plate utilizing birefringence caused by a fine periodic structure equal to or less than the wavelength of light may also be used.
在实施方式2中,作为第1相位差板而使用了二分之一波片58,但也可以使用四分之一波片作为第1相位差板,将其配置为从半导体激光器51射出的偏振光成为S偏振光,并调整光轴的配置角度使得透过后的蓝色光的S偏振分量和P偏振分量成为规定比率。In Embodiment 2, the half-wave plate 58 is used as the first retardation plate, but it is also possible to use a quarter-wave plate as the first retardation plate and arrange it so as to emit light from the semiconductor laser 51. The polarized light becomes S-polarized light, and the arrangement angle of the optical axis is adjusted so that the S-polarized component and the P-polarized component of the transmitted blue light have a predetermined ratio.
此外,在实施方式2中,如图4所示,说明了将二分之一波片58配置在发散光入射的位置处的结构,但也可以将二分之一波片58配置在会聚光入射的位置。例如,也可以在由反射镜57反射后的会聚光进行聚光的近前处,配置二分之一波片58。In addition, in Embodiment 2, as shown in FIG. 4 , the structure in which the half-wave plate 58 is arranged at the position where the divergent light enters is described, but the half-wave plate 58 may also be arranged at the position where the convergent light enters. The location of the incident. For example, the half-wave plate 58 may be arranged in front of the converged light reflected by the mirror 57 to condense it.
如上所述,本发明的光源装置由于将来自多个半导体激光器的光通过配置在会聚光或发散光入射的位置的小型的二分之一波片和分色镜以一定比率进行偏振分离,并将由偏振分离出的一方的光进行激励发光的包含绿色、红色的黄色光和另一方的蓝色光高效地进行聚光、合成而得到白色光,因此能够构成白平衡的偏差较小、小型、高效且廉价的光源装置。As described above, the light source device of the present invention polarizes light from a plurality of semiconductor lasers at a constant ratio through a small half-wave plate and a dichroic mirror arranged at a position where converging light or diverging light is incident, and The yellow light including green and red and the other blue light, which are separated by polarization, are efficiently condensed and combined to obtain white light. Therefore, it is possible to form a small, high-efficiency And cheap light source device.
(实施方式3)(Embodiment 3)
图6是表示本发明的实施方式3所涉及的第1投射型显示装置的结构的图。作为图像形成元件,使用了为TN模式或者VA模式且在像素区域形成了薄膜晶体管的有源矩阵方式的透射型的液晶面板。6 is a diagram showing a configuration of a first projection display device according to Embodiment 3 of the present invention. As an image forming element, a transmissive liquid crystal panel of an active matrix type in which a thin film transistor is formed in a pixel region in a TN mode or a VA mode is used.
光源装置40包括:蓝色的半导体激光器21、散热板22、聚光透镜23、散热片24、透镜26、27、第1扩散板28、分色镜29、聚光透镜30、31、由形成了反射膜以及荧光体层32的铝基板33和电动机34构成的荧光板35、聚光透镜36、第2扩散板37、四分之一波片38、反射板39。由于以上是本发明的实施方式1的光源装置40,故而省略其重复说明。Light source device 40 comprises: blue semiconductor laser device 21, radiator plate 22, condenser lens 23, radiator fin 24, lens 26,27, the first diffusion plate 28, dichroic mirror 29, condenser lens 30,31, are formed by Fluorescent plate 35, condenser lens 36, second diffusion plate 37, quarter-wave plate 38, reflective plate 39 constituted by reflective film and aluminum substrate 33 of phosphor layer 32 and motor 34. Since the above is the light source device 40 according to Embodiment 1 of the present invention, repeated description thereof will be omitted.
实施方式3的投射型显示装置80还包括:第1透镜阵列板200、第2透镜阵列板201、偏振变换元件202、重叠用透镜203、蓝反射分色镜204、绿反射分色镜205、反射镜206、207、208、中继透镜209、210、场透镜211、212、213、入射侧偏振光板214、215、216、液晶面板217、218、219、射出侧偏振光板220、221、222、由红反射分色镜和蓝反射分色镜构成的色合成棱镜223、以及投射透镜224。The projection display device 80 according to Embodiment 3 further includes: a first lens array plate 200, a second lens array plate 201, a polarization conversion element 202, an overlapping lens 203, a blue reflective dichroic mirror 204, a green reflective dichroic mirror 205, Mirrors 206, 207, 208, relay lenses 209, 210, field lenses 211, 212, 213, incident side polarizing plates 214, 215, 216, liquid crystal panels 217, 218, 219, exiting side polarizing plates 220, 221, 222 , a color synthesis prism 223 composed of a red reflective dichroic mirror and a blue reflective dichroic mirror, and a projection lens 224 .
来自光源装置40的白色光入射到由多个透镜元件构成的第1透镜阵列板200。入射到第1透镜阵列板200的光束被分割为许多的光束。分割出的许多的光束收敛于由多个透镜构成的第2透镜阵列板201。第1透镜阵列板200的透镜元件是与液晶面板217、218、219相似形状的开口形状。第2透镜阵列板201的透镜元件决定了其焦点距离使得第1透镜阵列板200和液晶面板217、218、219成为大致共轭关系。The white light from the light source device 40 enters the first lens array plate 200 composed of a plurality of lens elements. The light beam incident on the first lens array plate 200 is divided into many light beams. The split beams converge on the second lens array plate 201 composed of a plurality of lenses. The lens elements of the first lens array plate 200 have opening shapes similar to those of the liquid crystal panels 217 , 218 , and 219 . The focal length of the lens elements of the second lens array plate 201 is determined such that the first lens array plate 200 and the liquid crystal panels 217 , 218 , and 219 are in a substantially conjugate relationship.
从第2透镜阵列板201射出的光入射到偏振变换元件202。偏振变换元件202由偏振分离棱镜和二分之一波片构成,将来自光源的自然光变换为一个偏振方向的光。荧光光由于是自然光,所以被偏振变换为一个偏振方向,而蓝色光以S偏振的光入射,不进行偏振变换而以S偏振光射出。The light emitted from the second lens array plate 201 enters the polarization conversion element 202 . The polarization conversion element 202 is composed of a polarization separation prism and a half-wave plate, and converts the natural light from the light source into light of one polarization direction. Since fluorescent light is natural light, it is polarized into one polarization direction, and blue light is incident as S-polarized light, and is emitted as S-polarized light without undergoing polarization conversion.
来自偏振变换元件202的光入射到重叠用透镜203。重叠用透镜203是用于将从第2透镜阵列板201的各透镜元件射出的光重叠照明在液晶面板217、218、219上的透镜。将第1透镜阵列板200以及第2透镜阵列板201、偏振变换元件202和重叠用透镜203设为照明光学系统。The light from the polarization conversion element 202 enters the superposition lens 203 . The superimposing lens 203 is a lens for superimposing and illuminating the liquid crystal panels 217 , 218 , and 219 with light emitted from each lens element of the second lens array plate 201 . The first lens array plate 200, the second lens array plate 201, the polarization conversion element 202, and the superposition lens 203 are used as an illumination optical system.
来自重叠用透镜203的光通过作为色分离元件的蓝反射分色镜204、绿反射分色镜205,而被分离为蓝色光、绿色光、红色光。绿色光透过场透镜211、入射侧偏振光板214,入射到液晶面板217。蓝色光由反射镜206反射后,透过场透镜212、入射侧偏振光板215而入射到液晶面板218。红色光通过中继透镜209、210、反射镜207、208发生透过折射以及反射,并透过场透镜213、入射侧偏振光板216,入射到液晶面板219。The light from the superposition lens 203 passes through the blue reflecting dichroic mirror 204 and the green reflecting dichroic mirror 205 as color separation elements, and is separated into blue light, green light, and red light. The green light passes through the field lens 211 and the incident-side polarizing plate 214 , and enters the liquid crystal panel 217 . The blue light is reflected by the reflecting mirror 206 , passes through the field lens 212 and the incident-side polarizing plate 215 , and enters the liquid crystal panel 218 . The red light passes through the relay lenses 209 and 210 and the reflection mirrors 207 and 208 to be refracted and reflected, passes through the field lens 213 and the incident-side polarizing plate 216 , and enters the liquid crystal panel 219 .
3枚液晶面板217、218、219通过与影像信号相应的对像素的施加电压的控制来使入射的光的偏振状态发生变化,并通过在各个液晶面板217、218、219的两侧分别配置为透射轴彼此正交的入射侧偏振光板214、215、216和射出侧偏振光板220、221、222的组合来调制光,形成绿、蓝、红的图像。透过射出侧偏振光板220、221、222的各色光通过色合成棱镜223,红、蓝的各色光分别由红反射分色镜、蓝反射分色镜反射,合成为绿色光,入射到投射透镜224。入射到投射透镜224的光放大透射到屏幕(未图示)上。The three liquid crystal panels 217, 218, and 219 change the polarization state of incident light by controlling the voltage applied to the pixels according to the video signal, and are arranged on both sides of each liquid crystal panel 217, 218, and 219 as Combinations of incident-side polarizers 214, 215, and 216 and exit-side polarizers 220, 221, and 222 whose transmission axes are perpendicular to each other modulate light to form green, blue, and red images. The light of each color passing through the polarizing plates 220, 221, and 222 on the exit side passes through the color synthesis prism 223, and the light of each color of red and blue is respectively reflected by the red reflective dichroic mirror and the blue reflective dichroic mirror, and synthesized into green light, which is incident on the projection lens 224. The light incident on the projection lens 224 is enlarged and transmitted to a screen (not shown).
光源装置由多个固体光源小型地构成,并高效地射出良好的白平衡的白色光,因此能够实现长寿命且高亮度的投射型显示装置。此外,由于在图像形成元件使用了利用偏振光而并非时分系统的3枚液晶面板,因此能够得到无色彩断裂而色再现良好、明亮且高精细的投射图像。此外,由于与使用了3个DMD元件的情况相比,不需要全反射棱镜,色合成用的棱镜成为45度入射的小型棱镜,因此投射型显示装置能够构成为小型。The light source device is composed of a plurality of solid light sources in a small size, and efficiently emits white light with a good white balance, so that a long-life and high-brightness projection display device can be realized. In addition, since three liquid crystal panels using polarized light instead of a time-division system are used for the image forming element, a bright and high-definition projected image can be obtained with good color reproduction without color break. In addition, since the total reflection prism is unnecessary compared with the case where three DMD elements are used, the prism for color synthesis is a small prism with 45-degree incidence, so the projection display device can be configured in a smaller size.
如上所述,本发明的第1投射型显示装置使用一种光源装置,该光源装置能够通过作为半导体激光器的固体光源和分色镜,将来自半导体激光的P偏振的光按一定的强度比率进行分离,并将由分离出的一方的光进行激励发光的包含绿色以及红色分量的黄色光和通过小型的四分之一波片对分离出的另一方的光高效地进行偏振变换后的蓝色光进行合成而得到白色光。因此,能够构成小型且廉价的投射型显示装置。作为光源装置而使用了图1所示的光源装置40,但也可以使用图4所示的光源装置72。在该情况下,光源装置射出的白色光的白平衡的偏差非常小,能够构成廉价的光源装置以及投射型显示装置。As described above, the first projection display device of the present invention uses a light source device that can convert P-polarized light from a semiconductor laser at a constant intensity ratio through a solid-state light source as a semiconductor laser and a dichroic mirror. Separation, the yellow light containing green and red components that is excited and emitted by one of the separated lights, and the blue light that is efficiently polarized by a small quarter-wave plate for the other separated light synthesized to obtain white light. Therefore, a small and inexpensive projection display device can be configured. As the light source device, the light source device 40 shown in FIG. 1 was used, but the light source device 72 shown in FIG. 4 may also be used. In this case, the variation in white balance of white light emitted from the light source device is very small, and an inexpensive light source device and projection display device can be configured.
作为图像形成元件而使用了透射型的液晶面板,但也可以使用反射型的液晶面板来构成。通过使用反射型的液晶面板,能够构成更小型且高精细的投射型显示装置。A transmissive liquid crystal panel is used as an image forming element, but it may also be configured using a reflective liquid crystal panel. By using a reflective liquid crystal panel, it is possible to configure a smaller and higher-definition projection display device.
(实施方式4)(Embodiment 4)
图7是本发明的实施方式4所涉及的第2投射型显示装置。第2投射型显示装置90使用了3个DMD作为图像形成元件。FIG. 7 is a second projection display device according to Embodiment 4 of the present invention. The second projection display device 90 uses three DMDs as image forming elements.
光源装置40包括:蓝色的半导体激光器21、散热板22、聚光透镜23、散热片24、透镜26、27、第1扩散板28、分色镜29、聚光透镜30、31、由形成了反射膜以及荧光体层32的铝基板33和电动机34构成的荧光板35、聚光透镜36、第2扩散板37、四分之一波片38、以及反射板39。以上是本发明的实施方式1的光源装置40。Light source device 40 comprises: blue semiconductor laser device 21, radiator plate 22, condenser lens 23, radiator fin 24, lens 26,27, the first diffusion plate 28, dichroic mirror 29, condenser lens 30,31, are formed by Fluorescent plate 35, condenser lens 36, second diffuser 37, quarter-wave plate 38, and reflective plate 39 constituted by reflective film and phosphor layer 32 of aluminum substrate 33 and motor 34. The above is the light source device 40 according to Embodiment 1 of the present invention.
从光源装置40射出的白色光入射到聚光透镜100,聚光至棒(rod)101。向棒101的入射光通过在棒内部进行多次反射,使光强度分布均匀化并射出。来自棒101的射出光由中继透镜102进行聚光,并由反射镜103反射后,透过场透镜104,入射到全反射棱镜105。在此,聚光透镜100、棒101、中继透镜102、反射镜103以及场透镜104是照明光学系统的一例。The white light emitted from the light source device 40 enters the condensing lens 100 and is condensed on a rod 101 . The incident light to the rod 101 is reflected multiple times inside the rod, so that the light intensity distribution is made uniform and emitted. The light emitted from the rod 101 is condensed by the relay lens 102 , reflected by the reflection mirror 103 , passes through the field lens 104 , and enters the total reflection prism 105 . Here, the condenser lens 100, the rod 101, the relay lens 102, the reflection mirror 103, and the field lens 104 are an example of an illumination optical system.
全反射棱镜105由2个棱镜构成,在彼此棱镜的接近面形成了薄空气层106。空气层106对以临界角以上的角度入射的光进行全反射。来自场透镜104的光被全反射棱镜105的全反射面反射,入射到彩色棱镜107。The total reflection prism 105 is composed of two prisms, and a thin air layer 106 is formed on surfaces close to each other. The air layer 106 totally reflects light incident at an angle equal to or greater than the critical angle. The light from the field lens 104 is reflected by the total reflection surface of the total reflection prism 105 and enters the color prism 107 .
彩色棱镜107由3个棱镜构成,在各个棱镜的接近面形成了蓝反射分色镜108和红反射分色镜109。通过彩色棱镜107的蓝反射分色镜108和红反射分色镜109,从而分离为蓝色光、红色光、绿色光,并分别入射到DMD110、111、112。DMD110、111、112根据影像信号使微镜偏转,反射为射入到投射透镜113的光和向投射透镜113的有效外行进的光。由DMD110、111、112反射后的光再次透过彩色棱镜107。在透过彩色棱镜107的过程中,分离的蓝、红、绿的各色光被合成,并入射到全反射棱镜105。The color prism 107 is composed of three prisms, and a blue reflective dichroic mirror 108 and a red reflective dichroic mirror 109 are formed on adjacent surfaces of the respective prisms. Passing through the blue reflection dichroic mirror 108 and the red reflection dichroic mirror 109 of the color prism 107, it is separated into blue light, red light, and green light, and enters the DMDs 110, 111, and 112, respectively. The DMDs 110 , 111 , and 112 deflect the micromirrors according to video signals, and reflect light entering the projection lens 113 and light traveling outside the effective area of the projection lens 113 . The light reflected by DMD110, 111, 112 passes through color prism 107 again. In the process of passing through the color prism 107 , the separated blue, red, and green colored lights are synthesized and enter the total reflection prism 105 .
入射到全反射棱镜105的光由于以临界角以下入射到空气层106,因此透过而入射到投射透镜113。这样,由DMD110、111、112形成的图像光被放大透射到屏幕(未图示)上。The light incident on the total reflection prism 105 enters the air layer 106 at a critical angle or less, passes through and enters the projection lens 113 . In this way, image light formed by DMDs 110, 111, and 112 is enlarged and transmitted to a screen (not shown).
光源装置由多个固体光源构成,并高效地射出良好的白平衡的白色光,因此能够实现长寿命且高亮度的投射型显示装置。此外,由于在图像形成元件使用了DMD,因此与使用了液晶的图像形成元件相比,能够构成耐光性、耐热性高的投射型显示装置。进而,由于使用了3个DMD,因此能够得到色再现良好、明亮且高精细的投射图像。The light source device is composed of a plurality of solid-state light sources and efficiently emits white light with a good white balance, so that a long-life and high-brightness projection display device can be realized. In addition, since the DMD is used for the image forming element, it is possible to constitute a projection display device having higher light resistance and heat resistance than an image forming element using liquid crystal. Furthermore, since three DMDs are used, it is possible to obtain a bright and high-definition projected image with excellent color reproduction.
如上所述,本发明的第2投射型显示装置使用一种光源装置,该光源装置能够通过作为半导体激光器的固体光源和分色镜,将来自半导体激光的P偏振的光以一定的强度比率进行分离,并将由分离出的一方的光进行激励发光的包含绿色以及红色分量的黄色光和通过小型的四分之一波片对分离出的另一方的光高效地进行偏振变换后的蓝色光进行合成而得到白色光。因此,能够构成小型且廉价的投射型显示装置。作为光源装置而使用了图1所示的光源装置40,但也可以使用图4所示的光源装置72。在该情况下,光源装置射出的白色光的白平衡的偏差非常小,能够构成廉价的光源装置以及投射型显示装置。As described above, the second projection display device of the present invention uses a light source device capable of converting P-polarized light from a semiconductor laser at a constant intensity ratio through a solid-state light source as a semiconductor laser and a dichroic mirror. Separation, the yellow light containing green and red components that is excited and emitted by one of the separated lights, and the blue light that is efficiently polarized by a small quarter-wave plate for the other separated light synthesized to obtain white light. Therefore, a small and inexpensive projection display device can be configured. As the light source device, the light source device 40 shown in FIG. 1 was used, but the light source device 72 shown in FIG. 4 may also be used. In this case, the variation in white balance of white light emitted from the light source device is very small, and an inexpensive light source device and projection display device can be configured.
如上所述,作为在本申请中公开的技术的例示,对实施方式1~4进行了说明。但是,本发明中的技术并不限定于此,也能够应用于进行了变更、置换、追加、省略等的实施方式。As described above, Embodiments 1 to 4 have been described as examples of the technology disclosed in this application. However, the technology in the present invention is not limited thereto, and can be applied to embodiments with changes, substitutions, additions, omissions, and the like.
本发明能够应用于使用了图像形成元件的投射型显示装置的光源装置。The present invention can be applied to a light source device of a projection display device using an image forming element.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210543671.7A CN114721213B (en) | 2016-07-12 | 2017-06-29 | Light source device and projection display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-137293 | 2016-07-12 | ||
JP2016137293 | 2016-07-12 | ||
JP2017073479A JP6893298B2 (en) | 2016-07-12 | 2017-04-03 | Light source device and projection type display device |
JP2017-073479 | 2017-04-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210543671.7A Division CN114721213B (en) | 2016-07-12 | 2017-06-29 | Light source device and projection display device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107608166A true CN107608166A (en) | 2018-01-19 |
CN107608166B CN107608166B (en) | 2022-08-16 |
Family
ID=61020214
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710519311.2A Active CN107608166B (en) | 2016-07-12 | 2017-06-29 | Light source device and projection display device |
CN202210543671.7A Active CN114721213B (en) | 2016-07-12 | 2017-06-29 | Light source device and projection display device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210543671.7A Active CN114721213B (en) | 2016-07-12 | 2017-06-29 | Light source device and projection display device |
Country Status (3)
Country | Link |
---|---|
JP (3) | JP6893298B2 (en) |
CN (2) | CN107608166B (en) |
PH (1) | PH12017000156B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110308608A (en) * | 2018-03-27 | 2019-10-08 | 精工爱普生株式会社 | Optical unit and display device |
CN110677632A (en) * | 2019-10-12 | 2020-01-10 | 广东联大光电有限公司 | DLP projector capable of improving color uniformity of projected image |
CN111624838A (en) * | 2019-02-28 | 2020-09-04 | 中强光电股份有限公司 | Projection system and driving method of projection system |
WO2020186843A1 (en) * | 2019-03-20 | 2020-09-24 | 青岛海信激光显示股份有限公司 | Laser light source and laser projection apparatus |
US11079665B2 (en) | 2019-03-20 | 2021-08-03 | Hisense Laser Display Co., Ltd. | Laser projection apparatus |
US11237468B2 (en) | 2019-06-20 | 2022-02-01 | Hisense Laser Display Co., Ltd. | Laser projection apparatus |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3131080B2 (en) | 1993-07-30 | 2001-01-31 | 株式会社いすゞセラミックス研究所 | Diesel Particulate Filter |
JP2018194819A (en) * | 2017-05-18 | 2018-12-06 | パナソニックIpマネジメント株式会社 | Light source device and projection image display device |
JP6987347B2 (en) * | 2018-03-29 | 2021-12-22 | マクセル株式会社 | projector |
JP2019184947A (en) * | 2018-04-16 | 2019-10-24 | パナソニックIpマネジメント株式会社 | Light source device and projection type display device |
EP3798726B1 (en) | 2018-05-22 | 2024-01-24 | JVCKENWOOD Corporation | Projector and multi-projection system |
JP6939703B2 (en) * | 2018-05-22 | 2021-09-22 | 株式会社Jvcケンウッド | Projector and multi-projection system |
JP6947122B2 (en) * | 2018-05-22 | 2021-10-13 | 株式会社Jvcケンウッド | Projector and multi-projection system |
JPWO2020012751A1 (en) * | 2018-07-11 | 2021-08-02 | パナソニックIpマネジメント株式会社 | Light source device and projection type display device |
JP7203317B2 (en) * | 2019-04-02 | 2023-01-13 | パナソニックIpマネジメント株式会社 | Light source device and projection type image display device |
JP7247776B2 (en) | 2019-06-18 | 2023-03-29 | セイコーエプソン株式会社 | Light source device and projector |
JP7188287B2 (en) | 2019-06-18 | 2022-12-13 | セイコーエプソン株式会社 | Light source device and projector |
WO2021025002A1 (en) * | 2019-08-05 | 2021-02-11 | パナソニックIpマネジメント株式会社 | Light source device and projection-type display apparatus |
JP2021047366A (en) | 2019-09-20 | 2021-03-25 | セイコーエプソン株式会社 | Light source device and projector |
JP2021124651A (en) * | 2020-02-07 | 2021-08-30 | マクセル株式会社 | Projection type image display device and light source device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120140183A1 (en) * | 2010-12-06 | 2012-06-07 | Panasonic Corporation | Light source device and projection display apparatus |
CN103543590A (en) * | 2012-07-16 | 2014-01-29 | 欧司朗有限公司 | Light module for a projection apparatus and method for generating the blue component in a light module for a projection apparatus |
CN103913936A (en) * | 2012-12-28 | 2014-07-09 | 深圳市绎立锐光科技开发有限公司 | Light-emitting device and projection system |
US20160077419A1 (en) * | 2014-09-16 | 2016-03-17 | Texas Instruments Incorporated | Laser illumination on phosphor for projection display |
US20170082912A1 (en) * | 2014-03-31 | 2017-03-23 | Nec Display Solutions, Ltd. | Light source device and projector |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3646597B2 (en) * | 1999-12-20 | 2005-05-11 | 松下電器産業株式会社 | Projection-type image display device |
JP2001290216A (en) * | 2000-04-07 | 2001-10-19 | Nikon Corp | Light source device and projection type display device |
KR20040022976A (en) * | 2002-09-10 | 2004-03-18 | 삼성에스디아이 주식회사 | A projection display system |
KR20040024124A (en) * | 2002-09-13 | 2004-03-20 | 삼성전자주식회사 | Color switching projection apparatus with two liquid crystal panel |
CN1576955A (en) * | 2003-07-10 | 2005-02-09 | 株式会社尼康 | Projection type display apparatus |
JP4422986B2 (en) * | 2003-08-22 | 2010-03-03 | キヤノン株式会社 | Image display device |
JP4335664B2 (en) * | 2003-12-26 | 2009-09-30 | 株式会社日立製作所 | Projection type image display device, rear projection type image display device, optical unit and screen unit |
JP2005300712A (en) * | 2004-04-08 | 2005-10-27 | Nikon Corp | Projection type display device |
JP2007033676A (en) * | 2005-07-25 | 2007-02-08 | Ricoh Co Ltd | Polarized light converting optical element, optical modulation module, and projection type image display apparatus |
JP2007226047A (en) * | 2006-02-24 | 2007-09-06 | Ricoh Co Ltd | Optical element and image projection device |
JP5263031B2 (en) * | 2009-06-26 | 2013-08-14 | パナソニック株式会社 | Projection display |
JP5474698B2 (en) * | 2010-07-29 | 2014-04-16 | 三洋電機株式会社 | Light source device and projection display device |
JP5979416B2 (en) * | 2011-04-20 | 2016-08-24 | パナソニックIpマネジメント株式会社 | Light source device and image display device |
JP6080381B2 (en) * | 2012-04-26 | 2017-02-15 | キヤノン株式会社 | Optical system and projection display device using the same |
JP6383937B2 (en) | 2013-03-27 | 2018-09-05 | パナソニックIpマネジメント株式会社 | Light source device and projection display device |
JP6303454B2 (en) | 2013-12-02 | 2018-04-04 | セイコーエプソン株式会社 | Lighting device and projector |
CN106164770B (en) * | 2014-03-31 | 2017-10-03 | Nec显示器解决方案株式会社 | Light source and projecting apparatus |
-
2017
- 2017-04-03 JP JP2017073479A patent/JP6893298B2/en active Active
- 2017-05-25 PH PH12017000156A patent/PH12017000156B1/en unknown
- 2017-06-29 CN CN201710519311.2A patent/CN107608166B/en active Active
- 2017-06-29 CN CN202210543671.7A patent/CN114721213B/en active Active
-
2021
- 2021-05-11 JP JP2021080105A patent/JP7108828B2/en active Active
-
2022
- 2022-04-13 JP JP2022066141A patent/JP7312944B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120140183A1 (en) * | 2010-12-06 | 2012-06-07 | Panasonic Corporation | Light source device and projection display apparatus |
CN103543590A (en) * | 2012-07-16 | 2014-01-29 | 欧司朗有限公司 | Light module for a projection apparatus and method for generating the blue component in a light module for a projection apparatus |
CN103913936A (en) * | 2012-12-28 | 2014-07-09 | 深圳市绎立锐光科技开发有限公司 | Light-emitting device and projection system |
US20170082912A1 (en) * | 2014-03-31 | 2017-03-23 | Nec Display Solutions, Ltd. | Light source device and projector |
US20160077419A1 (en) * | 2014-09-16 | 2016-03-17 | Texas Instruments Incorporated | Laser illumination on phosphor for projection display |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110308608A (en) * | 2018-03-27 | 2019-10-08 | 精工爱普生株式会社 | Optical unit and display device |
CN110308608B (en) * | 2018-03-27 | 2021-08-06 | 精工爱普生株式会社 | Optical unit and display device |
CN111624838A (en) * | 2019-02-28 | 2020-09-04 | 中强光电股份有限公司 | Projection system and driving method of projection system |
WO2020186843A1 (en) * | 2019-03-20 | 2020-09-24 | 青岛海信激光显示股份有限公司 | Laser light source and laser projection apparatus |
US11079665B2 (en) | 2019-03-20 | 2021-08-03 | Hisense Laser Display Co., Ltd. | Laser projection apparatus |
US11237468B2 (en) | 2019-06-20 | 2022-02-01 | Hisense Laser Display Co., Ltd. | Laser projection apparatus |
CN110677632A (en) * | 2019-10-12 | 2020-01-10 | 广东联大光电有限公司 | DLP projector capable of improving color uniformity of projected image |
Also Published As
Publication number | Publication date |
---|---|
JP2021120757A (en) | 2021-08-19 |
PH12017000156A1 (en) | 2018-07-23 |
CN114721213A (en) | 2022-07-08 |
CN107608166B (en) | 2022-08-16 |
JP2022093391A (en) | 2022-06-23 |
PH12017000156B1 (en) | 2018-07-23 |
JP6893298B2 (en) | 2021-06-23 |
JP7108828B2 (en) | 2022-07-29 |
CN114721213B (en) | 2024-10-25 |
JP2018013764A (en) | 2018-01-25 |
JP7312944B2 (en) | 2023-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7108828B2 (en) | Light source device and projection display device | |
US10203593B2 (en) | Light source device having a retardation plate and projection display apparatus including the light source | |
JP5874058B2 (en) | Light source device and projection display device | |
CN107797369B (en) | Lighting fixtures and projectors | |
JP7482351B2 (en) | Light source device and projection type image display device | |
US20210041779A1 (en) | Light source device and projection display apparatus including plural light sources, and a lens condensing light from the plural light sources into one spot | |
JP5449331B2 (en) | Optical element and color synthesizer | |
JP7203317B2 (en) | Light source device and projection type image display device | |
CN109324467B (en) | Light source device and projection display device | |
JP2011508283A (en) | Photosynthesizer | |
JP2018124538A (en) | Light source device and projection display device | |
US11726396B2 (en) | Light source device and projection-type display apparatus | |
US20230259013A1 (en) | Light source device and projection display apparatus | |
JP2018194819A (en) | Light source device and projection image display device | |
JP7113225B2 (en) | Light source device and projection display device | |
WO2020012751A1 (en) | Light source device and projection display device | |
WO2020054397A1 (en) | Light source device and projection-type video display device | |
US12072618B2 (en) | Light source device and projection display apparatus | |
CN108957925A (en) | Light supply apparatus and projection type video display apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |