CN107607127A - A kind of star sensor calibration of camera and precision fast verification system based on outfield - Google Patents

A kind of star sensor calibration of camera and precision fast verification system based on outfield Download PDF

Info

Publication number
CN107607127A
CN107607127A CN201710627711.5A CN201710627711A CN107607127A CN 107607127 A CN107607127 A CN 107607127A CN 201710627711 A CN201710627711 A CN 201710627711A CN 107607127 A CN107607127 A CN 107607127A
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mtr
star sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710627711.5A
Other languages
Chinese (zh)
Other versions
CN107607127B (en
Inventor
陆壮志
万志江
周鑫
杨贤哲
施丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Designing Institute of Hubei Space Technology Academy
Original Assignee
General Designing Institute of Hubei Space Technology Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Designing Institute of Hubei Space Technology Academy filed Critical General Designing Institute of Hubei Space Technology Academy
Priority to CN201710627711.5A priority Critical patent/CN107607127B/en
Publication of CN107607127A publication Critical patent/CN107607127A/en
Application granted granted Critical
Publication of CN107607127B publication Critical patent/CN107607127B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention a kind of star sensor calibration of camera and precision fast verification system based on outfield, including star sensor, timing equipment, experimental rig is locked in data acquisition and analysis system and horizontal indexing, by the closed-loop information chain for establishing star sensor calibration of camera and precision fast verification system, split-second precision information and current sight asterism positional information are obtained by timing equipment, under the true starry sky in outfield, the earth is used as the turntable of uniform rotation, can be under simple experimental condition, the demarcation of star sensor inner parameter is quickly completed using four position methods and the LOS point precision of star sensor verifies work.

Description

A kind of star sensor calibration of camera and precision fast verification system based on outfield
Technical field
The invention belongs to space science technical field, and in particular to a kind of star sensor calibration of camera based on outfield And precision fast verification system.
Background technology
Star sensor be it is a kind of using equator inertial system as referential, using fixed star as the high-precision spatial posture in navigation information source Measurement apparatus, by shooting the image of diverse location fixed star on celestial sphere, the position that asterism is extracted by signal processing circuit is believed Breath, observation star is found in navigation star database using star Pattern Recognition Algorithm, space flight is determined using the direction vector for observing star The attitude information of device.
In numerous attitude sensor at present, the performance of star sensor is the most prominent, have it is low in energy consumption, in light weight, from The advantages that main property is strong, dynamic property is good, precision is high, is widely used to the fields of space technology such as satellite, rocket, wherein, star is quick The calibration of camera and precision test technology of sensor are a key technologies for ensureing star sensor attitude measure precision, are had Important researching value.
At present, the calibration of camera of star sensor and precision test scheme be broadly divided into ground experiment room demarcation test, Three classes such as the examination of asterisk location survey and on-orbit calibration test are seen in outfield, wherein, the demarcation test of ground experiment room needs to make in optical dark room Demarcated with single star simulator, parallel light tube and high precision turntable, precision test work, this method test stream are completed in outfield Journey is complicated, testing equipment is expensive;On-orbit calibration test is to descend into ground by shooting star chart, completes to mark by surface personnel Fixed work, and calibrating parameters are uploaded in star sensor, the in-orbit state of star sensor is endless when this method is because of shooting star chart It is complete controlled, the error of uncertain factor can be introduced, and human and material resources cost is very high;And it is to utilize ground that the examination of asterisk location survey is seen in outfield Ball is demarcated using the method for polynomial surface equation model as turntable, can have timing error, the distribution of visual field fixed star not The factor such as uniform influences, and causes the angle measurement accuracy of star sensor relatively low.
The content of the invention
The present invention solves the technical problem of provide a kind of star sensor calibration of camera and essence based on outfield Fast verification system is spent, star sensor inner parameter can be quickly completed using four position methods under simple experimental condition Demarcation and star sensor LOS point precision checking work.
In order to solve the above technical problems, one aspect of the present invention is:A kind of star sensor based on outfield Calibration of camera and precision fast verification system, including star sensor, timing equipment, data acquisition and analysis system and horizontal turn Position locking experimental rig, by establishing the closed-loop information chain of star sensor calibration of camera and precision fast verification system, lead to Cross timing equipment and obtain split-second precision information and current sight asterism positional information, under the true starry sky in outfield, the earth is used as The turntable of uniform rotation, the inner parameter of star sensor is demarcated using four position methods, and fast verification star sensor LOS point precision;
Wherein:Star sensor, the star chart at current time is gathered in real time, receive the UTC time information of timing equipment and current Asterism positional information is seen, receives the inner parameter information that data acquisition and analysis system calculates;
Timing equipment, UTC time information and current sight asterism positional information are gathered in real time;
Data acquisition and analysis system, the star chart information from star sensor is received, calculate the inner parameter letter of star sensor Breath, analyze the LOS point precision of star sensor;
Horizontal indexing locking experimental rig, the optical axis for dynamic regulation star sensor point to, it is ensured that the light of star sensor Axle points to and is perpendicularly oriented to zenith position;
Closed-loop information chain includes the communication chain of star sensor and timing equipment, star sensor and data acquisition and analysis system Communication chain, the astronomical observation online management system Data-Link of data acquisition and analysis system, data acquisition and analysis system turn with horizontal Optical axis between position locking experimental rig points to feedback information chain.
The timing equipment is selected to have and receives the Big Dipper and gps satellite signal and complete UTC time time service and positioning (including warp Degree, latitude) function.
The horizontal indexing locking experimental rig has leveling and locking function, and wherein levelling function realizes star sensor Optical axis points to and is perpendicularly oriented to zenith position, so as to which the influence that effect of atmospheric refraction is imaged to star sensor be preferably minimized;Locking Function ensures that star sensor can keep stable position to point at the sight star moment.
The astronomical observation online management system Data-Link of the data acquisition and analysis system includes the coordinate system of star sensor Modular converter, calibration of camera module and LOS point precision evaluation module.
The star chart information sees asterism positional information including the UTC time information in star chart, currently, in J2000 mean equators Optical axis sensing, number of stars, matching asterisk, asterism gray value, asterism x coordinate, the asterism y of every star under geocentric coordinate system are sat Mark.
The inner parameter information includes focal length, principal point coordinate and the distortion factor of star sensor.
Brief description of the drawings
Fig. 1 is the working-flow figure of the present invention;
Fig. 2 is the system test block diagram of the present invention;
Fig. 3 is the imaging model of star sensor.
Embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, it is right below in conjunction with drawings and Examples The present invention is further elaborated.It should be appreciated that the specific embodiments described herein are merely illustrative of the present invention, and It is not used in the restriction present invention.As long as in addition, technical characteristic involved in each embodiment of invention described below Conflict can is not formed each other to be mutually combined.
The professional term used in the present invention will be described in detail below.
1)UTC:Coordinated Universal Time(UTC) (universal time coordinated), be with a length of basis of the atom second of time, When engrave as far as possible close to a kind of time measurement system of universal time.
2) J2000 mean equators geocentric coordinate system:For the origin of coordinates in earth centroid, reference planes are the earth at J2000 moment Mean equator face, X-axis point to the flat spring breeze point (intersection point in J2000 moment mean equator faces and mean eclipic face) at J2000 moment.
3) body-fixed coordinate system:The origin of coordinates is that the earth is red in earth centroid (including the quality such as Atmosphere and Ocean), reference planes Road face, Z axis point to arctic CIO (celestial intermediate origin, celestial sphere centre zero point) place, and X-axis points to Green Prestige controls meridian and equatorial plane point of intersection.
4) data type:BYTE -8-bit signless integers;INT16-16-bit signless integers;FLOAT-floating-point Number.
A kind of star sensor calibration of camera and precision fast verification system based on outfield provided by the invention, including Star sensor, timing equipment, data acquisition and analysis system, horizontal indexing locking experimental rig, by establishing inside star sensor The closed-loop information chain of parameter calibration and precision fast verification system, split-second precision information and current sight are obtained using timing equipment Asterism positional information, under the true starry sky in outfield, the turntable the earth as uniform rotation, the inner parameter of star sensor is entered Rower is determined, and the LOS point precision of fast verification star sensor.
In the present invention, the closed-loop information chain includes communication chain, star sensor and the data of star sensor and timing equipment The message sense of the communication chain of acquisition analysis system, the astronomical observation on-line intelligence management system of data acquisition and analysis system.
In the present invention, the star chart information include UTC time information in star chart, it is current see asterism positional information, Optical axis sensing, number of stars under J2000 mean equator geocentric coordinate systems, matching asterisk, asterism gray value, the asterism x of every star Coordinate value, asterism y-coordinate value.
In the present invention, the inner parameter information includes focal length, principal point coordinate and the distortion factor of star sensor.
For the data frame format of communication chain as shown in Tables 1 and 2, star is sensitive between star sensor and timing equipment in the present invention The data frame format of communication chain is shown in Table shown in 3 and table 4 between device and data acquisition and analysis system.
Table 1:Star sensor asks the data frame format of timing equipment time service
Table 2:Timing equipment responds the data frame format of star sensor request time service
Table 3:Data acquisition and analysis system asks the data frame format of star sensor mode of operation
Table 4:The data frame format of star sensor response data acquisition analysis system
The working-flow figure of the present invention is as shown in figure 1, comprise the following steps:
Step 1: one region of the spaciousness without a large amount of veiling glares of selection, builds the test platform of whole system (such as Fig. 2 institutes Show), star sensor is connected on horizontal indexing locking experimental rig, allows the optical lens of star sensor vertically to be placed towards day; The working power of timing equipment is opened, after the time of timing equipment is available, starts star sensor and data acquisition and analysis system Work.
Step 2: horizontal indexing is locked into experimental rig is adjusted to 0 °, 90 °, 180 °, four positions such as 270 °, data respectively Acquisition analysis system starts the mode of operation of star chart information, the LOS point precision evaluation mould in data acquisition and analysis system The value that block provides locks experimental rig to finely tune horizontal indexing, it is ensured that the optical axis of star sensor points to and is perpendicularly oriented to zenith position Afterwards, the horizontal indexing locking experimental rig of locking, the star chart information of 10 minutes is gathered respectively.
Step 3: data acquisition and analysis system utilizes the inner parameter mark of star sensor after stopping gathering star chart information Cover half block, calculate the inner parameter information of star sensor.
Step 4: data acquisition and analysis system starts the mode of operation of inner parameter information, pass through star sensor and data The inner parameter information of star sensor is uploaded to the FLASH memory spaces that star sensor specifies by the communication chain of acquisition analysis system In.
Step 5: the process of repeat step two, data acquisition and analysis system starts the mode of operation of star chart information, adopts respectively Collect the star chart information of 0 °, 90 °, 180 °, 270 ° etc. four positions.
Step 6: data acquisition and analysis system after stopping gathering star chart information, is changed using the coordinate system of star sensor Module and LOS point precision evaluation module, complete the LOS point precision test job of star sensor.
So far, working-flow of the invention all terminates.
According to one embodiment of present invention, in the step 2, the optical axis of star sensor, which points to, is perpendicularly oriented to zenith position Put is ensured by the coordinate system modular converter and pointing accuracy evaluation module of star sensor in data acquisition and analysis system.
Wherein, the coordinate system modular converter of star sensor refers to star sensor under J2000 mean equator geocentric coordinate systems Optical axis directional information (right ascension containing optical axis, optical axis declination) be transformed under body-fixed coordinate system optical axis directional information (optical axis pass through Degree, optical axis latitude), the conversion method is the conventional techniques of those skilled in the art, belongs to general knowledge known in this field, herein No longer describe.
According to one embodiment of present invention, in the step 2 and step 6, the pointing accuracy evaluation mould of star sensor Block includes the function of two aspects, first, the optical axis of evaluation star sensor points to whether be perpendicularly oriented to zenith position, second, evaluation Accuracy test performance indications of the star sensor before dispatching from the factory.Specific method is:
1) optical axis for evaluating star sensor points to whether be perpendicularly oriented to zenith position
After horizontal indexing locking experimental rig is adjusted to specified location (such as 0 °), star sensor in data acquisition and analysis system Coordinate system modular converter current optical axis directional information of the star sensor under J2000 mean equator geocentric coordinate systems (can be contained light Axle right ascension, optical axis declination) it is transformed into current optical axis directional information (optical axis longitude, optical axis latitude under body-fixed coordinate system in real time Degree), while lead in the star chart information of data acquisition and analysis system collection star sensor comprising seeing asterism longitude and seeing asterism latitude Cross and compare optical axis longitude and see asterism longitude, optical axis latitude and see the difference between asterism latitude, if two differences are both less than given Determine threshold value (such as 10 '), then it is assumed that current optical axis points to and has been perpendicularly oriented to zenith position, meets experimental condition;Otherwise it is, it is necessary to micro- Level-off indexing locking experimental rig, zenith position is perpendicularly oriented to until the optical axis of star sensor points to.
2) LOS point precision performance indications of the star sensor before dispatching from the factory are evaluated
In order to reasonably evaluate the LOS point precision of star sensor, the present invention is using four position method collection zenith positions Star chart information, four positions are respectively 0 °, 90 °, 180 °, 270 °, can not only allow fixed star quickly to travel through star sensor as far as possible Whole visual field, and random error source of system etc. can be eliminated.Data acquisition and analysis system is receiving star sensor After star chart information, the invalid value in optical axis directional information is first rejected according to time effective marker and sensing effective marker, then pass through The coordinate system modular converter of star sensor obtains the current optical axis directional information under body-fixed coordinate system, finally counts optical axis and points to The standard deviation sigma of information, the LOS point precision evaluation index as star sensor.
According to one embodiment of present invention, in the step 4, the calibration of camera module of star sensor is to pass through Following formula obtain:
If the imaging model of star sensor is as shown in figure 3, On-XnYnZnFor celestial coordinate system, O-XYZ sits for star sensor Mark system, if v, w are respectively direction vector of the fixed star in celestial coordinate system and star sensor coordinate system, then
Wherein, (α, δ) is the right ascension of fixed star, declination, (x, y), (x0,y0) represent that fixed star is visited in star sensor image respectively The projection coordinate surveyed on device and principal point coordinate, f represent focal length.
Do not considering distortion and noise error etc. ideally, two fixed stars i, j are in star sensor coordinate system Direction vector wi、wjAngle and the position vector v in corresponding celestial coordinate systemi、vjAngle it is equal.According to this characteristic, The state observation equation described by formula (3) can be established, to estimate star sensor inner parameter.
Formula (2) is substituted into formula (3), obtained
Focal length is inclined caused by " defocus imaging ", manufacturing and positioning errors jointly due to star sensor actual optical system The shadow of the factors such as difference, image deformation, the inclination of image detector photosurface, the rotation of imaging sensor photosurface and principal point deviation Ring, projected position of the fixed star for causing to be taken under star sensor coordinate system and the physical location under celestial coordinate system do not weigh Close, so as to cause angle error.
In summary factor, projection coordinate's value (x, y) in formula (4) need to add corresponding to error coefficient (δ x, δ y).By Very little is comparatively influenceed in the distortion factor of high-order, can be ignored, therefore, in distortion model contains single order, second order Coefficient of radial distortion κ1、κ2With single order, second order tangential distortion coefficient κ3、κ4.(δ x, δ y) can be with formulae express
Wherein, u=x-x0, v=y-y0, r=u2+v2
Therefore, formula (4) should be modified to
In order to estimate optimal inner parameter information, the present invention is first to (f, x0,y0) value estimated, after to (f, κ1, κ234) value estimated.
When the star chart of width shooting has the n nautical star identified, (f, x are remembered0,y0) estimate beThe error of estimate and true value is designated as (Δ f, Δ x0,Δy0), formula (6) linearisation can be obtained
Wherein, i=1,2 ..., n-1;J=i+1, i+2 ..., n, then have
R=A [Δ f Δs x0 Δy0]T (8)
In formula (8)
Have when there is the star chart of m width shooting
Therefore, (x0,y0, f) least-squares estimation result be
In formula (11)
According to the method described above again to (f, κ1234) value estimated, (f, the x finally given0,y0123, κ4) be star sensor inner parameter information.
Described above is one embodiment of the present of invention, but the present invention should not be limited to the embodiment and accompanying drawing institute Disclosure.So every do not depart from the lower equivalent or modification completed of spirit disclosed in this invention, guarantor of the present invention is both fallen within The scope of shield.

Claims (8)

1. a kind of star sensor calibration of camera and precision fast verification system based on outfield, including star sensor, when unite Equipment, data acquisition and analysis system and horizontal indexing locking experimental rig, by establishing star sensor calibration of camera and essence The closed-loop information chain of fast verification system is spent, split-second precision information is obtained by timing equipment and current asterism position of seeing is believed Breath, under the true starry sky in outfield, the earth is used as the turntable of uniform rotation, the inner parameter using four position methods to star sensor Demarcated, and the LOS point precision of fast verification star sensor;
Wherein:Star sensor, the star chart at current time is gathered in real time, receive the UTC time information of timing equipment and current sight star Dot position information, receive the inner parameter information that data acquisition and analysis system calculates;
Timing equipment, UTC time information and current sight asterism positional information are gathered in real time;
Data acquisition and analysis system, the star chart information from star sensor is received, calculate the inner parameter information of star sensor, point Analyse the LOS point precision of star sensor;
Horizontal indexing locking experimental rig, the optical axis for dynamic regulation star sensor point to, it is ensured that the optical axis of star sensor refers to To being perpendicularly oriented to zenith position;
The communication of communication chain of the closed-loop information chain including star sensor and timing equipment, star sensor and data acquisition and analysis system Chain, the astronomical observation online management system Data-Link of data acquisition and analysis system, data acquisition and analysis system and horizontal indexing are locked Optical axis between tight experimental rig points to feedback information chain.
2. a kind of star sensor calibration of camera and precision fast verification system based on outfield according to claim 1 System, the timing equipment are selected to have and receive the Big Dipper and gps satellite signal and complete UTC time time service and positioning (including longitude, latitude Degree) function.
3. a kind of star sensor calibration of camera and precision fast verification system based on outfield according to claim 1 System, the horizontal indexing locking experimental rig have leveling and locking function, and wherein levelling function realizes the optical axis of star sensor Sensing is perpendicularly oriented to zenith position, so as to which the influence that effect of atmospheric refraction is imaged to star sensor be preferably minimized;Locking function Ensure that star sensor can keep stable position to point at the sight star moment.
4. a kind of star sensor calibration of camera and precision fast verification system based on outfield according to claim 1 System, the astronomical observation online management system Data-Link of the data acquisition and analysis system include the coordinate system modulus of conversion of star sensor Block, calibration of camera module and LOS point precision evaluation module.
5. a kind of star sensor calibration of camera and precision fast verification system based on outfield according to claim 1 System, the star chart information are sat including the UTC time information in star chart, current sight asterism positional information, in J2000 mean equators the earth's core Optical axis sensing, number of stars under mark system, matching asterisk, asterism gray value, asterism x coordinate, the asterism y-coordinate of every star.
6. a kind of star sensor calibration of camera and precision fast verification system based on outfield according to claim 1 System, the inner parameter information include focal length, principal point coordinate and the distortion factor of star sensor.
7. a kind of star sensor calibration of camera and precision fast verification system based on outfield according to claim 1 System, working-flow are as follows:
Step 1:A region of the spaciousness without a large amount of veiling glares is selected, the test platform of whole system is built, star sensor is connected On horizontal indexing locking experimental rig, allow the optical lens of star sensor vertically to be placed towards day, open the work of timing equipment Power supply, after the time of timing equipment is available, start star sensor and data acquisition and analysis system work;
Step 2:Experimental rig is locked into horizontal indexing and is adjusted to 0 °, 90 °, 180 °, four positions such as 270 °, data acquisition respectively Analysis system starts the mode of operation of star chart information, and the LOS point precision evaluation module in data acquisition and analysis system carries The value of confession locks experimental rig to finely tune horizontal indexing, it is ensured that after the optical axis sensing of star sensor is perpendicularly oriented to zenith position, lock Tight horizontal indexing locking experimental rig, the star chart information of 10 minutes is gathered respectively;
Step 3:Data acquisition and analysis system utilizes the calibration of camera mould of star sensor after stopping gathering star chart information Block, calculate the inner parameter information of star sensor;
Step 4:Data acquisition and analysis system starts the mode of operation of inner parameter information, passes through star sensor and data acquisition The inner parameter information of star sensor is uploaded in the FLASH memory spaces that star sensor is specified by the communication chain of analysis system;
Step 5:The process of repeat step two, data acquisition and analysis system start the mode of operation of star chart information, gathered respectively The star chart information of 0 °, 90 °, 180 °, 270 ° etc. four positions;
Step 6:Data acquisition and analysis system utilizes the coordinate system modular converter of star sensor after stopping gathering star chart information With LOS point precision evaluation module, the LOS point precision test job of star sensor is completed.
8. a kind of star sensor calibration of camera and precision fast verification system based on outfield according to claim 1 System, the LOS point precision evaluation module implementation steps of star sensor are as follows:
Step 1:The optical axis of evaluation star sensor points to whether be perpendicularly oriented to zenith position, and method is:
After horizontal indexing locking experimental rig is adjusted to specified location (such as 0 °), the seat of star sensor in data acquisition and analysis system Mark system modular converter can be (red containing optical axis by current optical axis directional information of the star sensor under J2000 mean equator geocentric coordinate systems Through, optical axis declination) the current optical axis directional information (optical axis longitude, optical axis latitude) under body-fixed coordinate system is transformed into real time, together When data acquisition and analysis system collection star sensor star chart information in comprising see asterism longitude and see asterism latitude, pass through comparison Difference between optical axis longitude and sight asterism longitude, optical axis latitude and sight asterism latitude, if two differences are both less than given threshold value (such as 10 '), then it is assumed that current optical axis points to and has been perpendicularly oriented to zenith position, meets experimental condition;Otherwise, it is necessary to finely tune level Indexing locking experimental rig, zenith position is perpendicularly oriented to until the optical axis of star sensor points to;
Step 2:LOS point precision performance indications of the star sensor before dispatching from the factory are evaluated, data processing method is:
Using the star chart information of four position method collection zenith positions, four positions are respectively 0 °, 90 °, 180 °, 270 °, allow fixed star to use up The whole visual field of possible quick traversal star sensor, eliminates random error source of system etc.;Data acquisition and analysis system is connecing After the star chart information for receiving star sensor, first rejected according to time effective marker and sensing effective marker in optical axis directional information Invalid value, then the current optical axis directional information under body-fixed coordinate system is obtained by the coordinate system modular converter of star sensor, most The standard deviation sigma of optical axis directional information, the LOS point precision evaluation index as star sensor are counted afterwards;
The calibration of camera module of star sensor is obtained by following formula:
If On-XnYnZnFor celestial coordinate system, O-XYZ is star sensor coordinate system, if v, w be respectively fixed star in celestial coordinate system and Direction vector in star sensor coordinate system, then
<mrow> <mi>v</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;alpha;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;alpha;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&amp;delta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>w</mi> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mo>-</mo> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, (α, δ) is the right ascension of fixed star, declination, (x, y), (x0,y0) represent fixed star in star sensor image detector respectively On projection coordinate and principal point coordinate, f represent focal length;
Do not considering distortion and noise error etc. ideally, the direction of two fixed stars i, j in star sensor coordinate system Vector wi、wjAngle and the position vector v in corresponding celestial coordinate systemi、vjAngle it is equal, can be with according to this characteristic The state observation equation described by formula (3) is established, to estimate star sensor inner parameter;
<mrow> <msubsup> <mi>v</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>=</mo> <msubsup> <mi>w</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Formula (2) is substituted into formula (3), obtained
<mrow> <msubsup> <mi>v</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>+</mo> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&amp;times;</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Focal length deviation caused by " defocus imaging ", manufacturing and positioning errors jointly due to star sensor actual optical system, into The influence of the factors such as image distortion, the inclination of image detector photosurface, the rotation of imaging sensor photosurface and principal point deviation, leads Projected position of the fixed star under star sensor coordinate system and the physical location under celestial coordinate system that cause is taken are misaligned, so as to Cause angle error;
In summary factor, projection coordinate's value (x, y) in formula (4) need to add corresponding to error coefficient (δ x, δ y);Due to height Comparatively the distortion factor of rank influences very little, can be ignored, and therefore, in distortion model contains single order, second order radially Distortion factor κ1、κ2With single order, second order tangential distortion coefficient κ3、κ4.(δ x, δ y) can be with formulae express:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>&amp;delta;</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>&amp;delta;</mi> <mi>y</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mo>(</mo> <msub> <mi>&amp;kappa;</mi> <mn>1</mn> </msub> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;kappa;</mi> <mn>2</mn> </msub> <msup> <mi>r</mi> <mn>4</mn> </msup> <mo>)</mo> <mi>u</mi> <mo>+</mo> <msub> <mi>&amp;kappa;</mi> <mn>3</mn> </msub> <mo>(</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>u</mi> <mn>2</mn> </msup> <mo>)</mo> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;kappa;</mi> <mn>4</mn> </msub> <mi>u</mi> <mi>v</mi> </mtd> </mtr> <mtr> <mtd> <mo>(</mo> <msub> <mi>&amp;kappa;</mi> <mn>1</mn> </msub> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;kappa;</mi> <mn>2</mn> </msub> <msup> <mi>r</mi> <mn>4</mn> </msup> <mo>)</mo> <mi>v</mi> <mo>+</mo> <msub> <mi>&amp;kappa;</mi> <mn>4</mn> </msub> <mo>(</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>v</mi> <mn>2</mn> </msup> <mo>)</mo> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;kappa;</mi> <mn>3</mn> </msub> <mi>u</mi> <mi>v</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Wherein, u=x-x0, v=y-y0, r=u2+v2
Therefore, formula (4) is modified to:
<mrow> <msubsup> <mi>v</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;x</mi> <mi>j</mi> </msub> <mo>)</mo> <mo>+</mo> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;y</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;y</mi> <mi>j</mi> </msub> <mo>)</mo> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;y</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>&amp;times;</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;x</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
In order to estimate optimal inner parameter information, first to (f, x0,y0) value estimated, after to (f, κ1234) value Estimated;
When the star chart of width shooting has the n nautical star identified, (f, x are remembered0,y0) estimate be The error of estimate and true value is designated as (Δ f, Δ x0,Δy0), formula (6) linearisation can be obtained
<mrow> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mi>T</mi> </msubsup> <msub> <mi>V</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mover> <mi>f</mi> <mo>^</mo> </mover> <mo>,</mo> <mover> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>^</mo> </mover> <mo>,</mo> <mover> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>f</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;x</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;y</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Wherein, i=1,2 ..., n-1;J=i+1, i+2 ..., n, then have
R=A [Δ f Δs x0 Δy0]T (8)
In formula (8)
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mn>12</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>f</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mn>12</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mn>12</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mn>13</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>f</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mn>13</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mn>13</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>f</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>F</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> <mi>R</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>12</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Have when there is the star chart of m width shooting
Therefore, (x0,y0, f) least-squares estimation result be
In formula (11)
<mrow> <mi>I</mi> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
According to the method described above again to (f, κ1234) value estimated, (f, the x finally given0,y01234) be The inner parameter information of star sensor.
CN201710627711.5A 2017-07-28 2017-07-28 External field-based star sensor internal parameter calibration and precision rapid verification system Active CN107607127B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710627711.5A CN107607127B (en) 2017-07-28 2017-07-28 External field-based star sensor internal parameter calibration and precision rapid verification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710627711.5A CN107607127B (en) 2017-07-28 2017-07-28 External field-based star sensor internal parameter calibration and precision rapid verification system

Publications (2)

Publication Number Publication Date
CN107607127A true CN107607127A (en) 2018-01-19
CN107607127B CN107607127B (en) 2020-07-10

Family

ID=61060047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710627711.5A Active CN107607127B (en) 2017-07-28 2017-07-28 External field-based star sensor internal parameter calibration and precision rapid verification system

Country Status (1)

Country Link
CN (1) CN107607127B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596146A (en) * 2018-12-25 2019-04-09 哈尔滨工业大学 A kind of star sensor performance field testing system
CN111220177A (en) * 2018-11-24 2020-06-02 中国科学院长春光学精密机械与物理研究所 Method for verifying star point image sub-pixel positioning accuracy
CN111637885A (en) * 2020-05-12 2020-09-08 北京控制工程研究所 Shipborne daytime star sensor positioning algorithm
CN113686353A (en) * 2021-07-22 2021-11-23 西安中科微星光电科技有限公司 Encircling star simulator adapter
CN114001756A (en) * 2021-11-03 2022-02-01 中国科学院光电技术研究所 Outfield ground star finding method of small-view-field star sensor
CN114252088A (en) * 2020-09-25 2022-03-29 南京理工大学 Star map matching semi-physical verification method based on collimator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1456726A2 (en) * 2001-12-12 2004-09-15 Centre National D'etudes Spatiales Method of estimating the attitude of a space device with improved precision
CN101013033A (en) * 2006-03-21 2007-08-08 北京航空航天大学 Zero deflection band based star sensor ground surface calibration method
CN103363987A (en) * 2013-06-26 2013-10-23 哈尔滨工业大学 Star map identification method of multi-view-field star sensor
CN104280049A (en) * 2014-10-20 2015-01-14 北京控制工程研究所 Outfield precision testing method for high-precision star sensor
CN104931071A (en) * 2015-06-30 2015-09-23 武汉大学 Star sensor on-orbit geometric calibration method and system based on selecting weight iteration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1456726A2 (en) * 2001-12-12 2004-09-15 Centre National D'etudes Spatiales Method of estimating the attitude of a space device with improved precision
CN101013033A (en) * 2006-03-21 2007-08-08 北京航空航天大学 Zero deflection band based star sensor ground surface calibration method
CN103363987A (en) * 2013-06-26 2013-10-23 哈尔滨工业大学 Star map identification method of multi-view-field star sensor
CN104280049A (en) * 2014-10-20 2015-01-14 北京控制工程研究所 Outfield precision testing method for high-precision star sensor
CN104931071A (en) * 2015-06-30 2015-09-23 武汉大学 Star sensor on-orbit geometric calibration method and system based on selecting weight iteration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘海波 等: "利用星角距不变性标定星敏感器内部参数", 《国防科技大学学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220177A (en) * 2018-11-24 2020-06-02 中国科学院长春光学精密机械与物理研究所 Method for verifying star point image sub-pixel positioning accuracy
CN109596146A (en) * 2018-12-25 2019-04-09 哈尔滨工业大学 A kind of star sensor performance field testing system
CN109596146B (en) * 2018-12-25 2022-07-05 哈尔滨工业大学 Star sensor performance external field test system
CN111637885A (en) * 2020-05-12 2020-09-08 北京控制工程研究所 Shipborne daytime star sensor positioning algorithm
CN111637885B (en) * 2020-05-12 2021-10-01 北京控制工程研究所 Shipborne daytime star sensor positioning algorithm
CN114252088A (en) * 2020-09-25 2022-03-29 南京理工大学 Star map matching semi-physical verification method based on collimator
CN113686353A (en) * 2021-07-22 2021-11-23 西安中科微星光电科技有限公司 Encircling star simulator adapter
CN113686353B (en) * 2021-07-22 2024-03-19 西安中科微星光电科技有限公司 Encircling type star simulator adapter
CN114001756A (en) * 2021-11-03 2022-02-01 中国科学院光电技术研究所 Outfield ground star finding method of small-view-field star sensor
CN114001756B (en) * 2021-11-03 2023-09-19 中国科学院光电技术研究所 Small-field-of-view star sensor outfield ground star finding method

Also Published As

Publication number Publication date
CN107607127B (en) 2020-07-10

Similar Documents

Publication Publication Date Title
CN107607127A (en) A kind of star sensor calibration of camera and precision fast verification system based on outfield
CN104154928B (en) Installation error calibrating method applicable to built-in star sensor of inertial platform
CN108107462B (en) RTK and high-speed camera combined traffic sign post attitude monitoring device and method
CN105737858B (en) A kind of Airborne Inertial Navigation System attitude parameter calibration method and device
CN100541232C (en) The thick bearing calibration of aviation multiple spectrum scanner geometric under the no attitude information condition
CN104764443B (en) A kind of tight imaging geometry model building method of Optical remote satellite
CN106052718B (en) A kind of method of calibration and device based on POS terminal and digital aviation measuring camera
CN109708649B (en) Attitude determination method and system for remote sensing satellite
CN108317993B (en) Plumb line deviation measuring device and method integrating GNSS and laser tracker
CN110503687B (en) Target positioning method for aerial photoelectric measurement platform
CN106871932A (en) The in-orbit sensing calibration method of satellite borne laser based on Pyramidal search terrain match
CN107490364A (en) A kind of wide-angle tilt is imaged aerial camera object positioning method
CN110017812B (en) Measuring device and method for vertical line deviation, gravitational acceleration and gravity gradient
CN106885571B (en) A kind of lunar surface rover method for rapidly positioning of combination IMU and navigation image
CN108759798A (en) A kind of implementation method of high-precision spacecraft precision measure
CN109146958B (en) Traffic sign space position measuring method based on two-dimensional image
CN105444780B (en) Spaceborne sweep type optical camera framing verification system and processing method
CN105444778B (en) A kind of star sensor based on imaging geometry inverting is in-orbit to determine appearance error acquisition methods
CN106840212A (en) The in-orbit geometry calibration method of satellite borne laser based on ground laser facula centroid position
CN113538595B (en) Method for improving geometric precision of remote sensing stereo image by using laser height measurement data in auxiliary manner
CN106871929A (en) A kind of method for measuring star sensor measurement coordinate system and prism coordinate system relation
CN108375383A (en) The airborne distribution POS flexibility base line measurement method and apparatus of polyphaser auxiliary
Tjahjadi et al. Single frame resection of compact digital cameras for UAV imagery
Liu et al. Accurate mapping method for UAV photogrammetry without ground control points in the map projection frame
CN107967700A (en) The in-orbit geometric correction of the wide working distance binocular camera of big visual field and precision test method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant