CN107587499A - 可液化砂土地基加固装置及加固方法 - Google Patents

可液化砂土地基加固装置及加固方法 Download PDF

Info

Publication number
CN107587499A
CN107587499A CN201710927163.8A CN201710927163A CN107587499A CN 107587499 A CN107587499 A CN 107587499A CN 201710927163 A CN201710927163 A CN 201710927163A CN 107587499 A CN107587499 A CN 107587499A
Authority
CN
China
Prior art keywords
soil
sand
pipe
moisture content
generating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710927163.8A
Other languages
English (en)
Other versions
CN107587499B (zh
Inventor
金炜枫
王鑫
邓陈艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lover Health Science and Technology Development Co Ltd
Zhejiang University of Science and Technology ZUST
Original Assignee
Zhejiang Lover Health Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lover Health Science and Technology Development Co Ltd filed Critical Zhejiang Lover Health Science and Technology Development Co Ltd
Priority to CN201710927163.8A priority Critical patent/CN107587499B/zh
Publication of CN107587499A publication Critical patent/CN107587499A/zh
Application granted granted Critical
Publication of CN107587499B publication Critical patent/CN107587499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种可液化砂土地基加固装置及加固方法,加固装置包括管、若干液化发生单元和加固效果监测装置;所述管为沿长度方向贯通中空的杆件;所述液化发生单元包含一个高压电极和一个接地电极,两个电极间有空隙,当两电极上施加电压差时产生液电效应从而引发冲击波,在此冲击波作用下液化发生单元附近砂土发生液化;所述液化发生单元沿管外侧布置;所述加固效果监测装置包括电磁波发射天线和电磁波接收天线。本发明还公开了一种可液化砂土地基加固装置的加固方法。本发明可以在竖直方向逐点精细控制液化的发生来加固可液化土体。

Description

可液化砂土地基加固装置及加固方法
技术领域
本发明属于岩土工程研究领域,尤其涉及一种可液化砂土地基加固装置及加固方法。
背景技术
饱和松散砂土地基在地震荷载作用下会发生液化,宏观上表现为土体中孔隙水压力上升,同时土体固相的有效接触应力为零,这时土体性质类似于流体并丧失抗剪强度。地震液化造成以下危害:例如房屋倾斜、地基沉降、地铁隧道上浮、道路路基滑移等。若土体发生液化要求砂土是松散的,若砂土加密孔隙减少,则液化不会发生。因此现在常规的液化地基处理方式是减少砂土中的孔隙加大砂土的密实度,例如振冲加密、强夯加密、炸药爆炸加密都是通过振动使松散砂土发生液化,在这个过程中砂颗粒间流体孔隙压力上升,且流体排出砂颗粒间的孔隙,这样砂颗粒间的孔隙减少密实度增加,经过这样处理后的地基在地震中不会发生液化。但是振冲加密、强夯加密、炸药爆炸加密都难以在竖直方向逐点精细控制液化的发生来加固土体。
液电效应是水中的电极间施加高压脉冲,则在水中产生冲击波,而液电效应已在多个领域里得到广泛应用,例如液电效应产生的冲击波应用于液电电水锤加工和煤层致裂等。因此可以考虑用液电效应产生的冲击波使砂土液化,液化过程中砂颗粒间的水排出从而加密砂土,从而完成可液化砂土地基的加固。
发明内容
本发明为克服现有装置难以在竖直方向逐点精细控制液化的发生来加固可液化土体,本发明提供了一种可液化砂土地基加固装置及加固方法。
本发明的技术方案:一种可液化砂土地基加固装置,包括管、若干液化发生单元和加固效果监测装置;所述管为沿长度方向贯通中空的杆件且插入可液化砂土中;所述液化发生单元包含一个高压电极和一个接地电极,两个电极间有空隙,当两电极上施加电压差时产生液电效应从而引发冲击波,在此冲击波作用下液化发生单元附近砂土发生液化;所述液化发生单元沿管外侧布置;所述加固效果监测装置包括电磁波发射天线和电磁波接收天线,所述电磁波发射天线固定在地基表面,所述电磁波接收天线沿管中空区域在竖直方向下放。
优选的,所述高压电极和接地电极都为环状结构且套在管外侧;
优选的,所述若干液化发生单元沿管外侧均匀布置;
优选的,所述管底端用透水石封闭,所述透水石为多孔材料且可以让水通过但不让砂颗粒通过;
优选的,所述管为多孔材料且可以让水通过但不让砂颗粒通过。
一种可液化砂土地基加固装置的加固方法,包括下述步骤:
步骤1:将液化发生单元布置在管侧面,管底端用透水石封闭;
步骤2:将管插入可液化砂土地基;
步骤3:加固土体:液化发生单元中的电极之间施加电压差产生液电效应从而引发冲击波,在此冲击波作用下液化发生单元附近砂土发生液化,这时孔隙水压力急剧上升,水经由管侧壁和底部透水石的孔隙进入管的中空区域喷出地面,在上述过程中饱和土体孔隙中的水被排出,即土体中的孔隙减少,土体的密实度加大,从而加固了土体;
步骤4:拟合饱和土体含水率ω和电磁波速v的关系:在砂土含水率最小时,即砂土最密实的情况下测量记录对应的含水率和电磁波速;在砂土含水率最大时,即砂土最松散的情况下测量记录对应的含水率和电磁波速;然后在最大和最小含水率之间,配置不同含水率的砂土试样并记录每个含水率下的电磁波速;基于实测数据用多项式ω=a0+a1v+a2v2+a3v3+a4v4+a5v5拟合饱和土体含水率ω和电磁波速v的关系,其中a0、a1、a2、a3、a4、a5为拟合系数;
步骤5:分层监测土体波速:在地表固定电磁波发射天线,然后将电磁波接收天线沿管的中空区域下放,在接近第i个液化发生单元时,电磁波发射天线向管方向发射电磁波,电磁波接收天线接收电磁波,测算此时电磁波发射天线和电磁波接收天线的距离Li以及对应的电磁波在土中的传播时间ti,然后按照液化发生单元所在的土层深度划分土层并计算每个土层的电磁波波速vi
步骤6:分层监测土体加固效果:将步骤5中计算得到的每个土层的电磁波速vi代入步骤4得到的饱和土体含水率ω和电磁波速v的关系式ω=a0+a1v+a2v2+a3v3+a4v4+a5v5,得到每层土体的含水率,含水率代表了饱和土体的加固效果,含水率越小表明土体孔隙率越小即加固效果越好;
步骤7:精细化分层加固土层:基于步骤6中测得的每层土含水率,对于含水率仍然不满足加固要求的第i个土层,加大第i个土层所在的第i个液化发生单元上施加的电压差从而加大液电效应引起的冲击波,或者在第i个液化发生单元上多次施加相同强度的电压差促进砂土在循环载荷下逐步液化,第i个土层液化后水从管侧壁的细孔中流入管的中空区域并喷出地面。
本发明的有益效果是克服现有装置难以在竖直方向逐点精细控制液化的发生来加固可液化土体的问题。
附图说明
图1为本发明的管和液化发生单元组装结构和水流方向示意图;
图2为本发明的管和液化发生单元组装结构纵断面示意图;
图3为本发明的管和液化发生单元组装结构的底端示意图;
图4为本发明的加固效果监测装置布设示意图;
图5为本发明的土体分层示意图;
图中1.管,2.可液化砂土地基,3.高压电极,4.接地电极,5.透水石,6.管的中空区域,7.水流方向,8.电磁波发射天线,9.电磁波接收天线,10.土体分层界限。
具体实施方式
为了使本发明实现的技术手段、创新特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
如图1-图5中一种可液化砂土地基加固装置,包括管1、若干液化发生单元和加固效果监测装置;所述管1为沿长度方向贯通中空的杆件且插入可液化砂土中;所述液化发生单元包含一个高压电极3和一个接地电极4,高压电极3和接地电极4间有空隙,当高压电极3和接地电极4上施加电压差时产生液电效应从而引发冲击波,在此冲击波作用下液化发生单元附近砂土发生液化;所述加固效果监测装置包括电磁波发射天线8和电磁波接收天线9,所述电磁波发射天线8固定在地基2表面,所述电磁波接收天线9沿管1中空区域6在竖直方向下放;所述高压电极3和接地电极4都为环状结构且套在管1外侧;所述液化发生单元沿管1外侧均匀布置;所述管1底端用透水石5封闭,所述透水石5为多孔材料且可以让水通过但不让砂颗粒通过;所述管1为多孔材料且可以让水通过但不让砂颗粒通过。
本发明一种可液化砂土地基加固装置的加固方法如下:
步骤1:将液化发生单元布置在管1侧面,管1底端用透水石5封闭;
步骤2:如图1所示将管1插入可液化砂土地基2;
步骤3:加固土体:液化发生单元中的高压电极3和接地电极4间施加电压差产生液电效应从而引发冲击波,在此冲击波作用下液化发生单元附近砂土发生液化,这时孔隙水压力急剧上升,水经由管1侧壁和底部透水石5的孔隙进入管1的中空区域6,最后沿水流方向7喷出地面,在上述过程中饱和土体孔隙中的水被排出,即土体中的孔隙减少,土体的密实度加大,从而加固了土体;
步骤4:拟合饱和土体含水率ω和电磁波速v的关系:在砂土含水率最小时,即砂土最密实的情况下测量记录对应的含水率和电磁波速;在砂土含水率最大时,即砂土最松散的情况下测量记录对应的含水率和电磁波速;然后在最大和最小含水率之间,配置不同含水率的砂土试样并记录每个含水率下的电磁波速;基于实测数据用多项式ω=a0+a1v+a2v2+a3v3+a4v4+a5v5拟合饱和土体含水率ω和电磁波速v的关系,其中a0、a1、a2、a3、a4、a5为拟合系数;
步骤5:分层监测土体波速:在可液化砂土地基2表面固定电磁波发射天线8,然后将电磁波接收天线9沿管1的中空区域6下放,在接近第i个液化发生单元时,电磁波发射天线8向管1方向发射电磁波,电磁波接收天线9接收电磁波,测算此时电磁波发射天线8和电磁波接收天线9的距离Li以及对应的电磁波在土中的传播时间ti,然后如图5所示按照液化发生单元所在的土层深度划分土层并计算每个土层的电磁波波速vi
步骤6:分层监测土体加固效果:将步骤5中计算得到的每个土层的电磁波速vi代入步骤4得到的饱和土体含水率ω和电磁波速v的关系式ω=a0+a1v+a2v2+a3v3+a4v4+a5v5,得到每层土体的含水率,含水率代表了饱和土体的加固效果,含水率越小表明土体孔隙率越小即加固效果越好;
步骤7:精细化分层加固土层:基于步骤6中测得的每层土含水率,对于含水率仍然不满足加固要求的第i个土层,加大第i个土层所在的第i个液化发生单元上施加的电压差从而加大液电效应引起的冲击波,或者在第i个液化发生单元上多次施加相同强度的电压差促进砂土在循环载荷下逐步液化,第i个土层液化后水从管1侧壁的细孔中流入管1的中空区域6并喷出地面。

Claims (7)

1.一种可液化砂土地基加固装置,其特征在于:其包括管和若干液化发生单元;所述管为沿长度方向贯通中空的杆件且插入可液化砂土中;所述液化发生单元包含一个高压电极和一个接地电极,两个电极间有空隙,当两电极上施加电压差时产生液电效应从而引发冲击波,在此冲击波作用下液化发生单元附近砂土发生液化;所述液化发生单元沿管外侧布置。
2.根据权利要求1所述的一种可液化砂土地基加固装置,其特征在于:所述可液化砂土地基加固装置还包括加固效果监测装置,所述加固效果监测装置包括电磁波发射天线和电磁波接收天线,所述电磁波发射天线固定在地基表面,所述电磁波接收天线沿管中空区域在竖直方向下放。
3.根据权利要求1所述的一种可液化砂土地基加固装置,其特征在于:所述高压电极和接地电极都为环状结构且套在管外侧。
4.根据权利要求1所述的一种可液化砂土地基加固装置,其特征在于:所述若干液化发生单元沿管外侧均匀布置。
5.根据权利1所述的一种可液化砂土地基加固装置,其特征在于:所述管底端用透水石封闭,所述透水石为多孔材料且可以让水通过但不让砂颗粒通过。
6.根据权利1所述的一种可液化砂土地基加固装置,其特征在于:所述管为多孔材料且可以让水通过但不让砂颗粒通过。
7.一种可液化砂土地基加固装置的加固方法,其特征在于:其包括下述步骤:
步骤1:将液化发生单元布置在管侧面,管底端用透水石封闭;
步骤2:将管插入可液化砂土地基;
步骤3:加固土体:液化发生单元中的电极之间施加电压差产生液电效应从而引发冲击波,在此冲击波作用下液化发生单元附近砂土发生液化,这时孔隙水压力急剧上升,水经由管侧壁和底部透水石的孔隙进入管的中空区域喷出地面,在上述过程中饱和土体孔隙中的水被排出,即土体中的孔隙减少,土体的密实度加大,从而加固了土体;
步骤4:拟合饱和土体含水率ω和电磁波速v的关系:在砂土含水率最小时,即砂土最密实的情况下测量记录对应的含水率和电磁波速;在砂土含水率最大时,即砂土最松散的情况下测量记录对应的含水率和电磁波速;然后在最大和最小含水率之间,配置不同含水率的砂土试样并记录每个含水率下的电磁波速;基于实测数据用多项式ω=a0+a1v+a2v2+a3v3+a4v4+a5v5拟合饱和土体含水率ω和电磁波速v的关系,其中a0、a1、a2、a3、a4、a5为拟合系数;
步骤5:分层监测土体波速:在地表固定电磁波发射天线,然后将电磁波接收天线沿管的中空区域下放,在接近第i个液化发生单元时,电磁波发射天线向管方向发射电磁波,电磁波接收天线接收电磁波,测算此时电磁波发射天线和电磁波接收天线的距离Li以及对应的电磁波在土中的传播时间ti,然后按照液化发生单元所在的土层深度划分土层并计算每个土层的电磁波波速vi
步骤6:分层监测土体加固效果:将步骤5中计算得到的每个土层的电磁波速vi代入步骤4得到的饱和土体含水率ω和电磁波速v的关系式ω=a0+a1v+a2v2+a3v3+a4v4+a5v5,得到每层土体的含水率,含水率代表了饱和土体的加固效果,含水率越小表明土体孔隙率越小即加固效果越好;
步骤7:精细化分层加固土层:基于步骤6中测得的每层土含水率,对于含水率仍然不满足加固要求的第i个土层,加大第i个土层所在的第i个液化发生单元上施加的电压差从而加大液电效应引起的冲击波,或者在第i个液化发生单元上多次施加相同强度的电压差促进砂土在循环载荷下逐步液化,第i个土层液化后水从管侧壁的细孔中流入管的中空区域并喷出地面。
CN201710927163.8A 2017-10-09 2017-10-09 可液化砂土地基加固装置及加固方法 Active CN107587499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710927163.8A CN107587499B (zh) 2017-10-09 2017-10-09 可液化砂土地基加固装置及加固方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710927163.8A CN107587499B (zh) 2017-10-09 2017-10-09 可液化砂土地基加固装置及加固方法

Publications (2)

Publication Number Publication Date
CN107587499A true CN107587499A (zh) 2018-01-16
CN107587499B CN107587499B (zh) 2019-12-24

Family

ID=61053120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710927163.8A Active CN107587499B (zh) 2017-10-09 2017-10-09 可液化砂土地基加固装置及加固方法

Country Status (1)

Country Link
CN (1) CN107587499B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109914442A (zh) * 2019-03-29 2019-06-21 温州大学 一种电渗排水一体桩
CN109914386A (zh) * 2019-03-29 2019-06-21 温州大学 一种小直径塑料套管—金属套管预制桩、制作方法、应用
CN109914443A (zh) * 2019-03-29 2019-06-21 温州大学 一种抗滑桩的制作方法及使用抗滑桩防治滑坡的施工方法
CN112878309A (zh) * 2021-01-08 2021-06-01 河海大学 一种电解减饱和预制管桩复合桩基及使用方法
CN114960615A (zh) * 2022-05-17 2022-08-30 河海大学 一种饱和砂土场地浅层喷射加固装置及施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003278141A (ja) * 2002-03-26 2003-10-02 Shimizu Corp 地盤の飽和度測定方法および液状化防止方法
CN101799436A (zh) * 2010-03-18 2010-08-11 中国农业大学 基于相位检测的土壤水分、电导率测量仪及其测量方法
CN102926393A (zh) * 2012-11-22 2013-02-13 河海大学 一种处理建筑地基液化的真空抽水装置及施工方法
CN104965231A (zh) * 2015-07-30 2015-10-07 中国科学院电子学研究所 一种混凝土含水率的检测装置及方法
CN105133569A (zh) * 2015-08-20 2015-12-09 中冶集团武汉勘察研究院有限公司 一种激振排水固结处理饱和土地基的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003278141A (ja) * 2002-03-26 2003-10-02 Shimizu Corp 地盤の飽和度測定方法および液状化防止方法
CN101799436A (zh) * 2010-03-18 2010-08-11 中国农业大学 基于相位检测的土壤水分、电导率测量仪及其测量方法
CN102926393A (zh) * 2012-11-22 2013-02-13 河海大学 一种处理建筑地基液化的真空抽水装置及施工方法
CN104965231A (zh) * 2015-07-30 2015-10-07 中国科学院电子学研究所 一种混凝土含水率的检测装置及方法
CN105133569A (zh) * 2015-08-20 2015-12-09 中冶集团武汉勘察研究院有限公司 一种激振排水固结处理饱和土地基的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
章志成: ""高压脉冲放电破碎岩石及钻井装备研制"", 《中国博士学位论文全文数据库(电子期刊) 工程科技I辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109914442A (zh) * 2019-03-29 2019-06-21 温州大学 一种电渗排水一体桩
CN109914386A (zh) * 2019-03-29 2019-06-21 温州大学 一种小直径塑料套管—金属套管预制桩、制作方法、应用
CN109914443A (zh) * 2019-03-29 2019-06-21 温州大学 一种抗滑桩的制作方法及使用抗滑桩防治滑坡的施工方法
CN109914442B (zh) * 2019-03-29 2020-07-17 温州大学 一种电渗排水一体桩
CN109914386B (zh) * 2019-03-29 2020-08-11 温州大学 一种小直径塑料套管—金属套管预制桩、制作方法、应用
CN112878309A (zh) * 2021-01-08 2021-06-01 河海大学 一种电解减饱和预制管桩复合桩基及使用方法
CN114960615A (zh) * 2022-05-17 2022-08-30 河海大学 一种饱和砂土场地浅层喷射加固装置及施工方法
CN114960615B (zh) * 2022-05-17 2023-01-31 河海大学 一种饱和砂土场地浅层喷射加固装置及施工方法

Also Published As

Publication number Publication date
CN107587499B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN107587499A (zh) 可液化砂土地基加固装置及加固方法
Wu et al. Dynamic compaction of a thick soil-stone fill: Dynamic response and strengthening mechanisms
CN105525901B (zh) 一种基于微波辐照的煤层水力压裂强化增透方法
CN103774651A (zh) 橄榄状抗滑键注浆锚固支护爆破锚杆
CN101566063A (zh) 盾构进出洞口土体加固的方法
CN104612130A (zh) 一种隧道底部隐伏溶洞注浆处治方法
CN103898892A (zh) 液压振动联合真空吸水加固软弱地基的处理方法及其装置
CN107862157A (zh) 基于ansys的生死单元法模拟隧道的盾构开挖方法
CN107201913A (zh) 一种交叠隧道精细减振爆破施工方法
Yuan et al. The effect of burnt rock on inclined shaft in shallow coal seam and its control technology
CN108643172A (zh) 粉土地质振冲碎石挤密桩施工方法
Ngo et al. Full scale consolidation test on ultra-soft soil improved by prefabricated vertical drains in MAE MOH mine, Thailand
CN103806434B (zh) 一种级配建渣土工袋处理钻前工程饱和过湿土地基的方法
CN110144872A (zh) 水平动力固结排水装置及施工方法
RU2473738C1 (ru) Способ сооружения несущего подземного основания
CN1776110A (zh) 高速公路液化土地基同步爆扩处理法
JP6876526B2 (ja) 砂質地盤締固め工法の仕様設定方法
JP2002047638A (ja) 発破工法を併用した地盤改良工法
CN109854286A (zh) 一种超声波辅助压力注浆的可视化测试设备及实验方法
CN216973375U (zh) 多联细翼杆地基液化处理装置
Wang et al. Testing method for the range of fracture zone of rock slope under blasting load
He et al. Study on key factors and influence law of structural design of high-voltage electro-pulse bit
Torgoev et al. Geophysical Monitoring of Artificial Landslide Dam of Kambarata Hydro Power Plant-2 (Kyrgyzstan)
CN204982852U (zh) 一种高频振动强夯机构
Huan et al. Performance prediction of prefabricated vertical drain in soft soil using finite element method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant