CN107579353A - 基于超表面的高定向性柱状凸面共形反射面天线 - Google Patents

基于超表面的高定向性柱状凸面共形反射面天线 Download PDF

Info

Publication number
CN107579353A
CN107579353A CN201710744495.2A CN201710744495A CN107579353A CN 107579353 A CN107579353 A CN 107579353A CN 201710744495 A CN201710744495 A CN 201710744495A CN 107579353 A CN107579353 A CN 107579353A
Authority
CN
China
Prior art keywords
resonant ring
convex
convex mirror
super surface
convex surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710744495.2A
Other languages
English (en)
Other versions
CN107579353B (zh
Inventor
杨锐
高东兴
李冬
张澳芳
屈亚蓉
李佳成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710744495.2A priority Critical patent/CN107579353B/zh
Publication of CN107579353A publication Critical patent/CN107579353A/zh
Application granted granted Critical
Publication of CN107579353B publication Critical patent/CN107579353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提出了一种基于超表面的高定向性柱状凸面共形反射面天线,主要解决与柱状凸面载体共形的凸面镜无法实现波束校准的问题;包括柱状凸面载体、凸面镜、馈源、同轴转换接头和支撑结构,凸面镜由m×n个周期性排布的平面矩形离散超表面组成,镶嵌在柱状凸面载体的凸面上,平面矩形离散超表面包括介质基板、谐振环超表面和辐射地板,谐振环超表面由i个不同规格且呈周期性线性排布的谐振环组成,各谐振环对入射波提供相位补偿,实现任意曲率凸面镜对电磁波的波束校准和扇形波束合成,馈源通过支撑结构固定在凸面镜的焦点位置,并通过同轴转换接头进行馈电。本发明实现高定向性扇形波束辐射,可用于无线通信、障碍物探测、空中防撞系统等领域。

Description

基于超表面的高定向性柱状凸面共形反射面天线
技术领域
本发明属于天线技术领域,涉及一种反射面天线,具体涉及一种基于超表面的高定向性柱状凸面共形反射面天线,实现扇形波束,能够应用于无线通信、障碍物探测和空中防撞系统等领域。
技术背景
反射面天线的高度定向性,使其在通信、雷达等方面获得了非常广泛的应用。然而传统的反射面一般设计为凹形的抛物面,难以在空间飞行器的柱状凸面表面上共形加载。对于传统的抛物面反射面,由于抛物线具有从抛物线上任一点到固定的焦点之距离恰等于该点到固定的准线之垂距的性质,所以来自焦点处各向同性馈源发射出的所有波经抛物面反射后,不同角度的入射波和反射波总的传播路径在离开天线口径面时电长度相等,反射波传播方向与馈源和反射面中心连线方向平行,即可以把馈源入射球面波前转换为出射平面波前。若把抛物面反射镜替换为凸面镜,来自同一焦点处各向同性馈源发射出的所有波经凸面镜反射后,反射波传播方向远离馈源和反射面中心连线方向,且入射波越靠近凸面镜边缘,在该点入射角越大,相应的反射角越大,反射波无法在天线口径面上得到等相位面的平面波前,因此凸面镜不适合构建波束准直反射面。
通常柱面抛物面天线辐射的出射波为扇形波束,由于扇形波束波束宽度宽,覆盖空间范围广,用于无线通信中可以同时实现多个点对点通信,用于障碍物探测时可以对目标进行完整的成像,所以在空间飞行器等柱状凸面表面上共形加载凸面反射面天线,并得到扇形波束的辐射方向图,具有很强的实际应用价值。但长期以来,实现扇形波束的柱面反射面天线的设计均以柱面凹表面作为基本的几何结构,利用空间飞行器等柱状凸面设计凸面共形反射面天线并实现波束校准仍是工程中的难题。现有研究多采用基于超表面的平面反射镜代替抛物面反射镜的技术,实现平面共形反射面天线的波束校准。
如:2016年,《微波学报》第32卷第2期刊登了李唐景等人的题为“基于相位梯度超表面的高增益天线设计”的文章中,公开了一种基于相位梯度表面设计的平面反射面天线,所设计的平面反射面相位差按照抛物面特征分布,实现抛物面反射面天线的平面共形设计。又如申请公布号为CN 105305096 A,名称为“基于超材料的紧凑平面结构抛物面反射器天线的设计方法”的专利申请,公开了一种基于超材料的紧凑平面结构抛物面反射器天线,通过在平面反射面上加载超材料介质层,获得与常规抛物面反射面等效的反射特性,实现扇形波束抛物面反射面天线的平面共形设计。
以上方法均能有效地将传统反射面天线的抛物面反射镜共形设计为平面反射镜并校准波束,但是无法解决与柱状凸面载体共形的凸面镜的波束校准问题。
发明内容
本发明的目的在于克服上述现有技术存在的缺陷,提供了一种基于超表面的高定向性柱状凸面共形反射面天线,通过在与柱状凸面载体共形的凸面镜上引入超表面结构,对入射波进行相位补偿,得到出射波平面波前,并根据不同的反射面口径尺寸获得不同波束宽度的扇形波束的辐射方向图,实现与柱状凸面载体共形的凸面反射面天线的波束校准。
为实现上述目的,本发明采取的技术方案为:
一种基于超表面的高定向性柱状凸面共形反射面天线,包括柱状凸面载体1、凸面镜2、馈源3、同轴转换接头4和支撑结构5,所述凸面镜2由m×n个周期性排布的平面矩形离散超表面21组成,镶嵌在与其曲率半径相同的柱状凸面载体1的凸面上,形成反射面结构,其中,8≤m≤12,n≥9,每个平面矩形离散超表面21由介质基板211、印制在该介质基板211一侧的谐振环超表面212和另一侧的辐射地板213组成,其中谐振环超表面212由i个不同规格且呈周期性线性排布的谐振环2121组成,其中,i≥8,通过凸面镜2的曲率半径和焦距,以及各谐振环2121所在位置的横坐标,确定各谐振环2121对入射波提供的附加相位补偿值和结构尺寸,实现任意曲率凸面镜对电磁波的波束校准和扇形波束合成特性;所述馈源3通过支撑结构5固定在凸面镜2的焦点位置,并通过同轴转换接头4进行馈电。
上述基于超表面的高定向性柱状凸面共形反射面天线,所述谐振环2121,其相位补偿φ的计算公式为:
其中,k为自由空间中的波数,x为谐振环2121所在位置的横坐标,r为凸面镜2的曲率半径,fL为凸面镜2的焦距。
上述基于超表面的高定向性柱状凸面共形反射面天线,所述谐振环2121,采用矩形环状结构,用于实现入射波的相位补偿,其长度尺寸H为宽度尺寸L的两倍。
本发明与现有技术相比,具有以下优点:
(1)本发明天线的反射面为凸面镜,通过在凸面镜上引入超表面结构,对入射波在反射时进行相位补偿,并通过调整口径面尺寸优化波束宽度和增益,最终得到高定向性扇形波束的辐射方向图,与现有技术中的高定向性平面共形反射面相比,实现了与柱状凸面载体共形的凸面反射面天线的波束校准。
(2)本发明的超表面结构为金属矩形谐振环,通过谐振环尺寸实现不同的相位补偿数值,结构简单易于调控,且该谐振环的设计方案具有通用性,能加载于任意曲率的凸面镜表面上对入射波进行相位补偿。
附图说明
图1是本发明实施例1的整体结构示意图;
图2是本发明实施例1的平面矩形离散超表面的结构示意图;
图3是本发明谐振环的结构示意图;
图4是本发明实施例1和去除谐振环结构的凸面镜在15.0GHz的辐射方向图对比图;
图5是本发明实施例1和去除谐振环结构的凸面镜在15.0GHz的近场电场图对比图;
图6是本发明实施例1在14.0GHz~16.0GHz的最大增益变化趋势图;
图7是本发明实施例1在14.0GHz~16.0GHz的S11仿真图;
图8是本发明实施例在15.0GHz的E面波束宽度优化的辐射方向图。
具体实施方式
以下结合附图和具体实施例,对本发明作进一步详细描述。
实施例1:
参照图1,一种基于超表面的高定向性柱状凸面共形反射面天线,包括柱状凸面载体1、凸面镜2、馈源3、同轴转换接头4和支撑结构5,所述凸面镜2由12×9个周期性排布的平面矩形离散超表面21组成,镶嵌在与其曲率半径相同的柱状凸面载体1的凸面上,形成反射面结构,在凸面镜2的中心处为坐标原点建立笛卡尔坐标系,x轴与凸面镜2的水平面平行,y轴与凸面镜2的垂直面平行,凸面镜2的曲率半径r=210mm,焦距fL=80mm,馈源3采用内截面宽度为15.799mm,高度为7.899mm,单模传输频率范围为11.9GHz~18.0GHz的标准WR62波导,通过支撑结构5固定在凸面镜2的焦点位置,使波导端口面的中心位于z轴的z=80mm处,波端口内截面宽边与x轴平行,通过同轴转换接头4进行馈电。
参照图2,所述平面矩形离散超表面21由介质基板211、印制在该介质基板211一侧的谐振环超表面212和另一侧的辐射地板213组成,其中印制辐射地板213的一侧与柱状凸面载体1相连,辐射地板213长度为19.2mm,宽度为4.8mm,介质基板211长度为19.2mm,宽度为4.8mm,厚度为1mm,谐振环超表面212由8个不同规格且呈周期性线性排布的谐振环2121组成,各相邻谐振环2121的中心间距为2.4mm。
参照图3,所述谐振环2121,其相位补偿φ的计算公式为:
其中,k为自由空间中的波数,x为谐振环2121所在位置的x轴横坐标,r为凸面镜2的曲率半径,fL为凸面镜2的焦距,谐振环2121采用矩形环状结构,其长度尺寸H为宽度尺寸L的两倍,先根据公式计算出各谐振环2121的相位数值,再调整谐振环2121的宽度尺寸L和线宽尺寸D,实现对入射波的相位补偿,其中谐振环结构的相位响应对于电磁波的入射角较为敏感,结构尺寸相同但入射角不同的多个谐振环2121的相位响应不同,因此在调整各谐振环2121的结构尺寸时,需要考虑入射角的影响。
本实施例中,所述各平面矩形离散超表面21,其包括的8个谐振环2121的x轴坐标不同,y轴坐标相同,入射角不同,考虑到入射波在一个平面矩形离散超表面21包括的8个谐振环2121上的角度变化范围很小,可以取该入射角变化区间的平均值作为该平面矩形离散超表面21包括的8个谐振环2121的入射角,又考虑到对于x轴坐标相同,y轴坐标不同的多个谐振环2121,入射波在这多个谐振环2121上的入射角变化很小,可以忽略y轴坐标对于入射角和相位计算的影响,因此,本实施例所有谐振环2121的入射角和相位计算只与其x轴坐标相关,可计算出入射角的具体数值为0°,18°,35°,48°和60°,根据以上入射角调整谐振环结构尺寸获得需要的相位补偿数值。
本实施例中,所述凸面镜2,其水平面口径尺寸大于垂直面口径尺寸,可以在垂直面实现出射波扇形波束,通过调整反射面口径尺寸,可进一步优化波束宽度和增益等参数,本实施例的反射面口径在x轴长度x=168.04mm,在y轴长度y=57.6mm。
本实施例中,所述凸面镜2,电磁波相位分布和天线整体结构关于yoz面对称,只需设计出x正半轴一侧谐振环2121的结构,x负半轴一侧谐振环2121的结构与其关于yoz面对称,x正半轴一侧所有的谐振环2121的结构尺寸和对应的相位补偿数值如下:
所述谐振环2121,横坐标x的变化区间为x∈[0.00mm,9.60mm],入射角为0°,谐振环2121共4个,宽度L分别为2.2mm,2.2mm,2.2mm,2.2mm,线宽D分别为0.10mm,0.10mm,0.15mm,0.20mm,实现的反射相位分别为-180°,-179°,-176°,-172°。
所述谐振环2121,横坐标x的变化区间为x∈[9.60mm,28.81mm],入射角为18°,谐振环2121共8个,宽度L分别为2.10mm,2.10mm,1.90mm,1.90mm,1.90mm,1.80mm,1.80mm,1.80mm,线宽D分别为0.25mm,0.50mm,0.15mm,0.30mm,0.50mm,0.25mm,0.40mm,0.55mm,实现的反射相位分别为-163°,-149°,-133°,-117°,-99°,-80°,-61°,-40°。
所述谐振环2121,横坐标x的变化区间为x∈[28.81mm,47.78mm],入射角为35°,谐振环2121共8个,宽度L分别为1.70mm,1.70mm,1.64mm,1.60mm,1.44mm,0.60mm,2.2mm,2.00mm,线宽D分别为0.10mm,0.35mm,0.25mm,0.45mm,0.20mm,0.20mm,0.10mm,0.35mm,实现的反射相位分别为-14°,16°,47°,79°,112°,145°,179°,-146°。
所述谐振环2121,横坐标x的变化区间为x∈[47.78mm,66.35mm],入射角为48°,谐振环2121共8个,宽度L分别为1.80mm,1.80mm,1.76mm,1.70mm,1.64mm,1.50mm,0.80mm,2.00mm,线宽D分别为0.15mm,0.40mm,0.40mm,0.30mm,0.25mm,0.15mm,0.20mm,0.25mm,实现的反射相位分别为-107°,-64°,-21°,22°,66°,111°,156°,-159°。
所述谐振环2121,横坐标x的变化区间为x∈[66.35mm,84.02mm],入射角为60°,谐振环2121共8个,宽度L分别为1.80mm,1.80mm,1.72mm,1.68mm,1.64mm,0.80mm,2.00mm,1.80mm,线宽D分别为0.20mm,0.45mm,0.20mm,0.20mm,0.50mm,0.20mm,0.50mm,0.25mm,实现的反射相位分别为-110°,-58°,-6°,47°,99°,152°,-155°,-101°。
实施例2,本实施例与实施例1的结构相同,如下参数作了调整:
凸面镜2由8×9个周期性排布的平面矩形离散超表面21组成,即m=8。
实施例3,本实施例与实施例1的结构相同,如下参数作了调整:
凸面镜2由10×9个周期性排布的平面矩形离散超表面21组成,即m=10。
以下结合仿真实验,对本发明的技术效果作进一步说明:
1、仿真条件和内容
采用三维全波电磁场仿真软件CST STUDIO SUITE 2016对本发明的辐射方向图对比图、近场电场图对比图、最大增益变化趋势图、S11仿真图和扇形波束优化方向图进行仿真,其结果如图4、图5、图6、图7和图8所示。
2、仿真结果分析
参照图4,本发明实施例1和去除谐振环结构的凸面镜在15.0GHz的辐射方向图对比图,曲线1代表实施例1的H面的增益随方位角的变化,最大辐射方向为0°,增益为17.8dBi,半功率波束宽度为7°,曲线2代表实施例1的E面的增益随方位角的变化,最大辐射方向为0°,增益为17.8dBi,半功率波束宽度为16.3°,曲线3代表去除谐振环结构的凸面镜的H面的增益随方位角的变化,最大辐射方向为±27°,增益为9.09dBi,曲线4代表去除谐振环结构的凸面镜的E面的增益随方位角的变化,最大辐射方向为±143°,增益为9.23dBi。仿真结果说明,本发明反射面天线在E面实现高定向性的扇形波束,而去除谐振环结构的凸面镜不能实现波束校准。
参照图5(a)和图5(b),本发明实施例1和去除谐振环结构的凸面镜在15.0GHz的近场电场图对比图,图5(a)为本发明实施例1的近场电场图,图5(b)为去除谐振环结构的凸面镜的近场电场图。仿真结果说明,从馈源发出的入射波经过基于超表面的柱状凸面共形反射面反射后,在传播方向上得到平面波前,而从馈源发出的入射波经过去除谐振环结构的凸面镜反射后波束发散,不能实现波束校准。
参照图6,本发明实施例1在14.0GHz~16.0GHz的最大增益变化趋势图。仿真结果说明,在14.0GHz~16.0GHz的频率区间内,天线最大增益随频率变化明显,最佳工作频率区间为15.0GHz~15.7GHz,增益普遍大于17.7dBi。
参照图7,本发明实施例1在14.0GHz~16.0GHz的S11仿真图。仿真结果说明,在14GHz~16GHz的频率区间内,天线S11随频率变化明显,最佳工作频率区间为15.0GHz~15.7GHz,S11普遍低于-10dB,最低-16.8dB。
参照图8,本发明实施例在15.0GHz的E面波束宽度优化的辐射方向图。曲线1代表实施例2的E面的增益随方位角的变化,最大辐射方向为0°,增益为14.6dBi,半功率波束宽度为31.8°,此时本发明反射面天线的E面波束宽度最宽,反射面口径在x轴长度x=168.04mm,在y轴长度y=38.4mm,曲线2代表实施例3的E面的增益随方位角的变化,曲线3代表实施例1的E面的增益随方位角的变化,仿真结果说明,对于本发明的柱状凸面共形反射面天线不同的E面口径长度,得到的扇形波束的波束宽度不同。
由此可见,本发明提出的一种基于超表面的高定向性柱状凸面共形反射面天线,解决了现有技术中与柱状凸面载体共形的凸面镜无法实现波束校准的问题,可通过调整超表面结构在任意曲率的凸面镜上对入射波进行相位补偿,实现高定向性扇形波束的平面波前,扩大了反射面天线的应用范围,适用于无线通信、障碍物探测、空中防撞系统等领域。
以上描述仅是本发明的具体实施例,不构成对本发明的任何限制。应当理解的是,对本领域专业技术人员来说,在了解本发明的原理后,根据上述说明对形式、细节和参数等加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (3)

1.一种基于超表面的高定向性柱状凸面共形反射面天线,其特征在于:包括柱状凸面载体(1)、凸面镜(2)、馈源(3)、同轴转换接头(4)和支撑结构(5),所述凸面镜(2)由m×n个周期性排布的平面矩形离散超表面(21)组成,镶嵌在与其曲率半径相同的柱状凸面载体(1)的凸面上,形成反射面结构,其中,8≤m≤12,n≥9,每个平面矩形离散超表面(21)由介质基板(211)、印制在该介质基板(211)一侧的谐振环超表面(212)和另一侧的辐射地板(213)组成,其中谐振环超表面(212)由i个不同规格且呈周期性线性排布的谐振环(2121)组成,其中,i≥8,通过凸面镜(2)的曲率半径和焦距,以及各谐振环(2121)所在位置的横坐标,确定各谐振环(2121)对入射波提供的附加相位补偿值和结构尺寸,实现任意曲率凸面镜对电磁波的波束校准和扇形波束合成特性;所述馈源(3)通过支撑结构(5)固定在凸面镜(2)的焦点位置,并通过同轴转换接头(4)进行馈电。
2.根据权利要求1所述的基于超表面的高定向性柱状凸面共形反射面天线,其特征在于,所述谐振环(2121),其相位补偿φ的计算公式为:
<mrow> <mi>&amp;phi;</mi> <mo>=</mo> <mi>k</mi> <msqrt> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mi>r</mi> <mo>+</mo> <msub> <mi>f</mi> <mi>L</mi> </msub> <mo>-</mo> <msqrt> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>)</mo> </mrow> </mrow> </msqrt> </mrow>
其中,k为自由空间中的波数,x为谐振环(2121)所在位置的横坐标,r为凸面镜(2)的曲率半径,fL为凸面镜(2)的焦距。
3.根据权利要求1所述的基于超表面的高定向性柱状凸面共形反射面天线,其特征在于,所述谐振环(2121),采用矩形环状结构,用于实现入射波的相位补偿,其长度尺寸H为宽度尺寸L的两倍。
CN201710744495.2A 2017-08-25 2017-08-25 基于超表面的高定向性柱状凸面共形反射面天线 Active CN107579353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710744495.2A CN107579353B (zh) 2017-08-25 2017-08-25 基于超表面的高定向性柱状凸面共形反射面天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710744495.2A CN107579353B (zh) 2017-08-25 2017-08-25 基于超表面的高定向性柱状凸面共形反射面天线

Publications (2)

Publication Number Publication Date
CN107579353A true CN107579353A (zh) 2018-01-12
CN107579353B CN107579353B (zh) 2020-10-09

Family

ID=61034725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710744495.2A Active CN107579353B (zh) 2017-08-25 2017-08-25 基于超表面的高定向性柱状凸面共形反射面天线

Country Status (1)

Country Link
CN (1) CN107579353B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511922A (zh) * 2018-01-25 2018-09-07 西安电子科技大学 基于超表面的多波束高定向性三面夹角反射面天线
CN108808250A (zh) * 2018-06-08 2018-11-13 西安电子科技大学 基于超表面的凸面共形格里高利天线
CN108808252A (zh) * 2018-06-08 2018-11-13 西安电子科技大学 基于超表面的格里高利天线
CN108847530A (zh) * 2018-06-22 2018-11-20 西安电子科技大学 一种三棱锥形具有波束校准功能的超表面天线罩
CN110212309A (zh) * 2019-06-19 2019-09-06 西安电子科技大学 光学变换多波束共形透镜天线
CN110571531A (zh) * 2019-09-27 2019-12-13 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线
CN110729565A (zh) * 2019-10-29 2020-01-24 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
CN111656614A (zh) * 2018-02-06 2020-09-11 华为技术有限公司 透镜、透镜天线、射频拉远单元及基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946466B1 (fr) * 2009-06-04 2012-03-30 Alcatel Lucent Reflecteur secondaire pour une antenne a double reflecteur
CN102904038A (zh) * 2011-07-26 2013-01-30 深圳光启高等理工研究院 一种前馈式雷达天线
CN103036067A (zh) * 2011-03-15 2013-04-10 深圳光启高等理工研究院 一种雷达天线
CN103682665A (zh) * 2012-08-31 2014-03-26 深圳光启创新技术有限公司 一种超材料微波天线
CN205718677U (zh) * 2016-05-06 2016-11-23 浙江大学 三维全极化的超表面隐身衣

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946466B1 (fr) * 2009-06-04 2012-03-30 Alcatel Lucent Reflecteur secondaire pour une antenne a double reflecteur
CN103036067A (zh) * 2011-03-15 2013-04-10 深圳光启高等理工研究院 一种雷达天线
CN102904038A (zh) * 2011-07-26 2013-01-30 深圳光启高等理工研究院 一种前馈式雷达天线
CN103682665A (zh) * 2012-08-31 2014-03-26 深圳光启创新技术有限公司 一种超材料微波天线
CN205718677U (zh) * 2016-05-06 2016-11-23 浙江大学 三维全极化的超表面隐身衣

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511922A (zh) * 2018-01-25 2018-09-07 西安电子科技大学 基于超表面的多波束高定向性三面夹角反射面天线
CN111656614B (zh) * 2018-02-06 2021-10-15 华为技术有限公司 透镜、透镜天线、射频拉远单元及基站
CN111656614A (zh) * 2018-02-06 2020-09-11 华为技术有限公司 透镜、透镜天线、射频拉远单元及基站
US11316277B2 (en) 2018-02-06 2022-04-26 Huawei Technologies Co., Ltd. Lens, lens antenna, remote radio unit, and base station
CN108808250A (zh) * 2018-06-08 2018-11-13 西安电子科技大学 基于超表面的凸面共形格里高利天线
CN108808252A (zh) * 2018-06-08 2018-11-13 西安电子科技大学 基于超表面的格里高利天线
CN108808252B (zh) * 2018-06-08 2020-11-03 西安电子科技大学 基于超表面的格里高利天线
CN108847530A (zh) * 2018-06-22 2018-11-20 西安电子科技大学 一种三棱锥形具有波束校准功能的超表面天线罩
CN110212309A (zh) * 2019-06-19 2019-09-06 西安电子科技大学 光学变换多波束共形透镜天线
CN110571531A (zh) * 2019-09-27 2019-12-13 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线
CN110571531B (zh) * 2019-09-27 2021-07-30 中国电子科技集团公司第三十八研究所 一种基于抛物柱面反射阵的多波束相控阵天线
CN110729565A (zh) * 2019-10-29 2020-01-24 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
CN110729565B (zh) * 2019-10-29 2021-03-30 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备

Also Published As

Publication number Publication date
CN107579353B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN107579353A (zh) 基于超表面的高定向性柱状凸面共形反射面天线
CN108539417B (zh) 一种圆极化轨道角动量反射阵天线
US8390531B2 (en) Reflect array
CN105789908B (zh) 一种新型圆极化或双圆极化柱面龙伯透镜天线
Yang et al. Wideband gain enhancement of an AMC cavity-backed dual-polarized antenna
CN210224293U (zh) 一种固定扇形波束cts阵列天线
Sahoo et al. Gain enhancement of conformal wideband antenna with parasitic elements and low index metamaterial for WiMAX application
CN108664694A (zh) 一种圆极化涡旋电磁波产生方法
CN105552555A (zh) 一种圆极化二维大角度扫描相控阵
CN105762528A (zh) 一种高口径效率反射阵天线
CN104682012A (zh) 渐变波纹加载的高增益低散射夹角反射面
CN103594791B (zh) 超材料板、反射面天线系统及电磁波反射调节方法
Harrison et al. A novel log periodic implementation of a 700 MHz–6 GHz slant polarised fixed-beam antenna array for direction finding applications
Hung et al. Parametric analysis of negative and positive refractive index lens antenna by ANSYS HFSS
Chou et al. Realistic implementation of ellipsoidal reflector antennas to produce near-field focused patterns
CN104393399A (zh) 一种新型复合伞形微带振子
CN108306111A (zh) 基于超表面的格里高利天线
Xu et al. Antipodal Vivaldi antenna for phased array antenna applications
CN107634339A (zh) 基于超表面的高定向性伞状凸面共形反射面天线
Wang et al. Design and optimization of the antenna applied for detecting the voids in tunnel lining by GPR
Guo et al. A Millimeter-Wave 3D-Printed Dual-Polarized Wideband Luneburg Lens Antenna
Lin et al. Design and Simulation of a Wideband GPR Antenna with FSS-MA Shielding
Belous et al. Antennas and antenna devices for radar location and radio communication
Xue-ying et al. Broadband circularly polarized antenna with a T-type fractal boundary wide-slot and a L-shaped strip
Kang et al. A wide-band circularly polarized wide-gap antenna loaded with a Y-shaped metal strip for L-band application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant