CN107578132A - 一种基于免疫优化的垃圾车路径获取方法 - Google Patents

一种基于免疫优化的垃圾车路径获取方法 Download PDF

Info

Publication number
CN107578132A
CN107578132A CN201710814367.0A CN201710814367A CN107578132A CN 107578132 A CN107578132 A CN 107578132A CN 201710814367 A CN201710814367 A CN 201710814367A CN 107578132 A CN107578132 A CN 107578132A
Authority
CN
China
Prior art keywords
individual
arc
garbage truck
population
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710814367.0A
Other languages
English (en)
Other versions
CN107578132B (zh
Inventor
李亚伦
柴争义
党鑫
王玉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201710814367.0A priority Critical patent/CN107578132B/zh
Publication of CN107578132A publication Critical patent/CN107578132A/zh
Application granted granted Critical
Publication of CN107578132B publication Critical patent/CN107578132B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明属于路径优化技术领域,公开了一种基于免疫优化的垃圾车路径获取方法,将垃圾车运输路径问题建模为容量约束的弧路径问题,给出优化的目标函数和约束条件;根据问题特点进行抗体编码,生成初始化种群;对种群中的个体进行亲和度评价,选出亲和度高的个体;对个体进行克隆,交叉,变异操作,生成新的抗体种群;算法达到迭代次数后,输出亲和度最高的抗体;对抗体进行解码输出,得到最优的垃圾车路径方案。本发明的方法复杂度较低,能找到开销较小的运输路径,减少人力财力的浪费。

Description

一种基于免疫优化的垃圾车路径获取方法
技术领域
本发明属于路径优化技术领域,尤其涉及一种基于免疫优化的垃圾车路径获取方法。
背景技术
垃圾回收是现实生活中的一个重要问题,对方便居民生活水平起到了重要的作用。高效的运送路径有利于减少工人的劳动时间,同时也可以减轻交通压力。因此,如何有效的规划垃圾车问题的路径,最大程度上的降低服务车辆多走路、走弯路的可能性,具有非常重要的理论和实际意义。垃圾车路径问题即从一个运送点停车场出发,对所有需要服务的道路进行运送作业。从本质上看,此问题是一个带容量约束的弧路径优化问题,具有NP-hard特点。传统的数学优化方法,如二次规划、线性规划、拉格朗日等,由于对目标函数的特点有比较严格的要求,导致求解复杂度较高,智能优化算法是求解此类问题的有效方法。一种基于基本演化算法的求解方法,取得了较好的效果,但求解效果还有待进一步优化。免疫优化是一种模拟生物免疫系统的优化方法,在工程应用领域得到了广泛应用。
综上所述,现有技术存在的问题是:现有的技术多是采用传统的数学优化方法求解,当需要服务的道路较多时,复杂度较高,很难得到较优的结果。
发明内容
针对现有技术存在的问题,本发明提供了一种基于免疫优化的垃圾车路径获取方法。
本发明是这样实现的,一种基于免疫优化的垃圾车路径获取方法,所述基于免疫优化的垃圾车路径获取方法将垃圾车运输路径问题建模为容量约束的弧路径问题,给出优化的目标函数和约束条件;根据问题特点进行抗体编码,生成初始化种群;对种群中的个体进行亲和度评价,选出亲和度高的个体;对个体进行克隆,交叉,变异操作,生成新的抗体种群;算法达到迭代次数后,输出亲和度最高的抗体;对抗体进行解码输出,得到最优的垃圾车路径方案。
进一步,所述编码与种群初始化具体包括:
(1)预处理输入的数据,生成两个数组:两点之间最短距离数组和前驱数组,运用Floyd算法对任意两点之间的长度进行求解;
(2)个体编码,一条个体表示一辆服务车的服务路径,则该问题的解为若干条个体的集合;采用二进制编码,服务道路为1,空驶道路为0,个体为1时,其对应一条弧的编号;个体的编码长度代表一次服务路径经过弧的条数,包括服务路段和空驶路段,生成的个体chrom(k)={2,5,6,12,...,15,4,5,18},个体表示运送车依次对弧编号为2,5,6,12,...,15,4,3,18的弧进行运送作业,其中约定每条个体不加入车场;
(3)种群的亲和度函数为fitness(pop(k)),迭代公式为:
(4)种群初始化,
步骤1:对道路中的弧进行编号,车场默认为1;
步骤2:随机生成一条个体{r1,r2,...,rn},代表服务路段的弧编号,并且满足约束条件:∑ri≤Q;
步骤3:如果∑ri<Q,且存在某一条弧可以加入个体集合,使得∑ri+1≤Q,则将ri+1加入初始个体,并重复此操作直至无法再加入弧;
步骤4:完成一条个体的填充后,接着进行其他个体的填充,具体步骤同步骤2和步骤3所示;
步骤5:所有个体初始化完毕,构成一个初始的种群。
进一步,采用锦标赛选择法进行个体的选择,随机挑选若干个体,筛选出最好的个体作为父代个体,锦标赛的规模为[2,NIND],其中NIND表示个体数目。
进一步,个体的交叉采用顺序交叉的方法对选择出的父代个体进行交叉操作,取父代个体p2的第二交叉处开始的排列,顺次取值,到达个体尾部时,从个体首部开始取值,得到一个全新的排列顺序,记为p′2=(934521876);同时父代个体p1中第一交叉处和第二交叉处之间的元素为(4567),去除p′2中的(4567),得到子式(93218),再将这个子式传递给父代个体p1,从第二交叉处开始复制,达到个体尾部时,转向首部继续复制,得到o1=(218456793),同理得到o2=(345187692)。
进一步,个体的变异,取变异概率pm=0.03为基准,采用分段变异率,前一段为恒定变异率pm=0.03,后一段变异率则跟遗传代数成反比,pm=0.03-0.000006*gen,其中gen为当前遗传代数。
进一步,局部搜索采用简化的密母策略,当前个体中的弧对为(i,j),通过对以下四个条件进行处理,如果个体的适应度提高则保留改变,并完成局部搜索;
(1)判断(i,j)和(j,i)是否为同一条路径,互为相反、端点相同的弧路径,如果个体的适应度降低,i和j的值互相交换;
(2)在弧j后插入弧i;
(3)在弧j后插入弧对(i,x),x的位置随机产生,但是满足x∈[i+1,j-1]。
(4)将i后面的一条弧和j前面的一条弧之间的所有弧颠倒顺序。
进一步,个体解码,个体为S=(241365),容量Q=9,则车辆分配K=(111223),路径分别表示为(σ2 4 1σ)、(σ5σ),其中σ为车场。
本发明的另一目的在于提供一种使用所述基于免疫优化的垃圾车路径获取方法的垃圾车。
本发明的优点及积极效果为:保证在垃圾车路径规模较大时候,算法复杂度较低,能找到开销较小的运输路径,减少人力财力的浪费。将垃圾车路径路径问题转化为带容量约束的弧路径优化问题,并建立相应的数学模型;根据问题的NP难特性,提出了一种免疫算法进行求解。设计了适合问题求解的锦标赛选择法、顺序交叉法、自适应变异等免疫算子,并设计了局部搜索策略,避免算法陷入局部最优。实验结果表明,所提算法能得到代价最小的运送路径。
附图说明
图1是本发明实施例提供的基于免疫优化的垃圾车路径获取方法流程图。
图2是本发明实施例提供的个体编码方式示意图。
图3是本发明实施例提供的个体解码初始路线图。
图4是本发明实施例提供的个体解码最终路线图。
图5是本发明实施例提供的道路图样例示意图。
图6是本发明实施例提供的样例二道路网路图。
图7是本发明实施例提供的样例三道路网络图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
垃圾回收是现实生活中的一个重要问题,对方便居民生活水平起到了重要的作用。高效的运送路径有利于减少工人的劳动时间,同时也可以减轻交通压力。因此,如何有效的规划垃圾车问题的路径,最大程度上的降低服务车辆多走路、走弯路的可能性,具有非常重要的理论和实际意义。
下面结合附图对本发明的应用原理作详细的描述。
如图1所示,本发明实施例提供的基于免疫优化的垃圾车路径获取方法包括以下步骤:
S101:将垃圾车运输路径问题建模为容量约束的狐路径问题,给出优化的目标函数和约束条件;
S102:根据问题特点进行抗体编码,生成初始化种群,即为候选方案;
S103:对种群中的个体进行亲和度评价,选出亲和度高的个体;
S104:对个体进行克隆,交叉,变异操作,生成新的抗体种群;
S105:算法达到迭代次数后,输出亲和度最高的抗体;
S106:对抗体进行解码输出,即可得到最优的垃圾车路径方案。
下面结合附图对本发明的应用原理作进一步的描述。
1垃圾车路径路径问题建模
已知某市有且只有一个车场(depot)为运送车的始发站,该车场内有若干辆运送车(服务车),每辆运送车只能装载定量的物资,现在要对城市内的若干条道路进行运送作业。城市内的道路可以分为需求服务道路和非需求服务道路,分别称之为服务道路和空驶道路;所有服务道路均需要消耗运送量和燃油的行驶成本;空驶道路车辆只消耗燃油的行驶成本;要求每辆服务车从车场出发,只访问一次需求服务道路并最终回到车场,且服务道路需求的物资不能超过服务车装载的最大量。因此,问题即为:已知运送车进行每条道路运送时的消耗,设计算法求解消耗最少、使用运送车数量最少的解决方案。
经过分析,将其建模为容量约束的弧路径问题。具体如下:在无向连通图中,设置一个顶点作为车场,从车场作为发车点,发送若干有容量限制的服务车辆。从车场确定一条路径,在该路径上的所有需求边的非负需求量之和不能超过服务车辆的容量,并且服务车返回车场。
设图G=(V,E,A),其中V代表图中的顶点,E代表图中的边(双向道路),A代表图中的弧(单向道路),其中需求服务边集ER∈E,需求服务弧集AR∈A。顶点dep∈V为车场点,每辆服务车的容量是Q。问题转换为:已知在图G中找出m条路径(分别由m辆服务车运行),求解车辆路径总费用最小。
其中,各个符号定义如下:G=(V,E,A)表示道路图;Q表示每辆车的容量,即最大服务量;K表示运送车辆总数;N表示道路中服务道路总数;V={v1,v2,...,vn}表示图中顶点的集合,其中σ表示车场(depot);E={ei,i∈V}表示图中边的集合;A={ai,i∈V}表示图中弧的集合,其中边可以看作双向弧;R={ri∈A,i∈V}表示图中需要服务的弧的集合;Ti表示第i辆车的服务路径;|Ti|表示路径Ti中服务道路的数量;Si,j表示第i辆车服务路径中的第j条弧;COST(Ti)表示路径Ti的服务成本;demand(Ti)表示路径Ti的服务需求量;SC(Si,j)表示的路径Ti中第j条弧的服务成本,其中Si,j∈A;DE(Si,j)表示的路径Ti中第j条弧的服务需求量,其中Si,j∈R;SCMin(Si,j,S1,j+1)表示在第i辆车服务路径中,第j条弧的终点到第j+1条弧的起点之间的最小服务成本,其中Si,j,Si,j+1∈A。
根据上面的分析,问题建模为:
(1)垃圾车路径问题目标:
(2)约束条件:
根据以上模型,做出如下说明:式(1)为垃圾车路径问题的目标函数,是问题中所有运送车消耗的最小值。式(2)表明每辆运送车完成一次运送作业所携带的量不能超过问题规定的运送车容量Q。式(3)计算了运送车路线的消耗,其成本包括服务道路成本和空驶道路成本。式(4)表明需求运送作业的路段数量之和必须为N,即每条服务道路均需要服务。式(5)和式(6)保证了服务道路路径不会出现重复访问,即每条服务道路只会被一辆运送车服务。
2基于免疫优化的实现
2.1算法基本步骤
算法基本步骤如下:
(1)将垃圾车运输路径问题建模为容量约束的狐路径问题,给出优化的目标函数和约束条件;
(2)根据问题特点进行抗体编码,生成初始化种群,即为候选方案;
(3)对种群中的个体进行亲和度评价,选出亲和度高的个体;
(4)对个体进行克隆,交叉,变异操作,生成新的抗体种群;
(5)算法达到迭代次数后,输出亲和度最高的抗体;
(6)对抗体进行解码输出,即可得到最优的垃圾车路径方案。
2.2编码与种群初始化
(1)预处理
首先预处理输入的数据,生成两个数组:两点之间最短距离数组和前驱数组。可以运用Floyd算法对任意两点之间的长度进行求解。Floyd算法利用了单源最短路径的思路,不断地进行松弛处理,求得道路图中每对结点之间的最短路径。由于服务路段需求的运送量不可能为负数,所以可以使用Floyd算法来进行求解。
(2)个体编码
设一条个体表示一辆服务车的服务路径,则该问题的解为若干条个体的集合。本发明采用二进制编码的方法,设服务道路为1,空驶道路为0,个体为1时,其对应一条弧的编号,如图2所示:
其中,个体的编码长度代表一次服务路径经过弧的条数,包括服务路段和空驶路段,生成的个体chrom(k)={2,5,6,12,...,15,4,5,18},该个体表示运送车依次对弧编号为2,5,6,12,...,15,4,3,18的弧进行运送作业,其中约定每条个体不加入车场(编号为1)。
为了保证解的可行性与正确性,个体编码的长度取决于运送车的容量Q,即每条弧编号的需求量之和不能超过运送车的容量,除此之外,个体长度也要等于需求服务路径的总数量N。
(3)亲和度函数
这里将待求解的函数直接作为亲和度函数。
设种群的亲和度函数为fitness(pop(k)),则可得构造函数的迭代公式为:
亲和度函数求得的数值越大,则个体的亲和度越高,表明该个体在种群中更适宜生存。
(4)种群初始化
种群初始化(包括个体初始化)均为随机生成的,步骤如下:
步骤1:对道路中的弧(包括服务路段和空驶路段)进行编号,车场默认为1;
步骤2:随机生成一条个体{r1,r2,...,rn},代表服务路段的弧编号,并且满足约束条件:∑ri≤Q;
步骤3:如果∑ri<Q,且存在某一条弧可以加入个体集合,使得∑ri+1≤Q,则将ri+1加入初始个体,并重复此操作直至无法再加入弧;
步骤4:完成一条个体的填充后,接着进行其他个体的填充,具体步骤同步骤2和步骤3所示;
步骤5:所有个体初始化完毕,构成一个初始的种群。
(5)约束条件的处理
问题需要满足五个约束条件,在上述操作中均进行了编码实现:
对于式(2),满足该约束条件,使每辆运送车运送作业的总量不超过容量Q,可以在生成路径线路时,添加判定条件,当加入的服务路径超过剩余容量时,舍弃该路径,并选择其他符合该条件的路径。
对于式(3),运送车的总消耗为服务路径和空驶路径的消耗之和,由于本问题研究的变量有两个,SC(Si,j)表示车辆的行驶成本,DE(Si,j)表示车辆的服务需求量,服务路径包括SC(Si,j)与DE(Si,j),而空驶路径只含有SC(Si,j),此时对空驶路径,设SC(Si,j)=0,即可将两类路径统一成一类。式(3)使用的算法是Floyd求最短路径。
对于式(4)、(5)、(6),要求服务路径数量之和必须为N,即每条服务路径均被访问。使用免疫算法,将个体长度定为N(服务路径的总数量),即可保证每次生成的车辆线路必定包含N个不相同的服务路径,详见个体编码。
2.3免疫算子
(1)个体的选择
这里采用锦标赛选择法进行个体的选择。在该方法中,首先随机挑选若干个体,然后筛选出最好的个体作为父代个体,锦标赛的规模为[2,NIND],其中NIND表示个体数目(Number of individuals),选择强度与锦标赛规模的关系如表1所示。
表1锦标赛规模与选择强度关系表
可见锦标赛选择与其他选择方法不同之处在于,随着规模的增加,选择强度也同样增加,而其他方法规模与强度成反比。对于解决CARP问题,锦标赛选择法更合适。
(2)个体的交叉
这里采用顺序交叉的方法对上一步选择出的父代个体进行交叉操作,经过大量的实验数据验证可得,对于CARP问题,根据实验分析与验证,取最适交叉概率pc=0.8。顺序交叉流程如下所示:
对该样例进行顺序交叉操作的解释为:取父代个体p2的第二交叉处开始的排列,顺次取值,到达个体尾部时,从个体首部开始取值,从而得到一个全新的排列顺序,记为p′2=(934521876);同时父代个体p1中第一交叉处和第二交叉处之间的元素为(4567),去除p′2中的(4567),可以得到子式(93218),再将这个子式传递给父代个体p1,从第二交叉处开始复制,达到个体尾部时,转向首部继续复制,可以得到o1=(218456793),同理可以得到o2=(345187692)。
(3)个体的变异
在进行变异个体操作前,必须要判断子代个体的可行性,即编码是否符合需求量之和不超过车辆水容量。如果不判断可行性条件,则会将已经失败的个体计算,降低处理效率。
根据实验分析与验证,取最适变异概率pm=0.03为基准,采用分段变异率,前一段为恒定变异率pm=0.03,后一段变异率则跟遗传代数成反比,pm=0.03-0.000006*gen,其中gen为当前遗传代数,系数可自行调整。以此概率随机对个体的编码进行突变,即将两个位置的编码进行交换。交换的过程是随机的。
(4)局部搜索
为了避免算法陷入局部最优,本发明采用一种局部搜索策略进行性能提升。本发明采用简化的密母策略,更适合问题的求解。本发明采用的局部搜索的思想是:先假设当前个体中的弧对为(i,j),通过对以下四个条件进行处理,如果个体的适应度提高则保留改变,并完成该次局部搜索。
(1)判断(i,j)和(j,i)是否为同一条路径,即互为相反、端点相同的弧路径,如果个体的适应度降低,i和j的值互相交换;
(2)在弧j后插入弧i;
(3)在弧j后插入弧对(i,x),x的位置随机产生,但是满足x∈[i+1,j-1]。
(4)将i后面的一条弧和j前面的一条弧之间的所有弧颠倒顺序。
(5)个体解码
完成以上操作,可以挑选出适应度更高的个体,同时去除性能较差的个体,来形成新的种群,经过一定规模的进化次数逐步达到最优解。
最后一步对已经形成的种群和个体进行解码操作,并得到CARP的总花费。假设个体为S=(241365),容量Q=9,则车辆分配K=(111223)。路径分别表示为(σ2 4 1σ)、(σ5σ),其中σ为车场。图3和图4表示车辆路径的方案。上例所示,由三辆运送车完成道路网络,其中CARP总花费为51+40+50=141,得到消耗的最优解。
下面结合实验对本发明的应用效果作详细的描述。
1实验结果分析与对比
实验数据集为通用测试集—Egl数据集中的三个实例。假设X市某区域春季需求运送作业,现在制定一个构造最优解的方案,使运送作业总花费(车辆行驶总里程)最小,如果总花费最小有多种情况,则选择使用运送车最少的那一种方案。现在做出如下约定:
(1)每米运送量均为常量,即运送总量只和车辆行驶里程成正比,假设运送车在服务道路上每行驶一米,运送车消耗一单位的物资量;
(2)所有运送车均有相同的容量限制,假设运送车最多能容纳1500单位的物资量;
(3)运送车的消耗只和行驶里程有关,不考虑其他干扰因素。
迭代次数为100,种群规模为100;变量的二进制数目与个体位数相等,即该样例中弧的总数30个,本算例设每辆运送车的容量均为1500单位。
该区域道路图如图5所示:
根据上图,可以得到道路图中弧的关系,如下表2所示,根据Floyd算法,可以求得每个顶点之间的最短路径,如下表2所示。
表2道路图中弧的关系
编号 1 2 3 4 5 6 7 8 9 10
起点 1 1 2 2 2 3 3 4 4 5
终点 2 5 3 5 6 2 4 3 8 1
弧长 158 166 132 228 162 142 105 105 191 166
编号 11 12 13 14 15 16 17 18 19 20
起点 5 6 6 6 6 6 7 7 7 7
终点 6 2 5 7 9 10 3 6 8 11
弧长 144 173 145 130 220 174 202 124 112 185
编号 21 22 23 24 25 26 27 28 29 30
起点 8 8 8 9 9 10 10 11 11 12
终点 4 11 12 5 10 6 7 7 10 11
弧长 183 145 192 195 150 174 233 185 138 115
表3Floyd求解样例
1 2 3 4 5 6 7 8 9 10 11 12
1 0 158 290 395 166 310 440 552 530 484 625 744
2 394 0 132 237 228 162 292 404 382 336 47 596
3 536 142 0 105 370 304 434 296 524 478 441 488
4 641 247 105 0 475 409 521 191 629 474 336 383
5 166 317 449 554 0 144 274 386 364 318 459 578
6 311 173 305 410 145 0 130 242 220 174 315 434
7 435 297 202 295 269 124 0 112 355 298 185 304
8 765 430 288 183 599 454 330 0 674 283 145 192
9 361 497 585 678 195 324 383 495 0 150 568 687
10 485 347 435 528 319 174 233 345 394 0 418 537
11 620 482 387 480 454 309 185 297 529 138 0 489
12 735 597 502 595 569 424 300 412 644 253 115 0
本例中,6943是该样例的最优解。最优解初始个体为:5-16-26-25-27-17-6-10-2-11-15-24-1-3-7-9-23-30-18-12-4-14-19-21-8-22-28-20-29-13,平均计算时间为15.98s。
为了说明本发明算法的有效性,与文献[要婷婷.基于模因演化算法的有限容量弧路径问题研究[D].北京交通大学,2016.]进行了对比分析,实验结果如下所示。
表4相关算法对比
为了进一步说明本发明算法,这里额外添加了两组测试样例进行对比。将样例一中的弧路径和消耗量做出了适当的调整得到样例二与样例三,图6和图7分别为样例二和样例三的道路网络图。
其中,样例二解的结果对比见表5。可以发现本发明算法在最优解数值、迭代次数、运行时间上均有较好的表现。
表5相关算法对比(样例2)
表6相关算法比较(样例3)
根据以上三个实验样例,可知算法在最优解数值、迭代次数、运行时间上均有所优化,并且均能得到问题的最优解。
本发明对垃圾车路径路径问题的设计与实现,将具体的实际应用问题抽象成带容量约束的弧路径问题,建立了相应的数学模型,并利用免疫算法进行求解,实验结果表明了算法的有效性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于免疫优化的垃圾车路径获取方法,其特征在于,所述基于免疫优化的垃圾车路径获取方法将垃圾车运输路径问题建模为容量约束的弧路径问题,给出优化的目标函数和约束条件;根据问题特点进行抗体编码,生成初始化种群;对种群中的个体进行亲和度评价,选出亲和度高的个体;对个体进行克隆,交叉,变异操作,生成新的抗体种群;算法达到迭代次数后,输出亲和度最高的抗体;对抗体进行解码输出,得到最优的垃圾车路径方案。
2.如权利要求1所述的基于免疫优化的垃圾车路径获取方法,其特征在于,所述编码与种群初始化具体包括:
(1)预处理输入的数据,生成两个数组:两点之间最短距离数组和前驱数组,运用Floyd算法对任意两点之间的长度进行求解;
(2)个体编码,一条个体表示一辆服务车的服务路径,则该问题的解为若干条个体的集合;采用二进制编码,服务道路为1,空驶道路为0,个体为1时,其对应一条弧的编号;个体的编码长度代表一次服务路径经过弧的条数,包括服务路段和空驶路段,生成的个体chrom(k)={2,5,6,12,...,15,4,5,18},个体表示运送车依次对弧编号为2,5,6,12,...,15,4,3,18的弧进行运送作业,其中约定每条个体不加入车场;
(3)种群的亲和度函数为fitness(pop(k)),迭代公式为:
<mrow> <mi>f</mi> <mi>i</mi> <mi>t</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>p</mi> <mi>o</mi> <mi>p</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>/</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <mi>f</mi> <mi>i</mi> <mi>t</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>c</mi> <mi>h</mi> <mi>r</mi> <mi>o</mi> <mi>m</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
(4)种群初始化,
步骤一,对道路中的弧进行编号,车场默认为1;
步骤二,随机生成一条个体{r1,r2,...,rn},代表服务路段的弧编号,并且满足约束条件:∑ri≤Q;
步骤三,如果∑ri<Q,且存在某一条弧可以加入个体集合,使得∑ri+1≤Q,则将ri+1加入初始个体,并重复此操作直至无法再加入弧;
步骤四,完成一条个体的填充后,接着进行其他个体的填充,具体步骤同步骤二和步骤三所示;
步骤五,所有个体初始化完毕,构成一个初始的种群。
3.如权利要求1所述的基于免疫优化的垃圾车路径获取方法,其特征在于,采用锦标赛选择法进行个体的选择,随机挑选若干个体,筛选出最好的个体作为父代个体,锦标赛的规模为[2,NIND],其中NIND表示个体数目。
4.如权利要求1所述的基于免疫优化的垃圾车路径获取方法,其特征在于,个体的交叉采用顺序交叉的方法对选择出的父代个体进行交叉操作,取父代个体p2的第二交叉处开始的排列,顺次取值,到达个体尾部时,从个体首部开始取值,得到一个全新的排列顺序,记为p′2=(934521876);同时父代个体p1中第一交叉处和第二交叉处之间的元素为(4567),去除p′2中的(4567),得到子式(93218),再将这个子式传递给父代个体p1,从第二交叉处开始复制,达到个体尾部时,转向首部继续复制,得到o1=(218456793),同理得到o2=(345187692)。
5.如权利要求1所述的基于免疫优化的垃圾车路径获取方法,其特征在于,个体的变异,取变异概率pm=0.03为基准,采用分段变异率,前一段为恒定变异率pm=0.03,后一段变异率则跟遗传代数成反比,pm=0.03-0.000006*gen,其中gen为当前遗传代数。
6.如权利要求1所述的基于免疫优化的垃圾车路径获取方法,其特征在于,局部搜索采用简化的密母策略,当前个体中的弧对为(i,j),通过对以下四个条件进行处理,如果个体的适应度提高则保留改变,并完成局部搜索;
(1)判断(i,j)和(j,i)是否为同一条路径,互为相反、端点相同的弧路径,如果个体的适应度降低,i和j的值互相交换;
(2)在弧j后插入弧i;
(3)在弧j后插入弧对(i,x),x的位置随机产生,但是满足x∈[i+1,j-1];
(4)将i后面的一条弧和j前面的一条弧之间的所有弧颠倒顺序。
7.如权利要求1所述的基于免疫优化的垃圾车路径获取方法,其特征在于,个体解码,个体为S=(241365),容量Q=9,则车辆分配K=(111223),路径分别表示为(σ2 4 1σ)、(σ5σ),其中σ为车场。
8.一种使用权利要求1~7任意一项所述基于免疫优化的垃圾车路径获取方法的垃圾车。
CN201710814367.0A 2017-09-11 2017-09-11 一种基于免疫优化的垃圾车路径获取方法 Expired - Fee Related CN107578132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710814367.0A CN107578132B (zh) 2017-09-11 2017-09-11 一种基于免疫优化的垃圾车路径获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710814367.0A CN107578132B (zh) 2017-09-11 2017-09-11 一种基于免疫优化的垃圾车路径获取方法

Publications (2)

Publication Number Publication Date
CN107578132A true CN107578132A (zh) 2018-01-12
CN107578132B CN107578132B (zh) 2020-09-08

Family

ID=61033534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710814367.0A Expired - Fee Related CN107578132B (zh) 2017-09-11 2017-09-11 一种基于免疫优化的垃圾车路径获取方法

Country Status (1)

Country Link
CN (1) CN107578132B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110009259A (zh) * 2019-04-18 2019-07-12 天津工业大学 一种应用于双向路径下柔性制造车间的多agv调度方法
CN110059848A (zh) * 2019-03-06 2019-07-26 佛山市顺德区中山大学研究院 Wsn充电服务站点设定方法及充电设备行驶路径规划方法
CN111337042A (zh) * 2020-03-13 2020-06-26 湖北大学 一种车辆路径规划方法及系统
CN112033430A (zh) * 2020-08-24 2020-12-04 安庆师范大学 一种改进的基于大规模多中心问题的路径规划方法
CN112434881A (zh) * 2020-12-09 2021-03-02 长春理工大学 一种充电站位置筛选方法及系统
CN112801163A (zh) * 2021-01-22 2021-05-14 安徽大学 基于动态图结构的小鼠模型海马生物标记物的多目标特征选择方法
CN113191672A (zh) * 2021-05-20 2021-07-30 哈尔滨工业大学 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统
CN113408922A (zh) * 2021-06-29 2021-09-17 昆明理工大学 一种餐厨垃圾回收过程的车辆优化调度方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360401A (zh) * 2011-10-14 2012-02-22 南京理工大学 一种基于遗传算法的城市轨道交通节能运行图设计方法
CN103324982A (zh) * 2013-06-07 2013-09-25 银江股份有限公司 一种基于遗传算法的路径规划方法
CN106527132A (zh) * 2016-11-10 2017-03-22 华南理工大学 基于遗传模拟退火算法的蛇形机器人运动控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360401A (zh) * 2011-10-14 2012-02-22 南京理工大学 一种基于遗传算法的城市轨道交通节能运行图设计方法
CN103324982A (zh) * 2013-06-07 2013-09-25 银江股份有限公司 一种基于遗传算法的路径规划方法
CN106527132A (zh) * 2016-11-10 2017-03-22 华南理工大学 基于遗传模拟退火算法的蛇形机器人运动控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAI ZHENG-YI;YAN XUE-YANG;LI YA-LUN;ZHU SI-FENG: ""Throughput optimization in cognitive wireless network based on clone selection algorithm"", 《COMPUTERS & ELECTRICAL ENGINEERING》 *
王玉林: ""基于免疫算法的个性化推荐系统"", 《电脑与电信》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110059848B (zh) * 2019-03-06 2021-06-08 佛山市顺德区中山大学研究院 Wsn充电服务站点设定方法及充电设备行驶路径规划方法
CN110059848A (zh) * 2019-03-06 2019-07-26 佛山市顺德区中山大学研究院 Wsn充电服务站点设定方法及充电设备行驶路径规划方法
CN110009259A (zh) * 2019-04-18 2019-07-12 天津工业大学 一种应用于双向路径下柔性制造车间的多agv调度方法
CN111337042B (zh) * 2020-03-13 2021-11-02 湖北大学 一种车辆路径规划方法及系统
CN111337042A (zh) * 2020-03-13 2020-06-26 湖北大学 一种车辆路径规划方法及系统
CN112033430A (zh) * 2020-08-24 2020-12-04 安庆师范大学 一种改进的基于大规模多中心问题的路径规划方法
CN112033430B (zh) * 2020-08-24 2023-08-29 安庆师范大学 一种改进的基于大规模多中心问题的路径规划方法
CN112434881A (zh) * 2020-12-09 2021-03-02 长春理工大学 一种充电站位置筛选方法及系统
CN112434881B (zh) * 2020-12-09 2023-07-25 长春理工大学 一种充电站位置筛选方法及系统
CN112801163A (zh) * 2021-01-22 2021-05-14 安徽大学 基于动态图结构的小鼠模型海马生物标记物的多目标特征选择方法
CN112801163B (zh) * 2021-01-22 2022-10-04 安徽大学 基于动态图结构的小鼠模型海马生物标记物的多目标特征选择方法
CN113191672A (zh) * 2021-05-20 2021-07-30 哈尔滨工业大学 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统
CN113408922A (zh) * 2021-06-29 2021-09-17 昆明理工大学 一种餐厨垃圾回收过程的车辆优化调度方法

Also Published As

Publication number Publication date
CN107578132B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
CN107578132A (zh) 一种基于免疫优化的垃圾车路径获取方法
Xiao et al. Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption
Chobar et al. Multi-objective hub-spoke network design of perishable tourism products using combination machine learning and meta-heuristic algorithms
James et al. Online vehicle routing with neural combinatorial optimization and deep reinforcement learning
Ma et al. Distribution path robust optimization of electric vehicle with multiple distribution centers
Ma et al. A multi-objective robust optimization model for customized bus routes
CN111428931B (zh) 物流配送线路规划方法、装置、设备及存储介质
CN106197455B (zh) 一种城市交通路网实时动态多路口路径导航量子搜索方法
CN111553507B (zh) 基于多商品流的中欧集装箱运输方案优化方法
Wang et al. Research on optimal hub location of agricultural product transportation network based on hierarchical hub-and-spoke network model
Raghunathan et al. Seamless multimodal transportation scheduling
CN108256969A (zh) 一种公共自行车租赁点调度区域划分方法
Sanchez et al. On the performance of shared autonomous bicycles: A simulation study
CN113990062B (zh) 垃圾运输车辆调度方法、装置、可读存储介质及服务器
Ghatee et al. Generalized minimal cost flow problem in fuzzy nature: an application in bus network planning problem
CN112785085B (zh) 一种配送路径优化方法及装置
CN116151499A (zh) 一种基于改进模拟退火算法的智能多式联运路径规划方法
CN104331746A (zh) 一种分离式的动态路径优化系统及其方法
Nunes et al. Solving the multi‐objective bike routing problem by meta‐heuristic algorithms
Sun et al. Two-stage vehicle routing optimization for logistics distribution based on HSA-HGBS algorithm
Wen et al. Hierarchical Sarsa learning based route guidance algorithm
CN113988570A (zh) 一种基于多目标进化算法的旅游大巴车调度优化方法
Kshirsagar et al. Rethinking Traffic Management with Congestion Pricing and Vehicular Routing for Sustainable and Clean Transport.
Kiruthika et al. Recommendation of Sustainable Route Optimization for Travel and Tourism
Qin et al. Vehicle Routing Problem Based on Heuristic Artificial Fish School Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200908

Termination date: 20210911

CF01 Termination of patent right due to non-payment of annual fee