CN107578123A - A kind of Electronic Optics System of Traveling Wave Tube optimization method based on NSGA II - Google Patents
A kind of Electronic Optics System of Traveling Wave Tube optimization method based on NSGA II Download PDFInfo
- Publication number
- CN107578123A CN107578123A CN201710747275.5A CN201710747275A CN107578123A CN 107578123 A CN107578123 A CN 107578123A CN 201710747275 A CN201710747275 A CN 201710747275A CN 107578123 A CN107578123 A CN 107578123A
- Authority
- CN
- China
- Prior art keywords
- nsga
- optical system
- traveling wave
- wave tube
- electron optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 51
- 238000004422 calculation algorithm Methods 0.000 claims description 19
- 230000035772 mutation Effects 0.000 claims description 9
- 230000002068 genetic effect Effects 0.000 claims description 8
- 239000013598 vector Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 238000004088 simulation Methods 0.000 claims description 3
- 238000013459 approach Methods 0.000 abstract description 4
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明属于微波电真空技术领域,具体涉及一种基于NSGA‑II的行波管电子光学系统优化方法。本发明以多级降压收集极的电压作为优化参数,通过理论计算最佳的多级降压收集极电压来确定优化参数的大致范围,把多级降压收集极效率和电子回流率作为优化目标,利用NSGA‑II去逼近全局最优解,实现行波管电子光学系统的优化。本发明实现了行波管电子光学系统的综合性能优化,克服人工手动调试无法兼顾多个优化目标的问题,克服人工手动调试对系统使用者的经验要求,以及带来的不确定性;在同等条件下,相比于暴力扫描的方法,本发明速度提升非常明显,在优化复杂度增加到4级降压收集极时,本发明有几百倍的速度优势。
The invention belongs to the field of microwave electric vacuum technology, and in particular relates to a method for optimizing an electron optical system of a traveling wave tube based on NSGA-II. In the present invention, the voltage of the multi-stage step-down collector is used as an optimization parameter, and the approximate range of the optimization parameters is determined by theoretically calculating the best multi-stage step-down collector voltage, and the efficiency of the multi-stage step-down collector and the electron return rate are used as optimization parameters The goal is to use NSGA‑II to approach the global optimal solution and realize the optimization of the traveling wave tube electron optical system. The present invention realizes the comprehensive performance optimization of the electronic optical system of the traveling wave tube, overcomes the problem that manual manual debugging cannot take into account multiple optimization targets, overcomes the experience requirements of system users and the uncertainty brought by manual manual debugging; Under certain conditions, compared with the method of violent scanning, the speed improvement of the present invention is very obvious. When the optimization complexity is increased to a 4-level step-down collector, the present invention has a speed advantage of several hundred times.
Description
技术领域technical field
本发明属于微波电真空技术领域,具体涉及一种基于NSGA-II(Non-dominatedSorting Genetic Algorithms II:非支配排序遗传算法II)的行波管电子光学系统优化方法。The invention belongs to the field of microwave electric vacuum technology, and in particular relates to a method for optimizing an electronic optical system of a traveling wave tube based on NSGA-II (Non-dominated Sorting Genetic Algorithms II: Non-dominated Sorting Genetic Algorithms II).
背景技术Background technique
行波管是一类在现代军事、通信领域内广泛使用的微波真空电子器件,具有十分重要的作用。行波管电子光学系统由电子枪、磁聚焦系统和降压收集极三部分组成。行波管电子光学系统的设计是行波管设计中的重要一环。降压收集极普遍采用多级降压收集极,多级降压收集极的效率和电子回流率是行波管电子光学系统的两个关键指标。调节多级降压收集极的电压是优化行波管电子光学系统性能的主要方法。Traveling wave tube is a kind of microwave vacuum electronic device widely used in modern military and communication fields, and plays a very important role. The traveling wave tube electron optical system consists of three parts: electron gun, magnetic focusing system and step-down collector. The design of the electron optical system of the traveling wave tube is an important part in the design of the traveling wave tube. Step-down collectors generally use multi-stage step-down collectors. The efficiency and electron return rate of multi-stage step-down collectors are two key indicators of the electron optical system of the traveling wave tube. Regulating the voltage of multi-stage step-down collectors is the main method to optimize the performance of TWT electron optical system.
目前,行波管电子光学系统的优化主要依靠人工手动调试:首先依靠经验设置初始行波管多级降压收集极的各级电压,然后固定其他各级电压不变,调节其中一级收集极电压至最优;然后再调节另一极电压,固定其他极电压不变,直至最优;依次重复,调节各级电压。这种优化方法原理简单,但是存在如下缺陷:1、无法找到行波管电子光学系统的最佳工作状态。由于电压取值范围内遍布着局部最优解(如图4所示),所以这种传统的方式就极大程度的依赖初始电压的设置。最终找到的是初始电压的附近的局部最优解,无法保证找到全局的最优解。2、无法兼顾多级降压收集极的效率和电子回流率的优化。多级降压收集极的效率和电子回流率之间没有固定的映射关系。同样优化效果的电压解集也没有聚集在一起,所以优化收集极效率难以同时兼顾优化电子回流率。3、严重依靠调试人员的经验,优化结果不可复制。设置不同的初始多级降压收集极各级电压、各级电压调节顺序、电压变化步长不同都会得到不同的优化结果,并且当系统的相关参数改变后使用同样的手动调试过程也不能保证得到一样的优化结果。At present, the optimization of the TWT electron-optical system mainly relies on manual debugging: first, rely on experience to set the voltages of the initial multi-stage step-down collectors of the TWT, then fix the voltages of the other levels unchanged, and adjust one of the collectors Adjust the voltage to the optimum; then adjust the voltage of the other pole, and keep the voltage of the other poles constant until the optimum; repeat in turn to adjust the voltage of each level. This optimization method is simple in principle, but has the following defects: 1. It is impossible to find the best working state of the electron optical system of the traveling wave tube. Since there are local optimal solutions (as shown in FIG. 4 ) in the range of voltage values, this traditional method greatly depends on the setting of the initial voltage. What is finally found is a local optimal solution near the initial voltage, and there is no guarantee to find a global optimal solution. 2. It is impossible to take into account the optimization of the efficiency of the multi-stage step-down collector and the electron return rate. There is no fixed mapping between the efficiency of a multi-stage step-down collector and the electron return rate. The voltage solutions for the same optimization effect are not gathered together, so it is difficult to optimize the collector efficiency while optimizing the electron return rate. 3. Relying heavily on the experience of debuggers, the optimization results cannot be copied. Setting different initial multi-level step-down collector voltages at each level, the order of voltage adjustment at each level, and the step size of voltage change will result in different optimization results, and when the relevant parameters of the system are changed, the same manual debugging process cannot be guaranteed to obtain same optimization result.
还有一种可以找到行波管电子光学系统的最佳工作状态的方法就是暴力扫描所有的收集极电压,然后提取所有的扫描计算结果,并根据优化目标进行排序,即可得到最佳行波管电子光学系统的工作状态。这种方法的原理也非常简单,但是纯在以下缺陷:1、效率极其低下,不具备应用价值。Another way to find the best working state of the traveling wave tube electron optical system is to violently scan all the collector voltages, and then extract all the scanning calculation results, and sort them according to the optimization goal to get the best traveling wave tube The working state of the electron optical system. The principle of this method is also very simple, but purely in the following defects: 1, the efficiency is extremely low and does not have application value.
NSGA-II是多目标优化领域中非常优秀的算法之一,它把多目标优化的思想应用到遗传算法中,并采用快速非支配排序,使得NSGA-II可以同时优化多个目标函数。NSGA-II具有时间复杂度低,收敛速度快,解集分布均匀等优点,在许多领域都取得了不错的优化效果。通常考虑的多目标优化问题,可以定义为在一组约束条件下,极大化(或极小化)多个不同的目标函数,其一般形式为:NSGA-II is one of the excellent algorithms in the field of multi-objective optimization. It applies the idea of multi-objective optimization to genetic algorithm, and adopts fast non-dominated sorting, so that NSGA-II can optimize multiple objective functions at the same time. NSGA-II has the advantages of low time complexity, fast convergence speed, uniform solution set distribution, etc., and has achieved good optimization results in many fields. The multi-objective optimization problem usually considered can be defined as maximizing (or minimizing) multiple different objective functions under a set of constraints, and its general form is:
式子中{f1(X),f1(X),f2(X),…,fn(X)}是优化目标函数fi(X)组成的优化目标集,n是优化目标函数的数目;X=(x1,x2,…,xp)是决策变量,xi,i=1,2,…,p是优化参数;gj(X)=0,j=1,2,…,J是等式约束,J是等式约束的数目;hk(X)≤0,k=1,2,…,K是不等式约束;Xu,Xv是优化参数的变化范围。In the formula {f 1 (X), f 1 (X), f 2 (X),..., f n (X)} is the optimization target set composed of the optimization objective function f i (X), n is the optimization objective function X=(x 1 ,x 2 ,…,x p ) is the decision variable, x i , i=1,2,…,p is the optimization parameter; g j (X)=0,j=1,2 ,...,J are equality constraints, J is the number of equality constraints; h k (X)≤0, k=1,2,...,K are inequality constraints; X u , X v are the range of optimization parameters.
发明内容Contents of the invention
针对上述存在问题或不足,为了解决人工手动调试优化行波管电子光学系统存在无法保证找到最佳的工作状态,难以兼顾多个优化目标和优化结果不可复制的缺陷,以及暴力扫描所有行波管电子光学系统工作状态的耗时长问题。本发明提供了一种基于NSGA-II的行波管电子光学系统优化方法。In view of the above-mentioned problems or deficiencies, in order to solve the problem of manual debugging and optimization of the electronic optical system of traveling wave tubes, it is impossible to guarantee the best working state, it is difficult to take into account the defects of multiple optimization goals and optimization results that cannot be copied, and violently scan all traveling wave tubes The time-consuming problem of the working state of the electron optical system. The invention provides a method for optimizing an electron optical system of a traveling wave tube based on NSGA-II.
基于NSGA-II的行波管电子光学系统优化方法,包括以下步骤:The optimization method of the traveling wave tube electron optical system based on NSGA-II includes the following steps:
S1、启动行波管电子光学系统,设置行波管电子光学系统的相关参数;S1, start the traveling wave tube electron optical system, set the relevant parameters of the traveling wave tube electron optical system;
行波管电子光学系统根据其参数进行计算,生成多级降压收集极的入口电子能量分布文件,根据入口电子能量分布,计算理论最佳多级降压收集极电压Xtheory。The TWT electron optical system calculates according to its parameters, generates the entrance electron energy distribution file of the multi-stage step-down collector, and calculates the theoretically optimal multi-stage step-down collector voltage X theory according to the entrance electron energy distribution.
S2、设置NSGA-II算法的相关参数,执行NSGA-II初始化程序;S2, setting the relevant parameters of the NSGA-II algorithm, and executing the NSGA-II initialization program;
以多级降压收集极电压作为多目标遗传算法NSGA-II的决策变量X,X=(V1,V2,…,Vn),n为多级降压收集极的级数;Vi,i=1,2,…,n为多级降压收集极的电压。理论上计算的最佳多级降压收集极电压可以大致确定实际最佳工作电压所在的范围,以S1中得到的Xtheory为基准电压,上下浮动≤1000伏特作为决策变量多级降压收集极电压的变化范围。The multi-stage step-down collector voltage is used as the decision variable X of the multi-objective genetic algorithm NSGA-II, X=(V 1 , V 2 ,...,V n ), n is the number of stages of the multi-stage step-down collector; V i , i=1, 2,..., n is the voltage of the multi-stage step-down collector. The theoretically calculated optimal multi-stage step-down collector voltage can roughly determine the range of the actual optimal operating voltage. The X theory obtained in S1 is used as the reference voltage, and the fluctuation ≤ 1000 volts is used as the decision variable. The multi-stage step-down collector voltage range.
同时设置NSGA-II算法的其余参数:种群大小数目M,最大进化代数N,交叉概率Pc,变异概率Pm和最小变化步长S,完成NSGA-II参数的初始化。At the same time, set the remaining parameters of the NSGA-II algorithm: the population size M, the maximum evolutionary number N, the crossover probability P c , the mutation probability P m and the minimum change step S to complete the initialization of the NSGA-II parameters.
根据这些参数设置,NSGA-II算法将在决策变量X范围内生成M个决策向量,这些决策向量组成遗传算法进化的种群P={Xi|i=1,2,…M}。According to these parameter settings, the NSGA-II algorithm will generate M decision vectors within the range of the decision variable X, and these decision vectors form the population P={X i |i=1,2,...M} for genetic algorithm evolution.
S3、根据NSGA-II的种群P设置行波管电子光学系统的多级降压收集极电压;启动行波管电子光学系统计算系统仿真运行结果;S3. Set the multi-stage step-down collector voltage of the traveling wave tube electron optical system according to the population P of NSGA-II; start the traveling wave tube electron optical system to calculate the system simulation operation results;
NSGA-II的种群P中的每一个个体Xi,i=1,2,…M包含一组电压设置,根据X=(V1,V2,…,Vn)分别设置多级降压收集极的各级电压。启动行波管电子光学系统,计算在这些电压设置下行波管电子光学系统的运行结果;Each individual X i in the population P of NSGA-II, i=1, 2,...M contains a set of voltage settings, according to X=(V 1 , V 2 ,...,V n ) respectively set the multi-level step-down collection Pole voltages at all levels. Start up the TWEO system and calculate the results of the operation of the TWEO system at these voltage settings;
S4、设置NSGA-II的优化目标函数值,执行NSGA-II的进化操作:选择、交叉、变异算子;S4. Set the optimization objective function value of NSGA-II, and execute the evolution operation of NSGA-II: selection, crossover, and mutation operators;
读取S3中行波管电子光学系统的运行结果,将行波管电子光学系统的多级降压收集极效率的负值作为第一个目标函数值,电子回流率作为第二个目标函数值。执行NSGA-II选择、交叉、变异算子,实现淘汰和产生种群P中的个体。Read the operation results of the traveling wave tube electron optical system in S3, take the negative value of the multi-stage step-down collector efficiency of the traveling wave tube electron optical system as the first objective function value, and the electron return rate as the second objective function value. Execute NSGA-II selection, crossover, and mutation operators to eliminate and generate individuals in population P.
S5、根据S4中得到的NSGA-II的种群两个目标函数值,计算其均方差和最小值稳定不变的进化次数,判断是否已经达到收敛条件,若是则结束,输出结果;S5, according to the two objective function values of the population of NSGA-II obtained in S4, calculate its mean square error and the number of evolutionary times that the minimum value is stable, judge whether the convergence condition has been reached, if so, end, and output the result;
若否,则判断NSGA-II的种群P进化次数是否大于最大进化代数N,若是则输出结果,结束;否则执行S3、S4直至达到收敛条件。If not, judge whether the evolution times of the population P of NSGA-II is greater than the maximum evolution number N, and if so, output the result and end; otherwise, execute S3 and S4 until the convergence condition is reached.
本发明基于NSGA-II的行波管电子光学系统优化方法以多级降压收集极的电压作为优化参数,通过理论计算最佳的多级降压收集极电压来确定优化参数的大致范围,把行波管电子光学系统的主要性能指标:多级降压收集极效率和电子回流率作为优化目标,利用NSGA-II去逼近全局最优解,实现行波管电子光学系统的优化。The present invention is based on the NSGA-II TWT electron optical system optimization method, using the voltage of the multi-stage step-down collector as the optimization parameter, and determining the approximate range of the optimization parameter by theoretically calculating the best multi-stage step-down collector voltage. The main performance indicators of the traveling wave tube electron optical system: the efficiency of the multi-stage step-down collector and the electron return rate are used as optimization goals, and NSGA-II is used to approach the global optimal solution to realize the optimization of the traveling wave tube electron optical system.
与现有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1、利用NSGA-II的全局搜索能力,逼近全局范围内最佳的多级降压收集极电压组合,实现行波管电子光学系统的综合性能优化,克服人工手动调试方法只能得到局部最优,无法找到全局最优的工作状态。1. Utilize the global search capability of NSGA-II to approach the best combination of multi-stage step-down collector voltages in the global range, realize the comprehensive performance optimization of the traveling wave tube electron optical system, and overcome the manual debugging method that can only obtain local optimum , it is impossible to find the globally optimal working state.
2、通过NSGA-II同时优化行波管电子光学系统的多级降压收集极效率和电子回流率,克服人工手动调试无法兼顾多个优化目标的问题。2. Simultaneously optimize the multi-stage step-down collector efficiency and electron return rate of the traveling wave tube electron optical system through NSGA-II, to overcome the problem that manual debugging cannot take into account multiple optimization goals.
3、利用NSGA-II实现自动优化行波管电子光学系统,克服人工手动调试对系统使用者的经验要求,以及带来的不确定性。3. Using NSGA-II to automatically optimize the electronic optical system of the traveling wave tube, overcome the experience requirements of the system user and the uncertainty caused by manual debugging.
4、提高优化效率。在同等条件下,相比于暴力扫描所有的收集极电压,本发明速度提升非常明显,在优化复杂度增加到4级降压收集极时,本发明有几百倍的速度优势。4. Improve optimization efficiency. Under the same conditions, compared with violent scanning of all collector voltages, the speed improvement of the present invention is very obvious. When the optimization complexity is increased to 4-level step-down collectors, the present invention has a speed advantage of hundreds of times.
附图说明Description of drawings
图1为基于NSGA-II的行波管电子光学系统的优化方法的流程图;Fig. 1 is the flowchart of the optimization method of the traveling wave tube electron optical system based on NSGA-II;
图2为实例中优化多级降压收集极前两级电压得到的两个性能指标分布图;Figure 2 is a distribution diagram of two performance indicators obtained by optimizing the voltage of the first two stages of the multi-stage step-down collector in the example;
图3为实例中通过暴力扫描四级降压收集极前两级电压得到的两个性能指标分布图;Figure 3 is the distribution diagram of two performance indicators obtained by violently scanning the voltages of the first two stages of the four-stage step-down collector in the example;
图4为实例中通过暴力扫描四级降压收集极前两级电压得到解集的电压分布图;Figure 4 is the voltage distribution diagram obtained by violently scanning the voltages of the first two stages of the four-stage step-down collector in the example;
图5为采用本发明优化四级降压收集极的四级电压得到的两个性能指标分布图。Fig. 5 is a distribution diagram of two performance indexes obtained by optimizing the four-level voltage of the four-level step-down collector using the present invention.
具体实施方式detailed description
下面结合附图与实例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and examples.
利用计算机CAD技术对行波管电子光学系统进行仿真计算是行波管电子光学系统设计中常用方法,行波管电子光学系统的优化可以指导实际应用中相关器件的优化。It is a common method in the design of TWT electro-optical system to simulate and calculate TWT electro-optical system by using computer CAD technology. The optimization of TWT electro-optical system can guide the optimization of related devices in practical applications.
具体步骤如下:Specific steps are as follows:
S1、启动行波管电子光学系统,设置行波管电子光学系统的相关参数;S1, start the traveling wave tube electron optical system, set the relevant parameters of the traveling wave tube electron optical system;
行波管电子光学系统参数较多,根据实际情况对参数做特别的设置,其余采用默认设置。这里设置模型为二维,全局网格尺寸为2.0mm,网格自适应为否,二次电子计算次数为4,其余参数默认。There are many parameters in the electron optical system of the traveling wave tube, and special settings are made for the parameters according to the actual situation, and the default settings are used for the rest. Here, the model is set to be two-dimensional, the global grid size is 2.0mm, grid self-adaptation is not, the number of secondary electron calculations is 4, and other parameters are defaulted.
行波管电子光学系统参数设置完成后启动系统,行波管电子光学系统根据系统的参数进行计算,生成多级降压收集极的入口电子能量分布文件,根据入口电子能量分布,计算理论最佳多级降压收集极电压Xtheory。After the parameter setting of the traveling wave tube electron optical system is completed, start the system. The traveling wave tube electron optical system calculates according to the parameters of the system, and generates the entrance electron energy distribution file of the multi-stage step-down collector. According to the entrance electron energy distribution, the calculation theory is the best. Multi-stage step-down collector voltage X theory .
S2、设置NSGA-II算法的相关参数,执行NSGA-II初始化程序;S2, setting the relevant parameters of the NSGA-II algorithm, and executing the NSGA-II initialization program;
以多级降压收集极电压作为多目标遗传算法NSGA-II的决策变量X=(V1,V2),V1、V2为第一级和第二级收集极电压,这里以优化前两级多级降压收集极的电压为例,以S1中得到的Xtheory为基准上下浮动50伏特作为决策变量多级降压收集极电压的变化范围。The multi-level step-down collector voltage is used as the decision variable X=(V 1 , V 2 ) of the multi-objective genetic algorithm NSGA-II, and V 1 and V 2 are the first-level and second-level collector voltages. Here, before optimization Take the voltage of the two-stage multi-stage step-down collector as an example, take the X theory obtained in S1 as the benchmark, and fluctuate 50 volts as the decision variable. The variation range of the multi-stage step-down collector voltage.
同时设置NSGA-II算法的其余参数:种群大小数目M=28,最大进化代数N=100,交叉概率Pc=0.9,变异概率Pm=0.3和最小变化步长S=1,完成NSGA-II参数的初始化。At the same time, set the remaining parameters of the NSGA-II algorithm: the population size M=28, the maximum evolutionary number N=100, the crossover probability P c =0.9, the mutation probability P m =0.3 and the minimum change step S=1, and complete NSGA-II Initialization of parameters.
根据这些参数设置,NSGA-II算法将在S2中给定的决策变量范围内生成M组决策向量,这些决策向量组成遗传算法进化的种群P={Xi|i=1,2,…M}。According to these parameter settings, the NSGA-II algorithm will generate M groups of decision vectors within the range of decision variables given in S2, and these decision vectors constitute the population P={X i |i=1,2,...M} .
S3、根据NSGA-II的种群P设置行波管电子光学系统的多级降压收集极电压;启动行波管电子光学系统计算系统仿真运行结果;S3. Set the multi-stage step-down collector voltage of the traveling wave tube electron optical system according to the population P of NSGA-II; start the traveling wave tube electron optical system to calculate the system simulation operation results;
NSGA-II的种群P中的每一个个体Xi,i=1,2,…M包含一组电压设置,根据X=(V1,V2)分别设置多级降压收集极的第一级和第二级电压。启动行波管电子光学系统,计算在这些电压设置下行波管电子光学系统的运行结果。Each individual X i in the population P of NSGA-II, i=1, 2,...M contains a set of voltage settings, according to X=(V 1 , V 2 ), respectively set the first stage of the multi-stage step-down collector and the second stage voltage. Start up the TWEO system and calculate the results of running the TWEO system at these voltage settings.
S4、设置NSGA-II的优化目标函数值,执行NSGA-II的选择、交叉、变异算子;S4, setting the optimization objective function value of NSGA-II, executing the selection, crossover and mutation operators of NSGA-II;
读取S3中行波管电子光学系统的运行结果,将行波管电子光学系统的多级降压收集极效率的负值作为第一个目标函数值,电子回流率作为第二个目标函数值。执行NSGA-II选择、交叉、变异算子,淘汰群体P中适应能力较差的个体和产生新特性的个体。Read the operation results of the traveling wave tube electron optical system in S3, take the negative value of the multi-stage step-down collector efficiency of the traveling wave tube electron optical system as the first objective function value, and the electron return rate as the second objective function value. Perform NSGA-II selection, crossover, and mutation operators to eliminate individuals with poor adaptability and individuals with new characteristics in the group P.
S5、根据S4中得到的NSGA-II的种群两个目标函数值,计算其均方差和最小值稳定不变的进化次数,判断是否已经达到收敛条件,若是则结束,输出结果;S5, according to the two objective function values of the population of NSGA-II obtained in S4, calculate its mean square error and the number of evolutionary times that the minimum value is stable, judge whether the convergence condition has been reached, if so, end, and output the result;
若否,则判断NSGA-II的种群P进化次数是否大于最大进化代数N,若是则输出结果,结束;否则执行S3、S4。If not, judge whether the evolution times of the population P of NSGA-II is greater than the maximum evolution number N, and if so, output the result and end; otherwise, execute S3 and S4.
通过暴力扫描所有多级降压收集极电压的方式可以得到真实最优解的分布,以此为对比,分析本发明方法的效果。The distribution of the real optimal solution can be obtained by violently scanning all the multi-stage step-down collector voltages, and using this as a comparison, the effect of the method of the present invention is analyzed.
利用NSGA-II的非支配排序,本实例最终得到的解集中排名前五的目标值分布如图2所示。在相同的参数设置下,通过暴力扫描方法得到实际的解集分布如图3所示,从图可见通过本发明逼近全局最优解,与实际最优性能的误差精确到个位。NSGA-II算法的迭代次数为100,每次迭代计算28组收集极电压设置。而暴力扫描方式需要10201次计算,通过本发明需要2800次计算就可以找到满意解集,相比优化速度提升了近5倍。在同时调节四级降压收集极的电压时,暴力扫描因所需的时间成指数级增长,而不具备可行性。而使用本发明优化四级降压收集极的行波管电子光学系统相比暴力扫描方式的速度优势会扩大,优化结果如图5所示。可以使行波管电子光学系统的收集极效率高达75%,电子回流率低至0.6,实现了行波管电子光学系统的优化。Using the non-dominated sorting of NSGA-II, the distribution of the top five target values in the final solution set obtained in this example is shown in Figure 2. Under the same parameter setting, the actual solution set distribution obtained by the brute force scanning method is shown in Figure 3. It can be seen from the figure that the present invention approaches the global optimal solution, and the error with the actual optimal performance is accurate to a single digit. The number of iterations of the NSGA-II algorithm was 100, and 28 sets of collector voltage settings were calculated for each iteration. While the brute force scanning method requires 10201 calculations, the present invention requires 2800 calculations to find a satisfactory solution set, which is nearly 5 times faster than the optimization speed. When adjusting the voltages of the four step-down collectors at the same time, violent scanning is not feasible because the required time increases exponentially. However, compared with the violent scanning method, the speed advantage of the TWT electron optical system with optimized four-stage step-down collectors of the present invention will be enlarged, and the optimization results are shown in FIG. 5 . The collector efficiency of the traveling wave tube electron optical system can be as high as 75%, and the electron return rate is as low as 0.6, which realizes the optimization of the traveling wave tube electron optical system.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747275.5A CN107578123A (en) | 2017-08-28 | 2017-08-28 | A kind of Electronic Optics System of Traveling Wave Tube optimization method based on NSGA II |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747275.5A CN107578123A (en) | 2017-08-28 | 2017-08-28 | A kind of Electronic Optics System of Traveling Wave Tube optimization method based on NSGA II |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107578123A true CN107578123A (en) | 2018-01-12 |
Family
ID=61029599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710747275.5A Pending CN107578123A (en) | 2017-08-28 | 2017-08-28 | A kind of Electronic Optics System of Traveling Wave Tube optimization method based on NSGA II |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107578123A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109190163A (en) * | 2018-07-30 | 2019-01-11 | 电子科技大学 | A kind of traveling wave tube electron gun design method based on multi-objective optimization algorithm |
CN109766629A (en) * | 2019-01-08 | 2019-05-17 | 电子科技大学 | Intelligent debugging system for electrical parameters of space traveling wave tube based on multi-objective optimization algorithm |
CN114864359A (en) * | 2021-07-06 | 2022-08-05 | 电子科技大学 | A high-efficiency collector design method for broadband traveling wave tube and multi-mode traveling wave tube |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202003944U (en) * | 2011-04-13 | 2011-10-05 | 电子科技大学 | Multistage depressed collector for ribbon electronic beam traveling wave tubes |
CN106298404A (en) * | 2016-08-22 | 2017-01-04 | 电子科技大学 | A kind of choosing method of collecting pole structure parameter |
CN106503359A (en) * | 2016-10-26 | 2017-03-15 | 电子科技大学 | A kind of microwave window fast optimal design method based on NSGA II |
-
2017
- 2017-08-28 CN CN201710747275.5A patent/CN107578123A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202003944U (en) * | 2011-04-13 | 2011-10-05 | 电子科技大学 | Multistage depressed collector for ribbon electronic beam traveling wave tubes |
CN106298404A (en) * | 2016-08-22 | 2017-01-04 | 电子科技大学 | A kind of choosing method of collecting pole structure parameter |
CN106503359A (en) * | 2016-10-26 | 2017-03-15 | 电子科技大学 | A kind of microwave window fast optimal design method based on NSGA II |
Non-Patent Citations (6)
Title |
---|
刘培印等: "遗传算法在螺旋线行波管优化中的应用", 《真空电子技术》 * |
徐旭等: "空间行波管多级降压收集极的设计和模拟", 《真空电子技术》 * |
戴光明等: "《多目标优化算法及在卫星星座设计中的应用》", 30 November 2009 * |
肖羽: "《微波电子管概述》", 31 July 1974, 国防工业出版社 * |
袁子等: "空间行波管降压收集器性能的模拟分析研究", 《真空与低温》 * |
雷秀娟等: "随机小生境遗传算法求解多目标优化问题", 《计算机工程与应用》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109190163A (en) * | 2018-07-30 | 2019-01-11 | 电子科技大学 | A kind of traveling wave tube electron gun design method based on multi-objective optimization algorithm |
CN109190163B (en) * | 2018-07-30 | 2022-05-03 | 电子科技大学 | Traveling wave tube electron gun design method based on multi-objective optimization algorithm |
CN109766629A (en) * | 2019-01-08 | 2019-05-17 | 电子科技大学 | Intelligent debugging system for electrical parameters of space traveling wave tube based on multi-objective optimization algorithm |
CN114864359A (en) * | 2021-07-06 | 2022-08-05 | 电子科技大学 | A high-efficiency collector design method for broadband traveling wave tube and multi-mode traveling wave tube |
CN114864359B (en) * | 2021-07-06 | 2023-05-30 | 电子科技大学 | A high-efficiency collector design method for broadband TWT and multi-mode TWT |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109768573B (en) | Power distribution network reactive power optimization method based on multi-target differential gray wolf algorithm | |
CN113282122B (en) | Commercial building energy consumption prediction optimization method and system | |
CN112632794B (en) | Power grid reliability evaluation method based on cross entropy parameter subset simulation optimization | |
CN109190163B (en) | Traveling wave tube electron gun design method based on multi-objective optimization algorithm | |
CN107578123A (en) | A kind of Electronic Optics System of Traveling Wave Tube optimization method based on NSGA II | |
CN108647820A (en) | Based on the distributed generation resource addressing constant volume optimization method and system for improving particle cluster algorithm | |
CN110989342B (en) | A real-time T-S fuzzy modeling method for heavy-duty gas turbines in combined cycle units | |
CN108462184B (en) | An optimal configuration method for series compensation of power system lines | |
CN114221350B (en) | Distributed photovoltaic cluster division method and system based on BAS-IGA algorithm | |
CN116345469A (en) | Power grid power flow adjustment method based on graph neural network | |
CN110046774A (en) | A kind of electrical power distribution network fault location method, device and relevant device | |
CN109345023A (en) | An Optimization Algorithm Based on Hybrid Simulated Annealing and Particle Swarm | |
CN116646976A (en) | A distributed photovoltaic cluster division method and system based on agglomerative hierarchical clustering algorithm | |
CN113964884A (en) | Power grid active frequency regulation and control method based on deep reinforcement learning | |
CN113468792A (en) | Parameter correction method and device of electromagnetic transient simulation model and electronic equipment | |
CN109635915A (en) | An Iterative Learning Control Method Based on Equilibrium Single Evolutionary Cuckoo Algorithm | |
CN109308496A (en) | An optimal solution selection method based on fuzzy clustering iteration and projection pursuit | |
CN108491893A (en) | A kind of household electricity load classification recognition methods based on deep layer forest algorithm | |
Huang et al. | A multistage depressed collectors design tool for traveling wave tubes based on non-dominated sorting genetic algorithm II | |
Zhao et al. | On predicting the pue with gated recurrent unit in data centers | |
CN112861315B (en) | One-dimensional descent search method for non-convex single-target optimal power flow global solution of power system | |
CN113158446B (en) | Non-invasive electrical load identification method | |
CN109782592A (en) | A kind of algorithm of new identification SSO modal parameter | |
CN116070498A (en) | A hand-held rapid damage assessment device | |
CN108804799A (en) | Optimization method, computer readable storage medium, the electronic equipment of nose cone type resonant cavity geometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180112 |
|
RJ01 | Rejection of invention patent application after publication |