CN107577916B - 基于区域的冻土指数确定方法及电子设备 - Google Patents

基于区域的冻土指数确定方法及电子设备 Download PDF

Info

Publication number
CN107577916B
CN107577916B CN201710944562.5A CN201710944562A CN107577916B CN 107577916 B CN107577916 B CN 107577916B CN 201710944562 A CN201710944562 A CN 201710944562A CN 107577916 B CN107577916 B CN 107577916B
Authority
CN
China
Prior art keywords
temperature
frozen soil
depth
calculating
frozen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710944562.5A
Other languages
English (en)
Other versions
CN107577916A (zh
Inventor
罗立辉
张中琼
马巍
庄艳丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute of Eco Environment and Resources of CAS
Original Assignee
Cold and Arid Regions Environmental and Engineering Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cold and Arid Regions Environmental and Engineering Research Institute of CAS filed Critical Cold and Arid Regions Environmental and Engineering Research Institute of CAS
Priority to CN201710944562.5A priority Critical patent/CN107577916B/zh
Publication of CN107577916A publication Critical patent/CN107577916A/zh
Application granted granted Critical
Publication of CN107577916B publication Critical patent/CN107577916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开一种基于区域的冻土指数确定方法及电子设备,所述方法包括:获取目标区域内多个监测站点的历史监测数据,历史监测数据包括:预设时间段内监测站点采集的每日平均气温和每日平均地温以及土壤属性;将各个监测站点的每日平均气温、每日平均地温及土壤属性输入到预设的冻土指数模型中,得到目标区域所对应的多个温度相关的冻土指数及至少一个深度相关的冻土指数,预设的温度模型包括多个用于计算温度相关的冻土指数的函数关系式和多个用于计算深度相关的冻土指数的函数关系式。本发明提供的一种基于区域的冻土指数确定方法,具有准确性高,运算方式简单等优点,为计算冻土指数提供一种便捷手段,对多年冻土特性的研究有重要作用。

Description

基于区域的冻土指数确定方法及电子设备
技术领域
本发明涉及信息处理技术领域,尤其是涉及一种基于区域的冻土指数确定方法及电子设备。
背景技术
冻土指的是含有冰且具有零温或者负温的岩石和土壤。根据岩石和土壤保持冻结状态的时间,冻土一般可分为短时冻土、季节冻土和多年冻土,其中多年冻土通常被定义为:冻结持续两年以上的地下土体。我国的青藏高原是我国多年冻土主要分布地区之一。而寒季冻结、暖季融化的土(岩)层是活动层。
冻土活动层厚度的季节变化主要依赖于气候,同时与海拔、纬度、活动层岩性、含水特征、地中热流以及影响地面温度变化进程的地形特征和下垫面性质有关。活动层厚度的变化不仅是影响寒区生态环境最活跃的因素,还是是寒区道路、管道、建筑物等工程设计施工的主要依据之一。因此,对某个区域内的冻土特性研究需要确定区域内的冻土指数。
发明内容
有鉴于此,本发明的目的在于提供一种基于区域的冻土指数确定方法及电子设备,以解决现有技术中存在无法确定区域内的冻土指数的技术问题。
第一方面,本发明实施例提供了一种基于区域的冻土指数确定方法,包括:
获取目标区域内多个监测站点的历史监测数据,所述历史监测数据包括:预设时间段内所述监测站点采集的每日平均气温和每日平均地温以及土壤属性;
将各个监测站点的所述每日平均气温、每日平均地温及土壤属性输入到预设的冻土指数模型中,得到所述目标区域所对应的多个温度相关的冻土指数及至少一个深度相关的冻土指数,所述预设的温度模型包括多个用于计算温度相关的冻土指数的函数关系式和多个用于计算深度相关的冻土指数的函数关系式。
结合第一方面,本发明实施例提供了第一方面的第一种可能的实施方式,其中,所述温度相关的冻土指数包括:大气融化日因子、大气冻结度日因子和年平均气温;
所述深度相关的冻土指数包括:活动层厚度。
结合第一方面,本发明实施例提供了第一方面的第二种可能的实施方式,其中,用于计算所述大气融化日因子DDTa的函数关系式为:
Figure BDA0001431165650000021
其中,所述Ta为每日平均地温,n是每年的天数;
用于计算所述大气冻结度日因子DDFa的函数关系式为:
Figure BDA0001431165650000022
结合第一方面,本发明实施例提供了第一方面的第三种可能的实施方式,其中,用于计算所述年平均气温MAAT的函数关系式为:
Figure BDA0001431165650000023
其中,P为365天。
结合第一方面,本发明实施例提供了第一方面的第四种可能的实施方式,其中,用于计算所述活动层厚度ALTS的函数关系式为:
Figure BDA0001431165650000031
其中,λt为融化状态下的热导率,L为潜热,ρ为干物质密度,W为融化状态下的土壤含水量,Wu为冻结状态下的土壤非冻水含量。
结合第一方面,本发明实施例提供了第一方面的第五种可能的实施方式,其中,用于计算所述活动层厚度ALTK的函数关系式:
Figure BDA0001431165650000032
其中,TTOPK为多年冻土顶板温度;
Figure BDA0001431165650000033
As为温度年度振幅,Tz为某一土壤深
度的温度,CT为融化状态下的体积热容量;
Figure BDA0001431165650000034
λf为冻结状态下的热导率,Psn为温度波动周期。
结合第一方面,本发明实施例提供了第一方面的第六种可能的实施方式,其中,所述方法还包括:
绘制所述目标区域所对应的多个温度相关的冻土指数在预设时间段内的温度变化曲线;
对所述温度变化曲线进行曲线拟合,得到温度变化函数;
利用所述温度变化函数预测未来时刻的温度相关的冻土指数。
结合第一方面,本发明实施例提供了第一方面的第七种可能的实施方式,其中,所述方法还包括:
绘制所述目标区域所对应的多个深度相关的冻土指数在预设时间段内的深度变化曲线;
对所述深度变化曲线进行曲线拟合,得到深度变化函数;
利用所述深度变化函数预测未来时刻的深度相关的冻土指数。
第二方面,本发明实施例还提供一种电子设备,包括存储器、处理器,所述存储器中存储有可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述第一方面所述的方法的步骤。
第三方面,本发明实施例还提供一种具有处理器可执行的非易失的程序代码的计算机可读介质,所述程序代码使所述处理器执行上述第一方面所述的方法。
本发明实施例带来了以下有益效果:本发明实施例提供的一种基于区域的冻土指数确定方法,具有准确性高,运算方式简单等优点,为计算区域内的冻土指数提供一种便捷方法,对工程建设的指导和工程的安全运行有重要意义。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的青藏高原的站点和区域图;
图2为本发明实施例提供的提供的基于区域的冻土指数的确定方法;
图3为本发明实施例提供的提供的温度和深度相关的冻土指数的变化曲线图;
图4为本发明实施例提供的基于区域的冻土指数的确定装置结构示意图。
图标:11-获取模块;12-输入模块;13-计算模块;14-第一绘制模块;15-第二绘制模块。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,现有技术中存在无法确定区域内的冻土指数,基于此,本发明实施例提供的一种基于区域的冻土指数确定方法,具有准确性高,运算方式简单等优点,为计算区域内的冻土指数提供一种便捷方法,对工程建设的指导和工程的安全运行有重要意义。
如图1所示,青藏高原根据各地区的地形地貌特征被划分为多个区域,例如,青海高原和柴达木盆地等。每个区域内包含有多个气象站点。
如图2所示,在本发明的一个实施例中,一种基于区域的冻土指数确定方法,包括以下几个步骤。
S101,获取目标区域内多个监测站点的历史监测数据,所述历史监测数据包括:预设时间段内所述监测站点采集的每日平均气温和每日平均地温以及土壤属性。选定的目标区域内的监测站点为青藏高原地区的一些气象站点,例如,托勒、伍道梁、安多、玛多、清水河和野牛沟等站点。根据已有的野外观测数据和卫星遥感数据制备目标区域和多个监测站点的数据集,站点的参数主要是根据站点描述以及文献挖掘了站点的土壤属性等参数来制备,区域参数是根据遥感卫星的植被和土壤质地来制备的。具体参数如下表1所示。
表1
Figure BDA0001431165650000061
Figure BDA0001431165650000071
S102,将各个监测站点的所述每日平均气温、每日平均地温及土壤属性输入到预设的冻土指数模型中,得到所述目标区域所对应的多个温度相关的冻土指数及至少一个深度相关的冻土指数,所述预设的温度模型包括多个用于计算温度相关的冻土指数的函数关系式和多个用于计算深度相关的冻土指数的函数关系式。
具体的,将采集到的监测站点的数据CSV格式保存,区域数据以NetCDF格式保存,并导入到包括多个用于计算温度相关的冻土指数的函数关系式和计算深度相关的冻土指数的函数关系式的冻土指数模型中(即R语言平台)中,以Rdata格式存储,用户可随时调用这两种数据。
在前述实施例的基础上,在本发明又一实施例中,所述温度相关的冻土指数包括:大气融化日因子DDTa、大气冻结度日因子DDFa、年平均气温MAAT。所述深度相关的冻土指数包括:活动层厚度ALT,
预设的冻土指数模型中包括如下表达式:
用于计算地表年温度振幅As的计算表达式:
As=Tmax-Tmin (1)
其中,Tmax和Tmin分别是地表年最大和最小温度。
用于计算冰融化的体积潜热L的其表达式为:
Figure BDA0001431165650000072
其中,ρ为干物质密度,W为融化时土壤的总含水量。
用于计算大气融化日因子DDTa、大气冻结度日因子DDFa、地表融化日因子DDTs和地表冻结度日因子DDFs的计算表达式;
Figure BDA0001431165650000081
Figure BDA0001431165650000082
Figure BDA0001431165650000083
Figure BDA0001431165650000084
用于计算所述年平均气温MAAT的函数关系式为:
Figure BDA0001431165650000085
其中,P为365天。
用于计算年平均地表温度MAGST的函数关系式为:
Figure BDA0001431165650000086
用于计算多年冻土顶板温度TTOPK的计算表达式为:
Figure BDA0001431165650000087
Figure BDA0001431165650000088
其中,TTOPK为用Kudryavtsev模型参数得到的多年冻土顶板温度,numerator为TTOPK计算公式的分子。
用于计算所述活动层厚度ALTS的函数关系式为:
Figure BDA0001431165650000089
或者,
Figure BDA00014311656500000810
Figure BDA0001431165650000091
Figure BDA0001431165650000092
其中,ALTS为用Smith&Riseborough模型参数得到的活动层厚度,ALTK为用Kudryavtsev模型参数得到的活动层厚度。
本发明实施例提供的一种基于区域的冻土指数确定方法,具有准确性高,运算方式简单等优点,为计算区域内的冻土指数提供一种便捷方法,对工程建设的指导和工程的安全运行有重要意义。
在本发明的又一实施例中,所述方法还包括:
绘制所述目标区域所对应的多个温度相关的冻土指数在预设时间段内的温度变化曲线;
对所述温度变化曲线进行曲线拟合,得到温度变化函数;
利用所述温度变化函数预测未来时刻的温度相关的冻土指数。
在本发明的又一实施例中,所述方法还包括:
绘制所述目标区域所对应的多个深度相关的冻土指数在预设时间段内的深度变化曲线;
对所述深度变化曲线进行曲线拟合,得到深度变化函数;
利用所述深度变化函数预测未来时刻的深度相关的冻土指数。
在实际应用中,预设的冻土指数模型可以实现区域空间的可视化,区域空间的可视化主要由多幅静态图和单幅动态图组成。冻土指数模型可以绘制出目标区域内所有监测站点的多个温度相关的冻土指数的趋势图和多个深度相关的冻土指数的趋势图,也可以绘制冻土指数的三维图等等。
如图3所示,从图中可以得到90-95年的大气融化日因子DDTa、大气冻结度日因子DDFa、年平均气温MAAT和活动层厚度ALT的变化趋势,从而预测出未来时刻的大气融化日因子DDTa、大气冻结度日因子DDFa、年平均气温MAAT和活动层厚度ALT。
如图4所示,在本发明的又一实施例中,还提供一种基于站点的冻土指数的确定装置,本发明实施例所提供的装置,其实现原理及产生的技术效果和前述方法实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述方法实施例中相应内容。所述装置包括:获取模块11、输入模块12、计算模块13、第一绘制模块14和第二绘制模块15。
获取模块11,用于获取目标区域内多个监测站点的历史监测数据,所述历史监测数据包括:预设时间段内所述监测站点采集的每日平均气温和每日平均地温以及土壤属性;
输入模块12,用于将各个监测站点的所述每日平均气温、每日平均地温及土壤属性输入到预设的冻土指数模型中,所述预设的温度模型包括多个用于计算温度相关的冻土指数的函数关系式和多个用于计算深度相关的冻土指数的函数关系式。
计算模块13,用于计算所述目标区域所对应的多个温度相关的冻土指数及至少一个深度相关的冻土指数。
第一绘制模块14,用于绘制所述目标区域所对应的多个温度相关的冻土指数在预设时间段内的温度变化曲线。
第二绘制模块15,用于绘制所述目标区域所对应的多个深度相关的冻土指数在预设时间段内的深度变化曲线。
在本发明的又一实施例中,还提供一种电子设备,包括存储器、处理器,所述存储器中存储有可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现前述实施例所述的方法的步骤。
在本发明的又一实施例中,还提供一种具有处理器可执行的非易失的程序代码的计算机可读介质,所述程序代码使所述处理器执行前述实施例所述的方法。
本发明实施例所提供的基于区域的冻土指数确定方法及电子设备的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面方法实施例中所述的方法,具体实现可参见方法实施例,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (6)

1.一种基于区域的冻土指数确定方法,其特征在于,包括:
获取目标区域内多个监测站点的历史监测数据,所述历史监测数据包括:预设时间段内所述监测站点采集的每日平均气温和每日平均地温以及土壤属性;
将各个监测站点的所述每日平均气温、每日平均地温及土壤属性输入到预设的冻土指数模型中,得到所述目标区域所对应的多个温度相关的冻土指数及至少一个深度相关的冻土指数,所述预设的冻土指数模型包括多个用于计算温度相关的冻土指数的函数关系式和多个用于计算深度相关的冻土指数的函数关系式;
所述温度相关的冻土指数包括:大气融化日因子、大气冻结度日因子和年平均气温;
所述深度相关的冻土指数包括:活动层厚度;
用于计算所述大气融化日因子DDTa的函数关系式为:
Figure FDA0002371134590000011
其中,所述Ta为每日平均地温,n是每年的天数;
用于计算所述大气冻结度日因子DDFa的函数关系式为:
Figure FDA0002371134590000012
用于计算所述年平均气温MAAT的函数关系式为:
Figure FDA0002371134590000013
其中,P为365天;
用于计算所述活动层厚度ALTS的函数关系式为:
Figure FDA0002371134590000014
其中,λt为融化状态下的热导率,L为潜热,ρ为干物质密度,W为融化状态下的土壤含水量,Wu为冻结状态下的土壤非冻水含量;所述活动层厚度ALTS为用Smith&Riseborough模型参数得到的活动层厚度;
潜热L的表达式为:
Figure FDA0002371134590000021
2.根据权利要求1所述的基于区域的冻土指数确定方法,其特征在于,
用于计算所述活动层厚度ALTK的函数关系式:
Figure FDA0002371134590000022
其中,TTOPK为多年冻土顶板温度;所述活动层厚度ALTK为用Kudryavtsev模型参数得到的活动层厚度;
Figure FDA0002371134590000023
As为温度年度振幅,Tz为某一土壤深度的温度,CT为融化状态下的体积热容量;
Figure FDA0002371134590000024
λf为冻结状态下的热导率,Psn为温度波动周期。
3.根据权利要求1或2所述的基于区域的冻土指数确定方法,其特征在于,所述方法还包括:
绘制所述目标区域所对应的多个温度相关的冻土指数在预设时间段内的温度变化曲线;
对所述温度变化曲线进行曲线拟合,得到温度变化函数;
利用所述温度变化函数预测未来时刻的温度相关的冻土指数。
4.根据权利要求3所述的基于区域的冻土指数确定方法,其特征在于,所述方法还包括:
绘制所述目标区域所对应的多个深度相关的冻土指数在预设时间段内的深度变化曲线;
对所述深度变化曲线进行曲线拟合,得到深度变化函数;
利用所述深度变化函数预测未来时刻的深度相关的冻土指数。
5.一种电子设备,包括存储器、处理器,所述存储器中存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求1至2任一项所述的方法的步骤。
6.一种具有处理器可执行的非易失的程序代码的计算机可读介质,其特征在于,所述程序代码使所述处理器执行所述权利要求1-2任一所述的方法。
CN201710944562.5A 2017-10-11 2017-10-11 基于区域的冻土指数确定方法及电子设备 Active CN107577916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710944562.5A CN107577916B (zh) 2017-10-11 2017-10-11 基于区域的冻土指数确定方法及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710944562.5A CN107577916B (zh) 2017-10-11 2017-10-11 基于区域的冻土指数确定方法及电子设备

Publications (2)

Publication Number Publication Date
CN107577916A CN107577916A (zh) 2018-01-12
CN107577916B true CN107577916B (zh) 2020-03-31

Family

ID=61036908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710944562.5A Active CN107577916B (zh) 2017-10-11 2017-10-11 基于区域的冻土指数确定方法及电子设备

Country Status (1)

Country Link
CN (1) CN107577916B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376263B (zh) * 2018-02-24 2020-09-29 福建中烟工业有限责任公司 工作场所环境温湿度预测方法和装置
CN113515877B (zh) * 2021-03-11 2023-12-29 中国市政工程中南设计研究总院有限公司 一种基于高斯过程机器学习的超大盾构断面冻结土体温度特性寻优方法及装置
CN114594532A (zh) * 2022-03-09 2022-06-07 北京墨迹风云科技股份有限公司 一种寒潮天气预测方法、装置、电子设备及计算机可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787692A (zh) * 2010-01-14 2010-07-28 中铁西北科学研究院有限公司 维护多年冻土地基热稳定的方法及配套的太阳能制冷装置
CN104751011A (zh) * 2015-04-23 2015-07-01 中国水利水电科学研究院 一种地下水补给植被的临界埋深计算方法
CN106203669A (zh) * 2015-05-10 2016-12-07 北京极迅智程网络科技股份有限公司 一种对信息指数进行预测及分析的系统
CN106683096A (zh) * 2017-01-25 2017-05-17 中国科学院寒区旱区环境与工程研究所 基于卫星遥感影像的冻土灾害信息提取方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787692A (zh) * 2010-01-14 2010-07-28 中铁西北科学研究院有限公司 维护多年冻土地基热稳定的方法及配套的太阳能制冷装置
CN104751011A (zh) * 2015-04-23 2015-07-01 中国水利水电科学研究院 一种地下水补给植被的临界埋深计算方法
CN106203669A (zh) * 2015-05-10 2016-12-07 北京极迅智程网络科技股份有限公司 一种对信息指数进行预测及分析的系统
CN106683096A (zh) * 2017-01-25 2017-05-17 中国科学院寒区旱区环境与工程研究所 基于卫星遥感影像的冻土灾害信息提取方法及装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model";Luo DongLiang等;《Science China Earth Sciences》;20140831;第57卷(第8期);第1834-1845页 *
"人类工程活动下多年冻土热融蚀敏感性评价模型";吴青柏等;《岩土工程学报》;20011130;第23卷(第6期);第731-735页 *
"基于Web_GIS的青藏公路冻土灾害信息系统设计与实现";李园园;《中国优秀硕士学位论文全文数据库(电子期刊)》;20161115(第11期);参见正文第17-18页以及第22页第3.3.2节 *
"多年冻土分布模型在青藏高原的应用研究";王之夏;《中国优秀硕士学位论文全文数据库(电子期刊)》;20111215(第12期);第A011-16页 *
"气候变化情景下青藏高原多年冻土活动层厚度变化预测";张中琼等;《冰川冻土》;20120630;第34卷(第3期);参见第2.1节 *
李园园."基于Web_GIS的青藏公路冻土灾害信息系统设计与实现".《中国优秀硕士学位论文全文数据库(电子期刊)》.2016,(第11期), *

Also Published As

Publication number Publication date
CN107577916A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
CN107730109B (zh) 温度相关的冻土指数确定方法及电子设备
Lamoureux et al. Fluvial impact of extensive active layer detachments, Cape Bounty, Melville Island, Canada
Nair et al. Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation
Thompson et al. Glacier loss on Kilimanjaro continues unabated
Slater et al. A multimodel simulation of pan‐Arctic hydrology
Gao et al. Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China
Kellerer‐pirklbauer et al. Climate change and rock fall events in high mountain areas: Numerous and extensive rock falls in 2007 at Mittlerer Burgstall, Central Austria
Leeson et al. Evolution of supraglacial lakes on the Larsen B ice shelf in the decades before it collapsed
Quan Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation
Ye et al. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009)
Bolch et al. Significance of glaciers, rockglaciers and ice-rich permafrost in the Northern Tien Shan as water towers under climate change conditions
CN107526904B (zh) 基于站点的冻土指数确定方法及电子设备
CN107577916B (zh) 基于区域的冻土指数确定方法及电子设备
Huang et al. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau
Small et al. Changes in surface air temperature caused by desiccation of the Aral Sea
Xu et al. Active layer thickness variation on the Qinghai‐Tibetan Plateau: Historical and projected trends
Tang et al. Use of satellite snow-cover data for streamflow prediction in the Feather River Basin, California
Karner et al. A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard
Gudmundsson et al. Response of Eyjafjallajökull, Torfajökull and Tindfjallajökull ice caps in Iceland to regional warming, deduced by remote sensing
Li et al. Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data
CN107704689B (zh) 深度相关的冻土指数确定方法及电子设备
Rowan et al. The role of differential ablation and dynamic detachment in driving accelerating mass loss from a debris‐covered Himalayan glacier
Shan et al. Effects of DEM resolutions on LS and hillslope erosion estimation in a burnt landscape
Mo et al. Quantifying the effects of climate variability and direct human activities on the change in mean annual runoff for the Bahe River (Northwest China)
Kopysov et al. Estimation of water balance over catchment areas taking into account the heterogeneity of their landscape conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200514

Address after: 730000 No.318, Donggang West Road, Chengguan District, Lanzhou City, Gansu Province

Patentee after: NORTHWEST INSTITUTE OF ECO-ENVIRONMENT AND RESOURCES, CAS

Address before: Chengguan District of Gansu city of Lanzhou province Donggang West Road 730000 No. 320

Patentee before: Institute of environment and Engineering in cold and dry areas, Chinese Academy of Sciences

TR01 Transfer of patent right