CN107577890A - Analytical method and system for earthquake-resistant collapse capacity of underground structures - Google Patents

Analytical method and system for earthquake-resistant collapse capacity of underground structures Download PDF

Info

Publication number
CN107577890A
CN107577890A CN201710843771.0A CN201710843771A CN107577890A CN 107577890 A CN107577890 A CN 107577890A CN 201710843771 A CN201710843771 A CN 201710843771A CN 107577890 A CN107577890 A CN 107577890A
Authority
CN
China
Prior art keywords
soil
model
calculate
underground structure
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710843771.0A
Other languages
Chinese (zh)
Other versions
CN107577890B (en
Inventor
董正方
康帅
李运华
李凤丽
王丽萍
蔡宝占
王琮皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201710843771.0A priority Critical patent/CN107577890B/en
Publication of CN107577890A publication Critical patent/CN107577890A/en
Application granted granted Critical
Publication of CN107577890B publication Critical patent/CN107577890B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及安全监测技术领域,特别是一种地下结构抗震倒塌能力的分析方法及系统,本发明方法包括:确定地震强度参数IM;构建一维土体自由场等效线性化模型;构建土‑结构相互作用模型;构建框架结构构件截面模型,计算截面弯矩‑曲率,得到地下结构塑性铰参数;构建含有塑性铰的土‑结构相互作用平面模型,计算地震动下的地下结构性能参数DM。本发明采用的反应加速度法是拟静力抗震计算方法,用静力的方法分析动力的问题,成功解决了地下结构考虑动力边界的土‑结构相互作用模型一次计算大量耗费机时问题,计算效率高;土体非线性采用等效线性化模型,避免土体不同非线性本构模型带来的影响。

The invention relates to the technical field of safety monitoring, in particular to an analysis method and system for the anti-seismic collapse ability of underground structures. The method of the invention includes: determining the seismic intensity parameter IM; Structural interaction model; build a section model of the frame structure, calculate the section bending moment-curvature, and obtain the plastic hinge parameters of the underground structure; build a soil-structure interaction plane model containing plastic hinges, and calculate the performance parameter DM of the underground structure under earthquake. The reaction acceleration method adopted in the present invention is a quasi-static anti-seismic calculation method, which uses a static method to analyze the dynamic problem, and successfully solves the problem of a large amount of machine time for one-time calculation of the soil-structure interaction model considering the dynamic boundary of the underground structure. High; the equivalent linear model is used for soil nonlinearity to avoid the influence of different nonlinear constitutive models of soil.

Description

地下结构抗震倒塌能力的分析方法及系统Analytical method and system for earthquake-resistant collapse capacity of underground structures

技术领域technical field

本发明涉及安全监测技术领域,特别是一种地下结构抗震倒塌能力的分析方法及系统。The invention relates to the technical field of safety monitoring, in particular to an analysis method and system for the anti-seismic collapse ability of underground structures.

背景技术Background technique

动力增量分析法(Incremental Dynamic Analysis,IDA)是将地震动的加速度分别乘以一系列比例系数,使之成为一组不同强度的地震动,结构在这组地震动荷载作用下,分别进行非线性动力时程分析,得到地震动强度与结构性能参数的曲线,即IDA曲线,来研究结构在地震荷载作用下损伤破坏的全过程。该方法最早由Bertero提出,Vamvatsikos &Comell则进行了系统的总结和阐述,并被FEMA35,FEMA351采用,作为分析结构整体倒塌能力的方法。IDA分析方法的重点是选取合适的地震动强度IM和结构性能参数DM,并且为使计算结果达到精度的同时减少运算量,要选取合适的调幅准则。Incremental Dynamic Analysis (IDA) is to multiply the acceleration of the ground motion by a series of proportional coefficients to make it a group of ground motions of different intensities. Linear dynamic time-history analysis obtains the curve of earthquake intensity and structural performance parameters, that is, IDA curve, to study the whole process of structure damage and failure under earthquake load. This method was first proposed by Bertero, and Vamvatsikos & Comell made a systematic summary and elaboration, and was adopted by FEMA35 and FEMA351 as a method for analyzing the overall collapse capacity of structures. The focus of the IDA analysis method is to select the appropriate ground motion intensity IM and structural performance parameter DM, and to select the appropriate amplitude modulation criterion in order to achieve the accuracy of the calculation results and reduce the amount of calculation.

IDA分析方法的基本步骤为:The basic steps of the IDA analysis method are:

1.选择代表性结构,建立结构的弹塑性分析模型;1. Select a representative structure and establish an elastic-plastic analysis model of the structure;

2.选择代表结构所处场地的地震动记录;2. Select the ground motion records representing the site where the structure is located;

3.选择地震动强度参数IM和结构性能参数DM;3. Select the ground motion intensity parameter IM and structural performance parameter DM;

4.对某一条地震动记录进行单调调幅,得到调幅后的一系列地震动记录;4. Carry out monotonous amplitude modulation on a certain ground motion record, and obtain a series of ground motion records after amplitude modulation;

5.单条IDA曲线分析;5. Single IDA curve analysis;

6.变换原始地震动记录,重复步骤4-5,得到多条IDA曲线;6. Transform the original ground motion records, repeat steps 4-5, and obtain multiple IDA curves;

7.多条IDA曲线数据处理;7. Multiple IDA curve data processing;

8.用IDA结果评估结构的抗震性能。8. Use the IDA results to evaluate the seismic performance of the structure.

地下结构土-结构相互作用模型由于要考虑动力边界,规模较大,一次计算就要耗费大量机时。土体在地震中会进入强烈非线性状态,并且土体非线性本构模型众多。综上所述,如果地下结构进行IDA分析,会耗费大量机时,甚至不可行,因此要进行修正。Because the soil-structure interaction model of underground structure needs to consider the dynamic boundary, the scale is large, and a calculation will consume a lot of computer time. Soil will enter a strongly nonlinear state during earthquakes, and there are many nonlinear constitutive models of soil. To sum up, if the underground structure is analyzed by IDA, it will consume a lot of computer time, and it is even unfeasible, so it needs to be corrected.

发明内容Contents of the invention

鉴于此,本发明提供一种地下结构抗震倒塌能力的分析方法及系统,采用的反应加速度法是拟静力抗震计算方法,用静力的方法分析动力的问题,成功解决了地下结构考虑动力边界的土-结构相互作用模型一次计算大量耗费机时问题,计算效率高;土体非线性结构采用等效线性化模型,避免土体不同非线性本构模型带来的影响。In view of this, the present invention provides an analysis method and system for the anti-seismic collapse ability of underground structures. The reaction acceleration method adopted is a quasi-static anti-seismic calculation method, and the static method is used to analyze the dynamic problem, which successfully solves the problem of considering the dynamic boundary of the underground structure. The soil-structure interaction model of the soil-structure interaction model consumes a lot of computer time at one time, and the calculation efficiency is high; the nonlinear structure of the soil adopts an equivalent linear model to avoid the influence of different nonlinear constitutive models of the soil.

为了达到上述目的,本发明是通过以下技术方案实现的:In order to achieve the above object, the present invention is achieved through the following technical solutions:

本发明提供一种地下结构抗震倒塌能力的分析方法,包括:The invention provides an analysis method for the anti-seismic collapse ability of an underground structure, comprising:

根据地下结构所处场地的地震动记录,确定地震强度参数IM;Determine the seismic intensity parameter IM according to the ground motion records of the site where the underground structure is located;

构建一维土体自由场等效线性化模型,分别计算地下结构顶部、底部所处土层相对位移最大时刻的各土层加速度、等效剪切模量和弹性模量;Construct a one-dimensional soil free field equivalent linearization model, and calculate the acceleration, equivalent shear modulus and elastic modulus of each soil layer at the moment of maximum relative displacement of the soil layers at the top and bottom of the underground structure;

构建土-结构相互作用模型,计算地下结构在重力作用下的单元内力;Construct the soil-structure interaction model and calculate the unit internal force of the underground structure under the action of gravity;

构建框架结构构件截面模型,计算截面弯矩-曲率,得到地下结构塑性铰参数;Construct the section model of the frame structure member, calculate the section bending moment-curvature, and obtain the plastic hinge parameters of the underground structure;

构建含有塑性铰的土-结构相互作用平面模型,计算地震动作用下的地下结构性能参数DM。A plane model of soil-structure interaction with plastic hinges is constructed to calculate the performance parameter DM of the underground structure under the action of earthquake.

进一步地,确定地震强度参数IM,包括:选取地震动记录中的地震动峰值加速度作为地震强度参数IM。Further, determining the earthquake intensity parameter IM includes: selecting the earthquake peak acceleration in the earthquake motion record as the earthquake intensity parameter IM.

进一步地,构建一维土体自由场等效线性化模型,包括:将土体沿深度划分土层,土体采用等效线性化模型。Further, the construction of a one-dimensional soil free field equivalent linearization model includes: dividing the soil into soil layers along the depth, and adopting an equivalent linearization model for the soil.

进一步地,计算地震动作用下的地下结构性能参数DM之后,还包括:绘制单条IDA曲线。Further, after calculating the performance parameter DM of the underground structure under the action of the earthquake, it also includes: drawing a single IDA curve.

进一步地,对单条IDA曲线进行分析,包括:计算小调幅地震动记录下结构的动力反应,得到第1个DM-IM点;将原点与第1个DM-IM点之间连线的弹性斜率记做 ;继续计算下一调幅地震动记录下结构的动力反应,如该点地下结构出现屈服,则为结构屈服点;继续计算下一调幅地震动记录下结构的动力反应,得到下一个DM-IM点,如该点与前一个DM-IM点之间的斜率大于 ,或者此点的层间位移角大于10%,继续计算下一调幅地震动下的DM-IM点,否则认为结构将发生倒塌,其中,0<α<1.0,一般α取为0.2。Further, the analysis of a single IDA curve includes: calculating the dynamic response of the structure recorded by the small-amplitude-modulated earthquake motion to obtain the first DM-IM point; connecting the elastic slope of the line between the origin and the first DM-IM point Write down; continue to calculate the dynamic response of the structure recorded by the next AM earthquake motion, if the underground structure yields at this point, it is the structural yield point; continue to calculate the dynamic response of the structure recorded by the next AM earthquake motion, and obtain the next DM- IM point, if the slope between this point and the previous DM-IM point is greater than, or the interstory displacement angle of this point is greater than 10%, continue to calculate the DM-IM point under the next AM earthquake, otherwise it is considered that the structure will occur Collapse, where, 0<α<1.0, generally α is taken as 0.2.

进一步地,还包括:变换原始地震动记录,得到多条IDA曲线,并分别进行分析。Further, it also includes: transforming the original ground motion records to obtain multiple IDA curves and analyzing them respectively.

进一步地,构建土-结构相互作用模型,包括:采用有限元软件构建土-结构相互作用模型。Further, constructing the soil-structure interaction model includes: using finite element software to construct the soil-structure interaction model.

进一步地,计算截面弯矩-曲率,包括:采用截面能力分析软件计算截面弯矩-曲率。Further, calculating the section bending moment-curvature includes: calculating the section bending moment-curvature using section capacity analysis software.

本发明还提供一种地下结构抗震倒塌能力的分析系统,包括:The present invention also provides an analysis system for the anti-seismic collapse ability of underground structures, including:

地震强度参数设定模块,用于根据地下结构所处场地的地震动记录,确定地震强度参数IM;The seismic intensity parameter setting module is used to determine the seismic intensity parameter IM according to the ground motion records of the site where the underground structure is located;

一维土体自由场等效线性化模型构建计算模块,用于构建一维土体自由场等效线性化模型,并且分别计算地下结构顶部、底部所处土层相对位移最大时刻的各土层加速度、等效剪切模量和弹性模量;One-dimensional soil free field equivalent linearization model construction calculation module, used to construct one-dimensional soil free field equivalent linearization model, and calculate the soil layers at the moment of maximum relative displacement of the soil layers at the top and bottom of the underground structure Acceleration, equivalent shear modulus and modulus of elasticity;

土-结构相互作用模型第一构建计算模块,用于构建土-结构相互作用模型,并且计算地下结构在重力作用下的单元内力;The first calculation module of the soil-structure interaction model is used to construct the soil-structure interaction model and calculate the unit internal force of the underground structure under the action of gravity;

框架结构构件截面模型构建计算模块,用于构建框架结构构件截面模型,并且计算截面弯矩-曲率,以得到地下结构塑性铰参数;The calculation module for constructing the section model of the frame structure member is used to construct the section model of the frame structure member, and calculate the moment-curvature of the section to obtain the plastic hinge parameters of the underground structure;

土-结构相互作用模型第二构建计算模块,用于构建含有塑性铰的土-结构相互作用平面模型,并计算地震动作用下的地下结构性能参数DM。The second construction calculation module of the soil-structure interaction model is used to construct the soil-structure interaction plane model containing plastic hinges, and calculate the performance parameter DM of the underground structure under the action of earthquake.

进一步地,还包括:IDA曲线绘制模块,用于绘制IDA曲线。Further, it also includes: an IDA curve drawing module, used for drawing an IDA curve.

进一步地,还包括:IDA曲线分析模块,用于分析IDA曲线,得到该IDA曲线的屈服点、倒塌点等。Further, it also includes: an IDA curve analysis module, which is used to analyze the IDA curve to obtain the yield point and collapse point of the IDA curve.

进一步地,所述土-结构相互作用模型第一构建计算模块和土-结构相互作用模型第二构建计算模块均采用有限元软件。Further, the first construction calculation module of the soil-structure interaction model and the second construction calculation module of the soil-structure interaction model both use finite element software.

进一步地,所述框架结构构件截面模型构建计算模块采用截面能力分析软件。Further, the section model building calculation module of the frame structural member adopts section capacity analysis software.

本发明提供一种地下结构抗震倒塌能力的分析方法,具有如下有益效果:The invention provides an analysis method for the anti-seismic collapse ability of an underground structure, which has the following beneficial effects:

1.采用的反应加速度法为拟静力抗震计算方法,用静力的方法分析动力的问题,成功解决了地下结构考虑动力边界的土-结构相互作用模型一次计算大量耗费机时问题,计算效率高;1. The reaction acceleration method adopted is a quasi-static anti-seismic calculation method. The static method is used to analyze the dynamic problem, and the soil-structure interaction model of the underground structure considering the dynamic boundary is successfully solved. high;

2.土体非线性采用等效线性化模型,避免土体不同非线性本构模型带来的影响;2. Equivalent linearization model is adopted for soil nonlinearity to avoid the influence of different nonlinear constitutive models of soil;

3.土体非线性采用一维自由场等效线性化,可以采用一维场地土层地震响应分析的通用程序计算,结构非线性采用集中塑性铰模型,可以使用通用有限元软件进行计算。3. One-dimensional free-field equivalent linearization is used for soil nonlinearity, which can be calculated by a general program for seismic response analysis of one-dimensional site soil layers. Structural nonlinearity uses a concentrated plastic hinge model, which can be calculated by general-purpose finite element software.

地下结构抗震倒塌能力的分析系统的有益效果与地下结构抗震倒塌能力的分析方法类似,不再赘述。The beneficial effects of the analysis system for the seismic collapse resistance of underground structures are similar to those of the analysis method for the seismic collapse resistance of underground structures, and will not be repeated here.

附图说明Description of drawings

图1为本发明实施例所提供的地下结构抗震倒塌能力的分析方法的流程示意图;Fig. 1 is the flow diagram of the analysis method of the anti-seismic collapse ability of the underground structure provided by the embodiment of the present invention;

图2为本发明实施例所提供的地下结构抗震倒塌能力的分析系统的结构框架图;Fig. 2 is the structural frame diagram of the analysis system of the anti-seismic collapse ability of the underground structure provided by the embodiment of the present invention;

图3为地下车站截面及配筋图;Fig. 3 is the cross-section and reinforcement diagram of the underground station;

图4为地下车站混凝土材料参数;Figure 4 shows the concrete material parameters of the underground station;

图5为土层参数;Fig. 5 is soil layer parameter;

图6为Elcentro地震波加速度时程;Fig. 6 is the time history of Elcentro seismic wave acceleration;

图7为土体等效线性化模型;Fig. 7 is the soil equivalent linearization model;

图8为地下车站顶板与底板相对位移最大时刻的各土层加速度沿深度分布图;Fig. 8 is the distribution diagram of the acceleration of each soil layer along the depth at the moment of the maximum relative displacement between the top plate and the bottom plate of the underground station;

图9为地下车站顶板与底板相对位移最大时刻的等效剪切模量沿深度分布图;Figure 9 is the distribution diagram of the equivalent shear modulus along the depth at the moment of maximum relative displacement between the roof and the floor of the underground station;

图10为地下车站顶板与底板相对位移最大时刻的弹性模量沿深度分布图;Figure 10 is the distribution diagram of the elastic modulus along the depth at the moment of the maximum relative displacement between the top plate and the bottom plate of the underground station;

图11为截面能力分析模型中柱截面图;Figure 11 is a sectional view of the column in the section capacity analysis model;

图12为含塑性铰的土-结构相互作用模型的示意图;Fig. 12 is a schematic diagram of a soil-structure interaction model containing plastic hinges;

图13为框架塑性铰分布示意图;Figure 13 is a schematic diagram of the distribution of frame plastic hinges;

图14为单条IDA曲线图。Figure 14 is a single IDA curve.

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

以下结合具体情况说明本发明的示例性实施例:Exemplary embodiments of the present invention are described below in conjunction with specific circumstances:

本发明提供一种地下结构抗震倒塌能力的分析方法,主要包括以下步骤:The invention provides an analysis method for the anti-seismic collapse ability of an underground structure, which mainly includes the following steps:

根据地下结构所处场地的地震动记录,确定地震强度参数IM;Determine the seismic intensity parameter IM according to the ground motion records of the site where the underground structure is located;

构建一维土体自由场等效线性化模型,分别计算地下结构顶部、底部所处土层相对位移最大时刻的各土层加速度、等效剪切模量和弹性模量;Construct a one-dimensional soil free field equivalent linearization model, and calculate the acceleration, equivalent shear modulus and elastic modulus of each soil layer at the moment of maximum relative displacement of the soil layers at the top and bottom of the underground structure;

构建土-结构相互作用模型,计算地下结构在重力作用下的单元内力;Construct the soil-structure interaction model and calculate the unit internal force of the underground structure under the action of gravity;

构建框架结构构件截面模型,计算截面弯矩-曲率,得到地下结构塑性铰参数;Construct the section model of the frame structure member, calculate the section bending moment-curvature, and obtain the plastic hinge parameters of the underground structure;

构建含有塑性铰的土-结构相互作用平面模型,计算地震动下的地下结构性能参数DM。A soil-structure interaction plane model containing plastic hinges is constructed to calculate the performance parameter DM of the underground structure under earthquake motion.

请参考图1,图1为本发明实施例所提供的地下结构抗震倒塌能力的分析方法的流程示意图;本实施例提供一种地下结构抗震倒塌能力的分析方法,具体包括以下步骤:Please refer to Fig. 1, Fig. 1 is the flow diagram of the analysis method of the anti-seismic collapse ability of the underground structure provided by the embodiment of the present invention; The present embodiment provides a kind of analysis method of the anti-seismic collapse ability of the underground structure, specifically comprises the following steps:

步骤S101、根据地下结构所处场地的地震动记录,确定地震强度参数IM。Step S101. Determine the seismic intensity parameter IM according to the ground motion records of the site where the underground structure is located.

在本实施例中,选取地震动记录中的地震动峰值加速度作为地震强度参数IM。In this embodiment, the peak acceleration of the earthquake in the earthquake record is selected as the earthquake intensity parameter IM.

步骤S102、构建一维土体自由场等效线性化模型,分别计算地下结构顶部、底部所处土层相对位移最大时刻的各土层加速度、等效剪切模量和弹性模量。Step S102 , constructing a one-dimensional soil free field equivalent linearized model, and calculating the acceleration, equivalent shear modulus, and elastic modulus of each soil layer at the time of maximum relative displacement of the soil layers at the top and bottom of the underground structure, respectively.

其中,构建一维土体自由场等效线性化模型,包括:将地下结构的土体沿深度划分土层,土体采用等效线性化模型。Among them, the construction of a one-dimensional soil free field equivalent linearization model includes: dividing the soil of the underground structure into soil layers along the depth, and adopting an equivalent linearization model for the soil.

步骤S103、构建土-结构相互作用模型,计算地下结构在重力作用下的单元内力。Step S103, building a soil-structure interaction model, and calculating the unit internal force of the underground structure under the action of gravity.

其中,构建土-结构相互作用模型,包括:采用有限元软件构建土-结构相互作用模型。Among them, constructing the soil-structure interaction model includes: using finite element software to construct the soil-structure interaction model.

步骤S104、构建框架结构构件截面模型,计算截面弯矩-曲率,得到地下结构塑性铰参数。Step S104 , building a section model of the frame structure member, calculating the section bending moment-curvature, and obtaining the plastic hinge parameters of the underground structure.

其中,计算截面弯矩-曲率,包括:采用截面能力分析软件计算截面弯矩-曲率。Wherein, the calculation of the section bending moment-curvature includes: using section capacity analysis software to calculate the section bending moment-curvature.

步骤S105、构建含有塑性铰的土-结构相互作用平面模型,计算地震动作用下的地下结构性能参数DM。Step S105 , constructing a plane model of soil-structure interaction including plastic hinges, and calculating the performance parameter DM of the underground structure under the action of earthquake.

步骤S106、绘制单条IDA曲线,并对单条IDA曲线进行分析。Step S106, draw a single IDA curve, and analyze the single IDA curve.

其中,对单条IDA曲线进行分析,包括:计算小调幅地震动记录下结构的动力反应,得到第1个DM-IM点;将原点与第1个DM-IM点之间连线的弹性斜率记做 ;继续计算下一调幅地震动记录下结构的动力反应,如该点地下结构出现屈服,则为结构屈服点;继续计算下一调幅地震动记录下结构的动力反应,得到第下一个DM-IM点,如该点与前一个DM-IM点之间的斜率大于 ,或者此点的层间位移角大于10%,继续计算下一调幅地震动下的DM-IM点,否则认为结构将发生倒塌,其中,0<α<1.0,一般α取为0.2。Among them, the analysis of a single IDA curve includes: calculating the dynamic response of the structure recorded by the small-amplitude-modulated earthquake motion, and obtaining the first DM-IM point; recording the elastic slope of the line between the origin and the first DM-IM point Do; continue to calculate the dynamic response of the structure recorded by the next AM earthquake motion, if the underground structure yields at this point, it is the structural yield point; continue to calculate the dynamic response of the structure recorded by the next AM earthquake motion, and get the next DM- IM point, if the slope between this point and the previous DM-IM point is greater than, or the interstory displacement angle of this point is greater than 10%, continue to calculate the DM-IM point under the next AM earthquake, otherwise it is considered that the structure will occur Collapse, where, 0<α<1.0, generally α is taken as 0.2.

步骤S107、变换原始地震动记录,得到多条IDA曲线,并分别进行分析。Step S107, transforming the original ground motion records to obtain a plurality of IDA curves, and analyzing them respectively.

本发明实施例还提供一种地下结构抗震倒塌能力的分析系统,包括:Embodiments of the present invention also provide an analysis system for the seismic collapse resistance of underground structures, including:

地震强度参数设定模块201,用于根据地下结构所处场地的地震动记录,确定地震强度参数IM;The earthquake intensity parameter setting module 201 is used to determine the earthquake intensity parameter IM according to the ground motion records of the site where the underground structure is located;

一维土体自由场等效线性化模型构建计算模块202,用于构建一维土体自由场等效线性化模型,并且分别计算地下结构顶部、底部所处土层相对位移最大时的各土层加速度、等效剪切模量和弹性模量;The one-dimensional soil free-field equivalent linearization model construction calculation module 202 is used to construct the one-dimensional soil free-field equivalent linearization model, and calculate the relative displacement of each soil layer at the top and bottom of the underground structure when the relative displacement is the largest. Layer acceleration, equivalent shear modulus and elastic modulus;

土-结构相互作用模型第一构建计算模块203,用于构建土-结构相互作用模型,并且计算地下结构在重力作用下的单元内力;The first construction calculation module 203 of the soil-structure interaction model is used to construct the soil-structure interaction model and calculate the unit internal force of the underground structure under the action of gravity;

框架结构构件截面模型构建计算模块204,用于构建框架结构构件截面模型,并且计算截面弯矩-曲率,以得到地下结构塑性铰参数;The frame structure component section model construction calculation module 204 is used to construct the frame structure component section model, and calculate the section bending moment-curvature, so as to obtain the plastic hinge parameters of the underground structure;

土-结构相互作用模型第二构建计算模块205,用于构建含有塑性铰的土-结构相互作用平面模型,并计算地震动作用下的地下结构性能参数DM。The second construction calculation module 205 of the soil-structure interaction model is used to construct a soil-structure interaction plane model including plastic hinges, and calculate the performance parameter DM of the underground structure under the action of earthquake.

进一步地,还包括:IDA曲线绘制模块206,用于绘制IDA曲线。Further, it also includes: an IDA curve drawing module 206 for drawing an IDA curve.

进一步地,还包括:IDA曲线分析模块207,用于分析IDA曲线,得到该IDA曲线的屈服点、倒塌点等。Further, it also includes: an IDA curve analysis module 207, configured to analyze the IDA curve to obtain the yield point, collapse point, etc. of the IDA curve.

进一步地,所述土-结构相互作用模型第一构建计算模块和土-结构相互作用模型第二构建计算模块均采用有限元软件。进一步地,所述框架结构构件截面模型构建计算模块采用截面能力分析软件。Further, the first construction calculation module of the soil-structure interaction model and the second construction calculation module of the soil-structure interaction model both use finite element software. Further, the section model building calculation module of the frame structural member adopts section capacity analysis software.

以下结合具体实例详述本发明实施例所提供的地下结构抗震倒塌能力的分析方法的具体操作过程:The specific operation process of the analysis method for the seismic collapse resistance of underground structures provided by the embodiments of the present invention is described in detail below in conjunction with specific examples:

以工程:某地下车站3层3跨、土层厚70m、结构埋深10m、Ⅲ类场地、采用Elcentro地震波,为例进行说明。Taking a project: an underground station with 3 floors and 3 spans, a soil layer thickness of 70m, a structure buried depth of 10m, a Class III site, and the use of Elcentro seismic waves as an example to illustrate.

地下车站选取两层双柱三跨混凝土框架结构;截取典型的横向断面作为设计截面,设计截面框架由顶板、底板、上下中板、双中柱、侧墙组成;车站宽度为24.8m,高为20.8m,其中顶板厚度为0.8m,上下中板厚度为0.4m,底板厚度为1.0m,中柱为0.6×1.3m矩形截面,侧墙厚度为0.9m;车站截面及配筋见图3;。The underground station adopts a two-story, double-column, three-span concrete frame structure; a typical transverse section is taken as the design section, and the frame of the design section is composed of roof, floor, upper and lower middle plates, double middle columns, and side walls; the width of the station is 24.8m, and the height is 20.8m, of which the thickness of the roof is 0.8m, the thickness of the upper and lower middle plates is 0.4m, the thickness of the bottom plate is 1.0m, the center column is a 0.6×1.3m rectangular section, and the thickness of the side wall is 0.9m; the section and reinforcement of the station are shown in Figure 3; .

车站结构中柱混凝土采用C40,其余混凝土采用C30;其混凝土材料参数参见图4;土层参数参见图5,其中,地震波从基岩输入;Elcentro地震波记录参见图6。C40 is used for the concrete of the center column of the station structure, and C30 for the rest of the concrete; see Figure 4 for the concrete material parameters; see Figure 5 for the soil layer parameters, where the seismic wave is input from the bedrock; see Figure 6 for the Elcentro seismic wave records.

进行一维土体自由场分析,将土层厚度沿深度划分,分层厚度取1m。土体等效线性化参数参见图7,图中,下降曲线是剪切模量衰减曲线,上升曲线是阻尼曲线。One-dimensional soil free field analysis is carried out, and the thickness of the soil layer is divided along the depth, and the layer thickness is taken as 1m. See Figure 7 for the equivalent linearization parameters of the soil. In the figure, the descending curve is the shear modulus attenuation curve, and the rising curve is the damping curve.

输入1倍Elcentro地震波,计算得到地下车站顶板与底板相对位移最大时刻的各土层加速度、等效剪切模量及弹性模量,参见图8、图9和图10。Input 1 times the Elcentro seismic wave, and calculate the acceleration, equivalent shear modulus and elastic modulus of each soil layer at the moment of maximum relative displacement between the roof and floor of the underground station, see Fig. 8, Fig. 9 and Fig. 10.

塑性铰弯矩-转角计算。塑性铰弯矩-曲率参数由截面能力分析软件求得。车站中柱保护层厚度30mm,HRB335钢筋,所建截面能力模型见图11。Plastic hinge moment-angle calculation. The plastic hinge moment-curvature parameters are obtained by section capacity analysis software. The thickness of the protective layer of the center column of the station is 30mm, and the HRB335 steel bar is used. The section capacity model built is shown in Figure 11.

构建含塑性铰的土-结构相互作用模型,土-结构相互作用模型顶部取自由地表面,底部边界为固定边界,两侧边界为固定竖直方向、释放水平方向约束,示意图见图12。为考虑非线性,在地下结构框架梁单元上设置塑性铰,见图13。A soil-structure interaction model with plastic hinges is constructed. The top of the soil-structure interaction model is taken from the free ground surface, the bottom boundary is a fixed boundary, and the boundaries on both sides are fixed vertical and horizontal constraints. The schematic diagram is shown in Figure 12. In order to consider nonlinearity, plastic hinges are set on the frame beam elements of the underground structure, as shown in Fig. 13.

采用反应加速度法计算地下结构的层间位移角,绘制在该地震波下的IDA曲线,并计算得到该IDA曲线的屈服点和倒塌点,如图14所示。Using the reaction acceleration method to calculate the interstory displacement angle of the underground structure, draw the IDA curve under the seismic wave, and calculate the yield point and collapse point of the IDA curve, as shown in Figure 14.

之后进行背景技术中的IDA分析方法的基本步骤:Carry out the basic steps of the IDA analysis method in the background technology afterwards:

6.变换原始地震动记录得到多条IDA曲线;6. Transform the original earthquake records to obtain multiple IDA curves;

7.多条IDA曲线数据处理;7. Multiple IDA curve data processing;

8.用IDA结果评估结构的抗震性能。8. Use the IDA results to evaluate the seismic performance of the structure.

IDA分析方法及其中的IDA曲线数据处理为本领域公知技术,不再详述。The IDA analysis method and the IDA curve data processing therein are well-known technologies in the art and will not be described in detail.

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this text, relational terms such as first and second etc. are only used to distinguish one entity or operation from another, and do not necessarily require or imply that these entities or operations, any such actual relationship or order exists. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.

以上对本发明所提供的具体实施方式进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The specific implementation methods provided by the present invention have been introduced in detail above, and the principles and implementation modes of the present invention have been explained by using specific examples in this paper. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention At the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the present invention.

Claims (9)

1.一种地下结构抗震倒塌能力的分析方法,其特征在于,包括:1. An analytical method for the seismic collapse resistance of an underground structure, characterized in that it comprises: 根据地下结构所处场地的地震动记录,确定地震强度参数IM;Determine the seismic intensity parameter IM according to the ground motion records of the site where the underground structure is located; 构建一维土体自由场等效线性化模型,分别计算地下结构顶部、底部所处土层相对位移最大时刻的各土层加速度、等效剪切模量和弹性模量;Construct a one-dimensional soil free field equivalent linearization model, and calculate the acceleration, equivalent shear modulus and elastic modulus of each soil layer at the moment of maximum relative displacement of the soil layers at the top and bottom of the underground structure; 构建土-结构相互作用模型,计算地下结构在重力作用下的单元内力;Construct the soil-structure interaction model and calculate the unit internal force of the underground structure under the action of gravity; 构建框架结构构件截面模型,计算截面弯矩-曲率,得到地下结构塑性铰参数;Construct the section model of the frame structure member, calculate the section bending moment-curvature, and obtain the plastic hinge parameters of the underground structure; 构建含有塑性铰的土-结构相互作用平面模型,计算地震动作用下的地下结构性能参数DM。A plane model of soil-structure interaction with plastic hinges is constructed to calculate the performance parameter DM of the underground structure under the action of earthquake. 2.根据权利要求1所述的地下结构抗震倒塌能力的分析方法,其特征在于,确定地震强度参数IM,包括:2. the analysis method of underground structure anti-seismic collapse ability according to claim 1, it is characterized in that, determining the seismic intensity parameter IM comprises: 选取地震动记录中的地震动峰值加速度作为地震强度参数IM。The peak acceleration of ground motion in the ground motion record is selected as the earthquake intensity parameter IM. 3.根据权利要求1所述的地下结构抗震倒塌能力的分析方法,其特征在于,构建一维土体自由场等效线性化模型,包括:3. the analysis method of underground structure anti-seismic collapse ability according to claim 1, is characterized in that, constructs one-dimensional soil body free field equivalent linearization model, comprises: 将土体沿深度划分土层,土体采用等效线性化模型。The soil is divided into soil layers along the depth, and the soil adopts an equivalent linear model. 4.根据权利要求1所述的地下结构抗震倒塌能力的分析方法,其特征在于,计算地震动下的地下结构性能参数DM之后,还包括:4. the analysis method of underground structure anti-seismic collapse ability according to claim 1, it is characterized in that, after calculating the underground structure performance parameter DM under the earthquake, also comprise: 绘制单条IDA曲线,并对单条IDA曲线进行分析。Draw and analyze a single IDA curve. 5.根据权利要求4所述的地下结构抗震倒塌能力的分析方法,其特征在于,对单条IDA曲线进行分析,包括:5. the analysis method of underground structure anti-seismic collapse ability according to claim 4 is characterized in that, analyzing a single IDA curve comprises: 计算小调幅地震动记录下结构的动力反应,得到第1个DM-IM点;将原点与第1个DM-IM点之间连线的弹性斜率记做 ;继续计算下一调幅地震动记录下结构的动力反应,得到第2个DM-IM点,如该点地下结构出现屈服,则为结构屈服点;继续计算下一调幅地震动记录下结构的动力反应,得到下一个DM-IM点,如该点与前一个DM-IM点之间的斜率大于 ,或者此点的层间位移角大于10%,继续计算下一调幅地震动下的DM-IM点,否则认为结构将发生倒塌,其中,0<α<1.0,一般α取为0.2。Calculate the dynamic response of the structure recorded by the small-amplitude-modulated earthquake motion, and obtain the first DM-IM point; record the elastic slope of the line between the origin and the first DM-IM point; continue to calculate the next amplitude-modulated earthquake motion and record For the dynamic response of the structure, the second DM-IM point is obtained. If the underground structure yields at this point, it is the structural yield point; continue to calculate the dynamic response of the structure under the next AM earthquake record, and obtain the next DM-IM point, If the slope between this point and the previous DM-IM point is greater than, or the interstory displacement angle of this point is greater than 10%, continue to calculate the DM-IM point under the next AM earthquake, otherwise the structure will be considered to collapse, where , 0<α<1.0, generally α is taken as 0.2. 6.根据权利要求4或5所述的地下结构抗震倒塌能力的分析方法,其特征在于,还包括:6. according to the analysis method of the earthquake-resistant collapse ability of underground structure described in claim 4 or 5, it is characterized in that, also comprises: 变换原始地震动记录,得到多条IDA曲线,并分别进行分析。Transform the original ground motion records to obtain multiple IDA curves and analyze them separately. 7.一种地下结构抗震倒塌能力的分析系统,其特征在于,包括:7. An analysis system for seismic collapse resistance of underground structures, characterized in that it comprises: 地震强度参数设定模块,用于根据地下结构所处场地的地震动记录,确定地震强度参数IM;The seismic intensity parameter setting module is used to determine the seismic intensity parameter IM according to the ground motion records of the site where the underground structure is located; 一维土体自由场等效线性化模型构建计算模块,用于构建一维土体自由场等效线性化模型,并且分别计算地下结构顶部、底部所处土层相对位移最大时刻的各土层加速度、等效剪切模量和弹性模量;One-dimensional soil free field equivalent linearization model construction calculation module, used to construct one-dimensional soil free field equivalent linearization model, and calculate the soil layers at the moment of maximum relative displacement of the soil layers at the top and bottom of the underground structure Acceleration, equivalent shear modulus and modulus of elasticity; 土-结构相互作用模型第一构建计算模块,用于构建土-结构相互作用模型,并且计算地下结构在重力作用下的单元内力;The first building calculation module of the soil-structure interaction model is used to build the soil-structure interaction model and calculate the unit internal force of the underground structure under the action of gravity; 框架结构构件截面模型构建计算模块,用于构建框架结构构件截面模型,并且计算截面弯矩-曲率,以得到地下结构塑性铰参数;The calculation module for constructing the section model of the frame structure member is used to construct the section model of the frame structure member, and calculate the section bending moment-curvature to obtain the plastic hinge parameters of the underground structure; 土-结构相互作用模型第二构建计算模块,用于构建含有塑性铰的土-结构相互作用平面模型,并计算地震动作用下的地下结构性能参数DM。The second construction calculation module of the soil-structure interaction model is used to construct the soil-structure interaction plane model containing plastic hinges, and calculate the performance parameter DM of the underground structure under the action of earthquake. 8.根据权利要求7所述的地下结构抗震倒塌能力的分析系统,其特征在于,还包括:8. The analysis system of the anti-seismic collapse capability of underground structures according to claim 7, further comprising: IDA曲线绘制模块,用于绘制IDA曲线。The IDA curve drawing module is used to draw the IDA curve. 9.根据权利要求7所述的地下结构抗震倒塌能力的分析系统,其特征在于,还包括:9. The analysis system of the anti-seismic collapse capability of underground structures according to claim 7, further comprising: IDA曲线分析模块,用于分析IDA曲线,得到该IDA曲线的屈服点、倒塌点等。The IDA curve analysis module is used to analyze the IDA curve and obtain the yield point and collapse point of the IDA curve.
CN201710843771.0A 2017-09-19 2017-09-19 Method and system for analyzing earthquake collapse resistance of underground structure Active CN107577890B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710843771.0A CN107577890B (en) 2017-09-19 2017-09-19 Method and system for analyzing earthquake collapse resistance of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710843771.0A CN107577890B (en) 2017-09-19 2017-09-19 Method and system for analyzing earthquake collapse resistance of underground structure

Publications (2)

Publication Number Publication Date
CN107577890A true CN107577890A (en) 2018-01-12
CN107577890B CN107577890B (en) 2020-04-17

Family

ID=61036039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710843771.0A Active CN107577890B (en) 2017-09-19 2017-09-19 Method and system for analyzing earthquake collapse resistance of underground structure

Country Status (1)

Country Link
CN (1) CN107577890B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334694A (en) * 2018-01-31 2018-07-27 华中科技大学 The three-dimensional parameterized numerical modeling analysis method of Structure Soil-structural system and system
CN108549104A (en) * 2018-04-10 2018-09-18 江南大学 Layered place inclined seismic wave fluction analysis method
CN110569572A (en) * 2019-08-22 2019-12-13 武汉理工大学 Simplified analysis method for seismic design of shore-to-shore container cranes
CN111027247A (en) * 2019-12-09 2020-04-17 江南大学 Stepwise incremental dynamic analysis and data processing method based on OpenSees and MATLAB
CN111709072A (en) * 2020-06-01 2020-09-25 哈尔滨工业大学 A Prediction Method of Underground Earthquake Amplitude Parameter
CN114021236A (en) * 2021-11-04 2022-02-08 哈尔滨工业大学 Urban subway underground station anti-seismic toughness assessment method and equipment considering subsystem association
CN114091142A (en) * 2021-10-22 2022-02-25 中铁第四勘察设计院集团有限公司 A method and system for correction analysis of station structure model
CN114329739A (en) * 2022-01-13 2022-04-12 西南交通大学 A kind of seismic calculation method and system of underground structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787677A (en) * 2011-05-20 2012-11-21 青岛理工大学 Engineering structure seismic intensity prediction method
US20120310607A1 (en) * 2011-05-20 2012-12-06 Qingdao Technological University Engineering structure multi-objective performance-based seismic design
US20130204592A1 (en) * 2010-04-05 2013-08-08 Georgia Tech Research Corporation Structural Health Monitoring Systems And Methods
CN103559383A (en) * 2013-09-30 2014-02-05 上海交通大学 Method for predicting and evaluating strong earthquake resistance of nuclear power station breakwater
CN107122536A (en) * 2017-04-20 2017-09-01 济南轨道交通集团有限公司 A kind of running tunnel antidetonation method for numerical simulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130204592A1 (en) * 2010-04-05 2013-08-08 Georgia Tech Research Corporation Structural Health Monitoring Systems And Methods
CN102787677A (en) * 2011-05-20 2012-11-21 青岛理工大学 Engineering structure seismic intensity prediction method
US20120310607A1 (en) * 2011-05-20 2012-12-06 Qingdao Technological University Engineering structure multi-objective performance-based seismic design
CN103559383A (en) * 2013-09-30 2014-02-05 上海交通大学 Method for predicting and evaluating strong earthquake resistance of nuclear power station breakwater
CN107122536A (en) * 2017-04-20 2017-09-01 济南轨道交通集团有限公司 A kind of running tunnel antidetonation method for numerical simulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹福亮: "基于IDA的倒鱼腹式空间管桁架结构地震易损性分析", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108334694A (en) * 2018-01-31 2018-07-27 华中科技大学 The three-dimensional parameterized numerical modeling analysis method of Structure Soil-structural system and system
CN108549104A (en) * 2018-04-10 2018-09-18 江南大学 Layered place inclined seismic wave fluction analysis method
CN110569572A (en) * 2019-08-22 2019-12-13 武汉理工大学 Simplified analysis method for seismic design of shore-to-shore container cranes
CN110569572B (en) * 2019-08-22 2021-01-26 武汉理工大学 Simplified analysis method for earthquake-resistant design of quayside container crane
CN111027247A (en) * 2019-12-09 2020-04-17 江南大学 Stepwise incremental dynamic analysis and data processing method based on OpenSees and MATLAB
CN111709072A (en) * 2020-06-01 2020-09-25 哈尔滨工业大学 A Prediction Method of Underground Earthquake Amplitude Parameter
CN111709072B (en) * 2020-06-01 2022-05-17 哈尔滨工业大学 A Prediction Method of Underground Earthquake Amplitude Parameter
CN114091142A (en) * 2021-10-22 2022-02-25 中铁第四勘察设计院集团有限公司 A method and system for correction analysis of station structure model
CN114021236A (en) * 2021-11-04 2022-02-08 哈尔滨工业大学 Urban subway underground station anti-seismic toughness assessment method and equipment considering subsystem association
CN114329739A (en) * 2022-01-13 2022-04-12 西南交通大学 A kind of seismic calculation method and system of underground structure
CN114329739B (en) * 2022-01-13 2022-08-12 西南交通大学 A kind of seismic calculation method and system of underground structure

Also Published As

Publication number Publication date
CN107577890B (en) 2020-04-17

Similar Documents

Publication Publication Date Title
CN107577890A (en) Analytical method and system for earthquake-resistant collapse capacity of underground structures
Scarfone et al. Assessment of dynamic soil-structure interaction effects for tall buildings: A 3D numerical approach
Milani et al. Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: Non-linear dynamic analyses vs conventional static approaches
Betti et al. Comparative analysis on the seismic behaviour of unreinforced masonry buildings with flexible diaphragms
Ghandil et al. The near-field method for dynamic analysis of structures on soft soils including inelastic soil–structure interaction
Milani et al. Comparative pushover and limit analyses on seven masonry churches damaged by the 2012 Emilia-Romagna (Italy) seismic events: Possibilities of non-linear finite elements compared with pre-assigned failure mechanisms
Malena et al. Collapse mechanism analysis of historic masonry structures subjected to lateral loads: A comparison between continuous and discrete models
Uzuoka et al. Dynamics of unsaturated poroelastic solids at finite strain
Fatahi et al. Fully nonlinear versus equivalent linear computation method for seismic analysis of midrise buildings on soft soils
Tabatabaiefar et al. Idealisation of soil–structure system to determine inelastic seismic response of mid-rise building frames
Gajan et al. Application and validation of practical tools for nonlinear soil-foundation interaction analysis
Saloustros et al. An enhanced finite element macro-model for the realistic simulation of localized cracks in masonry structures: A large-scale application
Goktepe et al. Numerical and experimental study on scaled soil-structure model for small shaking table tests
Ceroni et al. Assessment of seismic vulnerability of a historical masonry building
Erdogan et al. Investigation of the seismic behavior of a historical masonry minaret considering the interaction with surrounding structures
Portioli et al. Seismic retrofitting of Mustafa Pasha Mosque in Skopje: finite element analysis
Petrovčič et al. Design considerations for retrofitting of historic masonry structures with externally bonded FRP systems
Jiménez et al. Dynamic soil–structure interaction effects in buildings founded on vertical reinforcement elements
Collura et al. Comparative assessment of variable loads and seismic actions on bridges: a case study in Italy using a multimodal approach
Gromysz In situ experimental study on the active support used for building rectification
Chowdhury et al. Effects of openings in shear wall on seismic response of structures
CN108680730A (en) Simulator and analogy method are endangered in ground fissure place under a kind of seismic loading
Poudel et al. Numerical investigation of nonlinear soil-structure interaction effects on response of irregular RC buildings
Nascimbene et al. Seismic Strengthening of Elevated Reinforced Concrete Tanks: Analytical Framework and Validation Techniques
Tabsh et al. Numerically based parametric analysis of mat foundations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant