CN107574377A - 一种基于纳米结构的高吸能型高锰twip钢及其制备方法 - Google Patents

一种基于纳米结构的高吸能型高锰twip钢及其制备方法 Download PDF

Info

Publication number
CN107574377A
CN107574377A CN201710800892.7A CN201710800892A CN107574377A CN 107574377 A CN107574377 A CN 107574377A CN 201710800892 A CN201710800892 A CN 201710800892A CN 107574377 A CN107574377 A CN 107574377A
Authority
CN
China
Prior art keywords
nanostructured
twip steel
steel
high manganese
manganese twip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710800892.7A
Other languages
English (en)
Other versions
CN107574377B (zh
Inventor
米振莉
徐梅
李龙
杨永刚
江海涛
蒋睿婷
汪振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710800892.7A priority Critical patent/CN107574377B/zh
Publication of CN107574377A publication Critical patent/CN107574377A/zh
Application granted granted Critical
Publication of CN107574377B publication Critical patent/CN107574377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种基于纳米结构的高吸能型高锰TWIP钢及其制备方法,属于金属材料领域。本发明中的纳米结构包括纳米尺度的组织和纳米尺寸的析出物,其中,纳米组织既可以提高材料的强度,也可以增加其塑性;纳米析出物主导材料的强化。本发明在V含量的添加基础上又添加了Nb、Ti微合金元素,经过冶炼→铸造→锻造→加热炉均匀化→热轧→酸洗→两阶段冷轧→退火工序而获得一种具有纳米结构且具有高的能量吸收能力的TWIP钢。本发明中高锰TWIP钢在室温下,以1mm/min的速率进行单向拉伸实验后的屈服强度为650‑820MPa,抗拉强度为1080‑1180MPa,断后延伸率为30%以上,在拉伸变形过程中所吸收的能量为35GPa%以上,力学性能优异,制备方法简单可行。

Description

一种基于纳米结构的高吸能型高锰TWIP钢及其制备方法
技术领域
本发明属于先进高强度汽车用钢开发领域,同时提供了一种基于纳米结构的高吸能型高锰TWIP钢及其制备方法。
背景技术
随着汽车轻量化的发展,汽车制造商对汽车用钢也提出了更高的要求,TWIP(twinning induced plasticity)钢因其高强度、高塑性、高加工硬化率、抗冲击安全性等卓越的综合性能,在汽车、军工、航空、石油开采等领域都表现出诱人的应用潜力,掀起了一次又一次的研发热潮。
汽车用钢实现汽车轻量化的同时,还需保证其强度和安全性能,这必然要求TWIP钢既要有高的能量吸收能力,又要有高的屈服强度。但是,目前TWIP钢的屈服强度仍偏低(一般在200-400MPa),抗扭转变形能力不足,导致在以屈服强度为准则的工程设计中,很难实现减少零部件壁厚和重量的目标。
国内外开展了大量TWIP钢强化机理和技术的研究,近年来有学者正在开发多种提高TWIP钢屈服强度的技术,包括:晶粒细化、析出强化、预变性、部分再结晶和固溶强化。研究结果表明,预变形和部分再结晶都能显著提高TWIP钢的屈服强度,但却严重降低了其塑性,导致最后TWIP钢能量吸收能力大大减小。
发明内容
本发明的目的在于提供一种基于纳米结构的高吸能型高锰TWIP钢的制备方法。本发明在Nb、V、Ti合金化的基础上,通过控制轧制及后续的再结晶工艺,把细晶强化、高温析出强化和中温析出强化结合起来,获得一种具有纳米奥氏体晶粒、纳米析出物和退火孪晶的完全再结晶的TWIP钢。
一种基于纳米结构的高吸能型高锰TWIP钢,其特征在于元素组成(质量分数,%)C:0.55-0.95;Mn:18-25;Al:1.2-3.5;V:0.1-0.9;Nb:0.03-0.06或Ti:0.02-0.04;其中至少含一种Nb、Ti微合金元素,其余为铁元素。
进一步的,高锰TWIP钢层错能在20-30mJ/m2范围。
进一步的,高锰TWIP钢室温组织为单一的奥氏体,平均晶粒尺寸在200-550nm范围。
进一步的,高锰TWIP钢在室温下,以1mm/min的速率进行单向拉伸实验后的屈服强度为650-820MPa,抗拉强度为1080-1180MPa,断后延伸率为30%以上,在拉伸变形过程中所吸收的能量为35GPa%以上。
进一步的,高锰TWIP钢在细小奥氏体基体上均匀分布着尺寸为5-50nm碳氮析出物。
如上所述基于纳米结构的高吸能型高锰TWIP钢的制备方法,其特征在于制备工艺步骤如下:
步骤一:在真空感应熔炼炉里进行冶炼,冷却后的铸坯在1100-1180℃下保温1.2-1.8h后锻造成厚度为35-45mm的钢坯;
步骤二:将锻造后的钢坯加热到1150-1250℃,保温1.5-2h进行热轧,初轧温度1080-1150℃,高温开轧,是为了保证含Nb、Ti第二相粒子在高温区间的析出,阻碍奥氏体晶粒的长大;终轧温度,800-870℃,经5个道次轧制4±0.05mm,空冷至室温;
步骤三:热轧后的板材冷轧前先进行一次酸洗,然后进行第一阶段冷轧,轧至2.3±0.1mm后进行730-810℃保温10-15min的退火,之后再进行一次酸洗后进行第二阶段的冷轧,最终厚度为1.2±0.02mm;
步骤四:将1.2mm厚的冷轧板在氮气保护下进行连续退火,退火温度600-750℃,中温热处理是为了含V第二相粒子在中温时效区间的析出,起到强化基体的作用,保温时间1.5-5min,最后以20℃/s的冷却速率冷却至室温。
本发明提供的一种基于纳米结构的高吸能型高锰TWIP钢的制备方法。其特征在于Nb或Ti的碳氮化物在高温轧制过程析出,阻止了热轧过程高温奥氏体晶粒的长大,控制了热轧过程中的动态再结晶,最终获得细小的热轧组织;V的碳氮化物在热轧冷却及中温退火时效过程中析出,增加了TWIP钢的屈服抗拉强度。中温短时间退火,获得了具有完全再结晶晶粒的TWIP钢,使TWIP钢的塑性不至于因析出强化降得太低而影响了其碰撞过程中能量的吸收。
本发明的关键点在于V含量的添加基础上又添加了Nb、Ti微合金元素。其中,当V含量低于0.1%时,中温析出的V的碳氮化合物较少,屈服强度增加的不明显;V含量高于0.9%,不但增加了TWIP钢的成本,而且屈服强度的增加幅度较小。加入微量的Nb或Ti,TWIP钢在高温轧制时析出,起到阻碍高温奥氏体晶粒长大,细化了热轧奥氏体晶粒,既提高了TWIP钢的强度,又增加了其塑性。
本发明的另一关键点在于中温短时间完全再结晶退火。退火温度过高,时间过长,都会使奥氏体晶粒长大,降低了其强度;而退火温度较低,时间较短,冷轧变形的奥氏体组织没有完全再结晶,晶内位错密度较高,虽然强度较高,但延伸率很低,大大降低了TWIP钢的抗碰撞吸能能力。另外,中温短时间退火也大大降低了能源消耗。
本发明所涉及的一种基于纳米结构的高吸能型高锰TWIP钢的层错能控制在在20-30mJ/m2范围内,以保证TWIP钢在室温时是单一的奥氏体结构,且在成型变形过程中产生形变孪晶,进一步起到增加塑性的作用。
至少一种Nb、Ti微合金元素的添加,在高温轧制时析出钉扎奥氏体晶界,阻碍奥氏体晶粒的长大,使最终奥氏体晶粒平均尺寸控制在200-550nm范围。
V元素的添加,在冷却和中温退火过程中析出尺寸为5-50nm碳氮化合物,强化基体。本发明所涉及的一种基于纳米结构的高吸能TWIP钢的屈服强度达650-820MPa,抗拉强度1080-1180MPa,断后延伸率30%以上,变形过程中所能吸收的能量35GPa%以上。
本发明所涉及到的具有纳米结构的高吸能型高锰TWIP钢经过冶炼→铸造→锻造→加热炉均匀化→热轧→酸洗→两阶段冷轧→退火工序而获得。将铸坯加热到1100-1180℃下保温1.2-1.8h后锻造成厚度为35-45mm的钢坯,加热温度控制在1180℃以下,保温时间控制在1.8h以内,以免在锻造的过程中材料发生碎裂。将钢坯加热到1150-1280℃,保温1.5-2h进行均匀化,在1150℃以上保温,是为了让Nb或Ti、微量合金元素充分固溶到基体里。初轧温度1080-1150℃,终轧温度800-870℃,经5个道次轧至4±0.05mm,空冷至室温。将热轧板酸洗去除氧化铁皮,保证第一次冷轧板材的表面质量,进行第一阶段冷轧,轧至2.3±0.1mm后进行730-810℃保温10-15min的退火,以消除冷轧产生的加工硬化,之后进行第二次酸洗,以保证第二阶段冷轧板的表面质量,最终厚度为1.2±0.02mm。将1.2mm厚的冷轧板在氮气保护下进行连续退火,退火温度600-750℃,保温时间1.5-7min,最后以20℃/s的冷却速率冷却至室温,获得单一奥氏体组织的TWIP钢。
附图说明
图1为本发明制备流程图。
图2为实施例1和实施例2与传统高锰TWIP钢的工程应力应变曲线的对比图。
图3为实施例1的微观组织图。
图4为实施例1的析出物形貌图。
图5为实施例2的微观组织图。
图6为实施例2的析出物形貌图
具体实施方式
表1为实施例1和实施例2的熔炼成分。
表1实施例1和实施例2的熔炼成分(wt.%)
序号 C Mn Al V Nb Ti Fe
实施例1 0.703 19.79 2.01 0.516 0.041 - 余量
实施例2 0.697 19.85 2.21 0.521 - 0.032 余量
表2为实施例1和实施例2与传统高锰TWIP钢的力学性能。
表2实施例1和实施例2与传统高锰TWIP钢的力学性能
实施例1的制备步骤:熔炼成分(质量分数,%)为C:0.703%,Mn:19.79%,Al:2.01%,V:0.516%,Nb:0.041%,Fe余量。
根据图1的制备工序流程将铸坯在在1150℃下保温1.5h后锻造成厚度为40mm的钢坯,在1200℃加热炉里均匀化1.8h;在1120℃开轧,经5个道次轧至4±0.05mm,终轧温度850℃,空冷至室温后进行酸洗和两阶段冷轧,最终厚度1.2±0.02mm;在连退炉里620℃保温3.5min后以20℃/s的冷却速率冷却至室温。
实施例1所得的TWIP钢的组织是单一的奥氏体组织,平均晶粒尺寸约为220nm,其上均匀分布着约为20-40nm的析出物,屈服强度为816MPa,抗拉强度1183MPa,总延伸率38.25%,强塑积达40.88GPa%。强塑积虽然仅比传统TWIP钢高0.86GPa%,但屈服强度高523MPa,抗拉强度高284MPa。
实施例2的制备步骤:熔炼成分(质量分数,%)为C:0.697%,Mn:19.85%,Al:2.21%,V:0.521%,Ti:0.032%,Fe余量。
根据图1的制备工序流程将铸坯在在1150℃下保温1.5h后锻造成厚度为40mm的钢坯,在1200℃加热炉里均匀化1.8h;在1120℃开轧,经5个道次轧至4±0.05mm,终轧温度850℃,空冷至室温后进行酸洗和两阶段冷轧,最终厚度1.2±0.02mm;在连退炉里680℃保温3.5min后以20℃/s的冷却速率冷却至室温。
实施例2所得的TWIP钢的组织是单一的奥氏体组织,平均晶粒尺寸约为305nm,其上均匀分布着约为25-40nm的析出物,屈服强度为667MPa,抗拉强度1116MPa,总延伸率52.9%,强塑积达52.02GPa%。屈服强度比传统TWIP钢高374MPa,抗拉强度高217MPa,强塑积高12GPa%。

Claims (6)

1.一种基于纳米结构的高吸能型高锰TWIP钢,其特征在于元素组成(质量分数,%)C:0.55-0.95;Mn:18-25;Al:1.2-3.5;V:0.1-0.9;Nb:0.03-0.06或Ti:0.02-0.04;其中至少含一种Nb、Ti微合金元素,其余为铁元素。
2.如权利要求1所述一种基于纳米结构的高吸能型高锰TWIP钢,其特征在于高锰TWIP钢层错能在20-30mJ/m2范围。
3.如权利要求1所述一种基于纳米结构的高吸能型高锰TWIP钢,其特征在于高锰TWIP钢室温组织为单一的奥氏体,平均晶粒尺寸在200-550nm范围。
4.如权利要求1所述一种基于纳米结构的高吸能型高锰TWIP钢,其特征在于高锰TWIP钢在室温下,以1mm/min的速率进行单向拉伸实验后的屈服强度为650-820MPa,抗拉强度为1080-1180MPa,断后延伸率为30%以上,在拉伸变形过程中所吸收的能量为35GPa%以上。
5.如权利要求1所述一种基于纳米结构的高吸能型高锰TWIP钢,其特征在于高锰TWIP钢在细小奥氏体基体上均匀分布着尺寸为5-50nm碳氮析出物。
6.一种如权利要求1-5所述基于纳米结构的高吸能型高锰TWIP钢的制备方法,其特征在于制备工艺步骤如下:
步骤一:在真空感应熔炼炉里进行冶炼,冷却后的铸坯在1100-1180℃下保温1.2-1.8h后锻造成厚度为35-45mm的钢坯;
步骤二:将锻造后的钢坯加热到1150-1250℃,保温1.5-2h进行热轧,初轧温度1080-1150℃,高温开轧,是为了保证含Nb、Ti第二相粒子在高温区间的析出,阻碍奥氏体晶粒的长大;终轧温度,800-870℃,经5个道次轧制4±0.05mm,空冷至室温;
步骤三:热轧后的板材冷轧前先进行一次酸洗,然后进行第一阶段冷轧,轧至2.3±0.1mm后进行730-810℃保温10-15min的退火,之后再进行一次酸洗后进行第二阶段的冷轧,最终厚度为1.2±0.02mm;
步骤四:将1.2mm厚的冷轧板在氮气保护下进行连续退火,退火温度600-750℃,中温热处理是为了含V第二相粒子在中温时效区间的析出,起到强化基体的作用,保温时间1.5-5min,最后以20℃/s的冷却速率冷却至室温。
CN201710800892.7A 2017-09-07 2017-09-07 一种基于纳米结构的高吸能型高锰twip钢及其制备方法 Active CN107574377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710800892.7A CN107574377B (zh) 2017-09-07 2017-09-07 一种基于纳米结构的高吸能型高锰twip钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710800892.7A CN107574377B (zh) 2017-09-07 2017-09-07 一种基于纳米结构的高吸能型高锰twip钢及其制备方法

Publications (2)

Publication Number Publication Date
CN107574377A true CN107574377A (zh) 2018-01-12
CN107574377B CN107574377B (zh) 2019-05-03

Family

ID=61031479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710800892.7A Active CN107574377B (zh) 2017-09-07 2017-09-07 一种基于纳米结构的高吸能型高锰twip钢及其制备方法

Country Status (1)

Country Link
CN (1) CN107574377B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624741A (zh) * 2017-03-23 2018-10-09 中国科学院金属研究所 兼具高热稳定性、高强度、高塑性的多相twip钢的制备方法
CN110592326A (zh) * 2019-10-17 2019-12-20 北京科技大学 一种超细晶钢及工业化制备方法
CN112853233A (zh) * 2021-01-07 2021-05-28 浙江工业大学 一种高强度及高抗氢脆twip钢制备方法
CN112877612A (zh) * 2021-01-07 2021-06-01 浙江工业大学 一种高锰twip钢的制备方法
CN112981068A (zh) * 2021-02-02 2021-06-18 北京科技大学 利用形变诱导析出提高微合金化槽帮铸钢件强韧性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090070504A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 도금성이 우수한 고망간강 및 고망간 도금강판의 제조방법
WO2009095264A1 (en) * 2008-01-30 2009-08-06 Corus Staal Bv Method of producing a hot-rolled twip-steel and a twip-steel product produced thereby
KR100957974B1 (ko) * 2007-12-27 2010-05-17 주식회사 포스코 구멍확장성이 우수한 고강도 고망간강, 열연강판,냉연강판, 도금강판 및 이들의 제조방법
CN103339279A (zh) * 2010-12-07 2013-10-02 材料开发中心股份公司 具有高机械耐受性和成形性的高锰含量钢的制造方法以及可由此获得的钢
CN103667913A (zh) * 2013-12-31 2014-03-26 深圳市晶莱新材料科技有限公司 一种高屈服强度、高塑性twip钢的生产方法
CN102216474B (zh) * 2008-11-12 2014-08-20 福斯特阿尔派因钢铁有限公司 磷含量提高的锰钢带及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090070504A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 도금성이 우수한 고망간강 및 고망간 도금강판의 제조방법
KR100957974B1 (ko) * 2007-12-27 2010-05-17 주식회사 포스코 구멍확장성이 우수한 고강도 고망간강, 열연강판,냉연강판, 도금강판 및 이들의 제조방법
WO2009095264A1 (en) * 2008-01-30 2009-08-06 Corus Staal Bv Method of producing a hot-rolled twip-steel and a twip-steel product produced thereby
CN102216474B (zh) * 2008-11-12 2014-08-20 福斯特阿尔派因钢铁有限公司 磷含量提高的锰钢带及其制备方法
CN103339279A (zh) * 2010-12-07 2013-10-02 材料开发中心股份公司 具有高机械耐受性和成形性的高锰含量钢的制造方法以及可由此获得的钢
CN103667913A (zh) * 2013-12-31 2014-03-26 深圳市晶莱新材料科技有限公司 一种高屈服强度、高塑性twip钢的生产方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624741A (zh) * 2017-03-23 2018-10-09 中国科学院金属研究所 兼具高热稳定性、高强度、高塑性的多相twip钢的制备方法
CN108624741B (zh) * 2017-03-23 2019-10-22 中国科学院金属研究所 兼具高热稳定性、高强度、高塑性的多相twip钢的制备方法
CN110592326A (zh) * 2019-10-17 2019-12-20 北京科技大学 一种超细晶钢及工业化制备方法
CN110592326B (zh) * 2019-10-17 2021-05-07 北京科技大学 一种超细晶钢及工业化制备方法
CN112853233A (zh) * 2021-01-07 2021-05-28 浙江工业大学 一种高强度及高抗氢脆twip钢制备方法
CN112877612A (zh) * 2021-01-07 2021-06-01 浙江工业大学 一种高锰twip钢的制备方法
CN112981068A (zh) * 2021-02-02 2021-06-18 北京科技大学 利用形变诱导析出提高微合金化槽帮铸钢件强韧性的方法

Also Published As

Publication number Publication date
CN107574377B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN107574377B (zh) 一种基于纳米结构的高吸能型高锰twip钢及其制备方法
CN106498278B (zh) 一种高强度高延伸率低密度的中厚板及其制备方法
CN103255341B (zh) 一种高强度高韧性热轧耐磨钢及其制造方法
CN102534423B (zh) 高强度钢板及其制造方法
CN102618793B (zh) 一种屈服强度 960MPa 级钢板及其制造方法
CN102943169A (zh) 一种汽车用超高强薄钢板的淬火退火制备方法
CN107127212A (zh) 超快速加热工艺生产高强塑积中锰冷轧钢板的方法
CN102021472A (zh) 一种适用于连续退火工艺高强塑积汽车钢板的生产方法
CN104498821B (zh) 汽车用中锰高强钢及其生产方法
CN103562417A (zh) 制造极高强度马氏体钢的方法及如此获得的板材或部件
CN103469089B (zh) 一种饼形晶粒深冲双相钢板及其制备方法
CN106811698A (zh) 一种基于组织精细控制的高强钢板及其制造方法
CN109252107B (zh) 一种高平直度超高强钢的生产方法
CN106435380A (zh) 一种微合金化高铝高塑性钢板及其制备方法
CN106636931B (zh) 一种含δ-铁素体的TRIP钢的制备方法
CN109666862A (zh) 一种强塑积大于60GPa·%的高强韧热轧中锰钢及制备方法
CN110306127A (zh) 一种超高强度高韧性合金钢及其制备方法
CN109680130A (zh) 一种高强塑积冷轧中锰钢及其制备方法
CN109735691A (zh) 一种1000MPa高碳高锰低密度钢及其制备方法
CN102260823B (zh) 一种屈服强度690MPa级高强钢板及其制造方法
CN102191430A (zh) 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN106498297A (zh) 精密冲压汽车座椅调节器齿盘用冷轧钢板及其制造方法
CN102643969B (zh) 一种纳米结构超高强塑性低合金钢及其制备方法
CN104264039B (zh) 一种含稀土La的TRIP钢板和制备方法
CN103556052A (zh) 汽车用高锰钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant