CN107563016A - A kind of wing box section Parameter Sensitivity Analysis method based on ellipsoidal model - Google Patents

A kind of wing box section Parameter Sensitivity Analysis method based on ellipsoidal model Download PDF

Info

Publication number
CN107563016A
CN107563016A CN201710694426.5A CN201710694426A CN107563016A CN 107563016 A CN107563016 A CN 107563016A CN 201710694426 A CN201710694426 A CN 201710694426A CN 107563016 A CN107563016 A CN 107563016A
Authority
CN
China
Prior art keywords
mrow
msub
munderover
sigma
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710694426.5A
Other languages
Chinese (zh)
Other versions
CN107563016B (en
Inventor
张峰
骆凯亮
刘伟
翟伟昊
邓维维
敖良波
岳珠峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710694426.5A priority Critical patent/CN107563016B/en
Publication of CN107563016A publication Critical patent/CN107563016A/en
Application granted granted Critical
Publication of CN107563016B publication Critical patent/CN107563016B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention provides a kind of wing box section Parameter Sensitivity Analysis method based on ellipsoidal model, it is related to field of airplane structure, for the insufficient situation of aircraft wing wing box parameter of structure design information, it is proposed a kind of structural parameters Sensitivity Analysis Method based under ellipsoidal model, in the case of Structural functional equation is linear, it is deduced the analytic solutions of structural parameters sensitivity, invention defines the sensitivity index of the wing box section parameter under ellipsoidal model, derive the Analytical Solution method that wing box section power function is parametric sensitivity under linear case, with the box section structure sensitivity analysis of wing nine, demonstrate the correctness and validity of analytic method, fail-safe analysis and structure of the analysis result of the present invention to wing box section, which change design, to have great significance.

Description

A kind of wing box section Parameter Sensitivity Analysis method based on ellipsoidal model
Technical field
The present invention relates to field of airplane structure, especially a kind of Sensitivity Analysis Method.
Background technology
Wing box is the main load-carrying construction of aircraft wing, is mainly made up of front-axle beam, the back rest, internal rib, upper lower wall panels, the wing Box has important influence to whole wing as most important load part in outer wing structure.Before wing box front end is connected Edge and leading edge slat, rear end connection aileron, wing flap and spoiler, the hanging of lower end connection engine and undercarriage.Airplane operation mistake Load in journey in the case of all working can be all delivered in wing box, and this just needs the load path to wing box structure, geometry knot Structure makes preferable design.In the detailed design phase of wing, structure type and layout it has been determined that wing in aircraft flight During produce lift, be the basic guarantee that aircraft can fly.The structure design of wing box, to the shadow of the even whole aircraft of wing Sound has vital effect.Good structure design can not only ensure that wing produces normal aerodynamic lift, and wing The normal operation of interior system, and the performance advantage of material can be given full play to, mitigate construction weight, improve structural reliability. Parameter Sensitivity Analysis will be seen that relative importance of the variable to structural reliability, so as to be structural analysis and optimization design Reference is provided.At present, probability and reliability analysis method is using more fully, corresponding based on the ginseng under probabilistic model Number sensitivity analysis is also increasingly ripe.Parameter Sensitivity Analysis based on probabilistic model needs to assert that parameter is stochastic variable, and There are the information such as the regularity of distribution, average, variance of parameter.And in structured design process, lack sufficient information to determine structure The information such as the regularity of distribution of design parameter, average, variance, probability density function, limit the parameter-sensitive based on probabilistic model Spend the application of analysis method.
Non-probability model can efficiently solve that data volume is less, the inferior reliability of variable probability density function deletion condition is asked Inscribe and receive much concern.Since the 1990s, the concept of the Multidisciplinary systems based on Convex set model is suggested, and propose with What system can allow probabilistic at utmost measures reliability.Generally speaking, the Convex set model of non-probability can be divided into section Two kinds of model and ellipsoidal model.Compared to interval model, ellipsoidal model can describe the correlation between multiple uncertain variables, when When variable is uncorrelated, ellipsoidal model is degenerated to interval model, it follows that interval model can be considered the special case of ellipsoidal model.Mesh Before, for the existing more in-depth study of Analysis of structural reliability of ellipsoidal model, and the spirit of the structural parameters based on ellipsoidal model Sensitivity problems demand solves.
The content of the invention
In order to which overcome the deficiencies in the prior art, the present invention are insufficient for aircraft wing wing box parameter of structure design information Situation, a kind of structural parameters Sensitivity Analysis Method based under ellipsoidal model is proposed, be linear for Structural functional equation Situation, it is deduced the analytic solutions of structural parameters sensitivity.
The detailed step of the technical solution adopted for the present invention to solve the technical problems is as follows:
Step 1:If the power function of aircraft wing wing box structure is g (x), x is structural parameters, is a n dimension variable, remembers For x=(x1,x2,…,xi,…,xn), xiFor i-th of structural parameters, ellipsoidal model U (u, σ) is satisfied with, U (u, σ) is as follows:
Wherein, u=(u1,u2,…ui,…,un) be ellipsoidal model U (u, σ) location parameter, σ=(σ12,…, σi,…,σn) be ellipsoidal model U (u, σ) dimensional parameters, i=1,2 ..., n, uiFor ellipsoidal model U (u, σ) i-th of position Parameter, σiFor ellipsoidal model U (u, σ) i-th of dimensional parameters;
Step 2:When power function g (x) is equal to 0, the variable space is divided into security domain D by its curved surface g (x)=0 formeds (x:G (x) > 0) and failure domain Df(x:G (x) < 0), reliability of structure index η is expressed as formula (2):
Wherein, λ is the scale factor of dimensional parameters;
Solution obtains reliability index η and optimization solution x*, wherein x*For design point corresponding to g (x)=0;
Step 3:Because structural parameters sensitivity definition is failure probability P under probabilistic modelfTo basic variable distributed constant θx Partial derivative, i.e.,Similarly, the parametric sensitivity based on structure under ellipsoidal model U (u, σ) is defined as can under ellipsoidal model Partial derivative by property index η to its parameter, you can join by property index η to the location parameter u in ellipsoidal model U (u, σ) and size Number σ partial derivative, is used respectivelyWithRepresent;
When the power function g (x) of wing boxes of wings structure is linear function, power function g (x) is as follows:
Wherein, x meets formula (1), a0It is constant term, biFor the coefficient in power function g (x);
Define intermediate variable z=(z1,z2,…,zi,…,zn), zi=(xi-ui)/σi, then intermediate variable z is that n dimension units surpass Spheroid, i.e.,
By ziFormula (3) is updated to, then power function g (x) is rewritten as:
Because g (z) is linear function, obtaining reliability of structure index η under ellipsoidal model U (u, σ) is:
During then for wing box section power function g (x) forms as shown in formula (3), based on ellipsoidal model U's (u, σ) The analytic expression of structural parameters sensitivity is:
It can thus be concluded that ellipsoidal model U (u, σ) structural parameters sensitivity.
The beneficial effects of the present invention are refer to due to the sensitivity for defining the wing box section parameter under ellipsoidal model Mark, the Analytical Solution method that wing box section power function is parametric sensitivity under linear case is derived, with the box section of wing nine STRUCTURAL SENSITIVITY ANALYSIS INDESIGN, it was demonstrated that the correctness and validity of analytic method, analysis result of the invention is to wing box section Fail-safe analysis and structure change design and have great significance.
Brief description of the drawings
Fig. 1 is the box section structure schematic diagram of aircraft wing nine of the present invention, wherein x4And 2x4At the box section structure node of wing nine The load applied.
Embodiment
The present invention is further described with reference to the accompanying drawings and examples.
Step 1:If the power function of aircraft wing wing box structure is g (x), x is structural parameters, is a n dimension variable, remembers For x=(x1,x2,…,xi,…,xn), xiFor i-th of structural parameters, to be satisfied with ellipsoidal model U (u, σ), the following institutes of U (u, σ) Show:
Wherein, u=(u1,u2,…ui,…,un) be ellipsoidal model U (u, σ) location parameter, σ=(σ12,…, σi,…,σn) be ellipsoidal model U (u, σ) dimensional parameters, i=1,2 ..., n, uiFor ellipsoidal model U (u, σ) i-th of position Parameter, σiFor ellipsoidal model U (u, σ) i-th of dimensional parameters;
Step 2:When power function g (x) is equal to 0, the variable space is divided into security domain D by its curved surface g (x)=0 formeds (x:G (x) > 0) and failure domain Df(x:G (x) < 0), reliability of structure index η is expressed as formula (2):
Wherein, λ is the scale factor of dimensional parameters;
Find out from formula (2), the solution of the structural reliability degree index η based on ellipsoidal model is actually the excellent of belt restraining Change problem, by simulated annealing optimization method or genetic algorithm, solution obtains reliability index η and optimization solution x*, wherein x*For Design point corresponding to g (x)=0;
Step 3:Because structural parameters sensitivity definition is failure probability P under probabilistic modelfTo basic variable distributed constant θx Partial derivative, i.e.,Similarly, the parametric sensitivity based on structure under ellipsoidal model U (u, σ) is defined as can under ellipsoidal model Partial derivative by property index η to its parameter, you can join by property index η to the location parameter u in ellipsoidal model U (u, σ) and size Number σ partial derivative, is used respectivelyWithRepresent;
When the power function g (x) of wing boxes of wings structure is linear function, power function g (x) is as follows:
Wherein, x meets formula (1), a0It is constant term, biFor the coefficient in power function g (x);
Define intermediate variable z=(z1,z2,…,zi,…,zn), zi=(xi-ui)/σi, then intermediate variable z is that n dimension units surpass Spheroid, i.e.,
By ziFormula (3) is updated to, then power function g (x) is rewritten as:
Because g (z) is linear function, obtaining reliability of structure index η under ellipsoidal model U (u, σ) is:
During then for wing box section power function g (x) forms as shown in formula (3), based on ellipsoidal model U's (u, σ) The analytic expression of structural parameters sensitivity is:
It can thus be concluded that ellipsoidal model U (u, σ) structural parameters sensitivity.
Show the box section structure of wing nine being made up of 64 bars and 42 panel elements in Fig. 1, structure material is aluminium alloy, structure Intensity (the x of unit1,x2,x3) and the load (x that is applied4) it is variable.The dominant failure mode optiaml ciriterion of structural system Method obtains, and carries out variable (x1,x2,x3,x4) unit normalized, the power function g (x) finally given such as formulas (8) It is shown:
G (x)=4.0x1+4.0x2-3.9998x3-x4 (8)
When g (x) > 0, structure safety;When g (x) < 0, structural failure.The variable x of nine box section structures1,x2,x3,x4Meet Ellipsoidal model U (u, σ) is as shown in formula (9).
The location parameter of the box section structure parametric variable of ellipsoidal model U (u, σ) lower wing nine and the size parameter values such as institute of table 1 Show:
Table 1
The result that the box section structure parametric sensitivity of wing nine based on ellipsoidal model U (u, σ) calculates is as shown in table 2:
Table 2
The present embodiment analyzes the parametric sensitivity of the box section structure of wing nine, as shown in table 2, using finite difference calculus as testing Card solution, the difference of two methods acquired results are less than 1%, and this shows method proposed by the present invention for solving wing box section It is effective and feasible based on the parametric sensitivity problem under ellipsoidal model during linear function function situation.

Claims (1)

  1. A kind of 1. wing box section Parameter Sensitivity Analysis method based on ellipsoidal model, it is characterised in that including following steps Suddenly:
    Step 1:If the power function of aircraft wing wing box structure is g (x), x is structural parameters, is a n dimension variable, is designated as x =(x1,x2,…,xi,…,xn), xiFor i-th of structural parameters, ellipsoidal model U (u, σ) is satisfied with, U (u, σ) is as follows:
    <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>&amp;sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>{</mo> <mi>x</mi> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>:</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>&amp;le;</mo> <mn>1</mn> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, u=(u1,u2,…ui,…,un) be ellipsoidal model U (u, σ) location parameter, σ=(σ12,…,σi,…,σn) For ellipsoidal model U (u, σ) dimensional parameters, i=1,2 ..., n, uiFor ellipsoidal model U (u, σ) i-th of location parameter, σiFor Ellipsoidal model U (u, σ) i-th of dimensional parameters;
    Step 2:When power function g (x) is equal to 0, the variable space is divided into security domain D by its curved surface g (x)=0 formeds(x:g (x) > 0) and failure domain Df(x:G (x) < 0), reliability of structure index η is expressed as formula (2):
    <mrow> <mtable> <mtr> <mtd> <mrow> <mi>F</mi> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>&amp;eta;</mi> <mo>,</mo> <mi>x</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;eta;</mi> <mo>=</mo> <mi>&amp;lambda;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msqrt> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> </mrow> </msqrt> <mo>=</mo> <mi>&amp;lambda;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, λ is the scale factor of dimensional parameters;
    Solution obtains reliability index η and optimization solution x*, wherein x*For design point corresponding to g (x)=0;
    Step 3:Because structural parameters sensitivity definition is failure probability P under probabilistic modelfTo basic variable distributed constant θxIt is inclined Derivative, i.e.,Similarly, the parametric sensitivity based on structure under ellipsoidal model U (u, σ) is defined as reliability under ellipsoidal model Partial derivatives of the index η to its parameter, you can by property index η to the location parameter u's in ellipsoidal model U (u, σ) and dimensional parameters σ Partial derivative, use respectivelyWithRepresent;
    When the power function g (x) of wing boxes of wings structure is linear function, power function g (x) is as follows:
    <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, x meets formula (1), a0It is constant term, biFor the coefficient in power function g (x);
    Define intermediate variable z=(z1,z2,…,zi,…,zn), zi=(xi-ui)/σi, then intermediate variable z is that n ties up unit hyper-sphere Body, i.e.,
    By ziFormula (3) is updated to, then power function g (x) is rewritten as:
    <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    Because g (z) is linear function, obtaining reliability of structure index η under ellipsoidal model U (u, σ) is:
    <mrow> <mi>&amp;eta;</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    During then for wing box section power function g (x) forms as shown in formula (3), the structure based on ellipsoidal model U (u, σ) The analytic expression of parametric sensitivity is:
    <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;eta;</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>b</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;eta;</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msubsup> <mi>b</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> <mfrac> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>3</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
    It can thus be concluded that ellipsoidal model U (u, σ) structural parameters sensitivity.
CN201710694426.5A 2017-08-15 2017-08-15 Method for analyzing sensitivity of structural parameters of wing box of wing based on ellipsoid model Active CN107563016B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710694426.5A CN107563016B (en) 2017-08-15 2017-08-15 Method for analyzing sensitivity of structural parameters of wing box of wing based on ellipsoid model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710694426.5A CN107563016B (en) 2017-08-15 2017-08-15 Method for analyzing sensitivity of structural parameters of wing box of wing based on ellipsoid model

Publications (2)

Publication Number Publication Date
CN107563016A true CN107563016A (en) 2018-01-09
CN107563016B CN107563016B (en) 2020-07-21

Family

ID=60974443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710694426.5A Active CN107563016B (en) 2017-08-15 2017-08-15 Method for analyzing sensitivity of structural parameters of wing box of wing based on ellipsoid model

Country Status (1)

Country Link
CN (1) CN107563016B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284574A (en) * 2018-10-25 2019-01-29 西安科技大学 A kind of series connection truss structure system Multidisciplinary systems analysis method
CN109766522A (en) * 2019-03-18 2019-05-17 西安科技大学 A kind of Multidisciplinary systems Sensitivity Analysis Method of Chain Wheel of Flight Bar Conveyor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103324798A (en) * 2013-06-25 2013-09-25 福州大学 Random model updating method based on interval response surface model
KR101604319B1 (en) * 2015-04-29 2016-03-17 군산대학교산학협력단 Geometrically exact isogeometric shape sensitivity analysis method in curvilinear coordinate system of shell structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103324798A (en) * 2013-06-25 2013-09-25 福州大学 Random model updating method based on interval response surface model
KR101604319B1 (en) * 2015-04-29 2016-03-17 군산대학교산학협력단 Geometrically exact isogeometric shape sensitivity analysis method in curvilinear coordinate system of shell structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO WANG等: "An Adaptive Ellipsoid Searching Filter for Airborne Single-Photon Lidar", 《 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》 *
陈东宁等: "系统可靠性评估的超椭球贝叶斯网络及其灵敏度方法", 《中国机械工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284574A (en) * 2018-10-25 2019-01-29 西安科技大学 A kind of series connection truss structure system Multidisciplinary systems analysis method
CN109284574B (en) * 2018-10-25 2022-12-09 西安科技大学 Non-probability reliability analysis method for series truss structure system
CN109766522A (en) * 2019-03-18 2019-05-17 西安科技大学 A kind of Multidisciplinary systems Sensitivity Analysis Method of Chain Wheel of Flight Bar Conveyor

Also Published As

Publication number Publication date
CN107563016B (en) 2020-07-21

Similar Documents

Publication Publication Date Title
Beran et al. Numerical analysis of store-induced limit-cycle oscillation
Aftosmis et al. Adjoint-based low-boom design with Cart3D
Krajnović Shape optimization of high-speed trains for improved aerodynamic performance
Smith et al. Computational and experimental validation of the active morphing wing
Yamazaki et al. Biplane-wing/twin-body-fuselage configuration for innovative supersonic transport
CN107563016A (en) A kind of wing box section Parameter Sensitivity Analysis method based on ellipsoidal model
Feng et al. Research of low boom and low drag supersonic aircraft design
Liou et al. Aerodynamic design of the hybrid wing body with nacelle: N3-X propulsion-airframe configuration
Kroll et al. Digital-X: DLR’s way towards the virtual aircraft
Gordnier et al. Computation of the aeroelastic response of a flexible delta wing at high angles of attack
Krajnović Optimization of aerodynamic properties of high-speed trains with CFD and response surface models
Coder et al. Contributions to the 6th AIAA CFD drag prediction workshop using structured grid methods
Subramanian et al. Application of multidisciplinary systems‐of‐systems optimization to an aircraft design problem
Murayama et al. Validation of computations around high-lift configurations by structured-and unstructured-mesh
CN107633118A (en) Wing structure Parameter Sensitivity Analysis method based on random interval mixed model
Patel et al. Large-Eddy Simulation of the airflow around a truck
Ambarita et al. Study on aerodynamics characteristics an urban concept car for energy-efficient race
Moss et al. Effect of Mesh Characteristics on the Flow Solutions around a Multi–element Airfoil using SU2
Doddegowda et al. Use of computational fluid dynamics for the design of formula SAE race car aerodynamics
Evans et al. Design optimisation using computational fluid dynamics applied to a land–based supersonic vehicle, the BLOODHOUND SSC
He Design of an actively controlled aerodynamic wing to increase high-speed vehicle safety
Woodgate et al. Simulation of step input in collective pitch for hovering rotor
Lav Three dimensional CFD analysis on aerodynamic drag reduction of a bluff tractor trailer body using vortex generators
Klausmeyer Stability derivative estimation: Methods and practical considerations for conventional transonic aircraft
Corcione et al. Downwash modelling for three-lifting-surface aircraft configuration design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant