CN107561057B - Dual-Enhanced Raman Detection System with Localized Surface Plasmon Amplifier - Google Patents
Dual-Enhanced Raman Detection System with Localized Surface Plasmon Amplifier Download PDFInfo
- Publication number
- CN107561057B CN107561057B CN201710720737.4A CN201710720737A CN107561057B CN 107561057 B CN107561057 B CN 107561057B CN 201710720737 A CN201710720737 A CN 201710720737A CN 107561057 B CN107561057 B CN 107561057B
- Authority
- CN
- China
- Prior art keywords
- amplifier
- raman
- surface plasmon
- excitation light
- detection system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 89
- 238000001514 detection method Methods 0.000 title claims abstract description 37
- 230000005284 excitation Effects 0.000 claims abstract description 54
- 239000013307 optical fiber Substances 0.000 claims abstract description 18
- 239000000523 sample Substances 0.000 claims abstract description 16
- 238000012546 transfer Methods 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002086 nanomaterial Substances 0.000 claims description 38
- 239000000126 substance Substances 0.000 claims description 18
- 239000002082 metal nanoparticle Substances 0.000 claims description 15
- 239000002105 nanoparticle Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 10
- 230000009977 dual effect Effects 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 8
- 239000002041 carbon nanotube Substances 0.000 claims description 8
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 238000000862 absorption spectrum Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 abstract description 13
- 230000002269 spontaneous effect Effects 0.000 abstract description 7
- 230000005855 radiation Effects 0.000 abstract description 4
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 10
- 238000001237 Raman spectrum Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005329 nanolithography Methods 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 238000002460 vibrational spectroscopy Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种带局域表面等离子体放大器的双增强拉曼检测系统,包括激励光源、光纤耦合器、检测探头、局域表面等离子体放大器、滤波器和探测器;通过局域表面等离子体放大器设置,避免由于放大器本身存在自发辐射的噪声,而无法对微弱的拉曼光信号放大的问题;表面等离子共振光放大器的能量传递途径为“激励激光”→“局域表面等离子体”→“信号光”,当拉曼信号光强度远小于激励激光的时候,信号光可以从表面等离子体获得能量而得到放大;因为局域等离子体不存在能级结构,该放大器受到激光激励的时候不会产生自发辐射光,可等效为噪声极低(输入信号阈值极低)的理想放大器,因此它可以放大非常微弱的拉曼信号。
The invention discloses a double-enhanced Raman detection system with a localized surface plasma amplifier, comprising an excitation light source, an optical fiber coupler, a detection probe, a localized surface plasma amplifier, a filter and a detector; The volume amplifier is set to avoid the problem that the weak Raman optical signal cannot be amplified due to the noise of spontaneous radiation in the amplifier itself; the energy transfer path of the surface plasmon resonance optical amplifier is "excitation laser" → "localized surface plasmon" → "Signal light", when the intensity of the Raman signal light is much smaller than that of the excitation laser, the signal light can obtain energy from the surface plasmon and be amplified; because the localized plasmon does not have an energy level structure, the amplifier will not be excited by the laser. It produces spontaneous emission light, which can be equivalent to an ideal amplifier with very low noise (very low input signal threshold), so it can amplify very weak Raman signals.
Description
技术领域technical field
本发明涉及拉曼检测领域,具体涉及一种带局域表面等离子体放大器的双增强拉曼检测系统。The invention relates to the field of Raman detection, in particular to a double-enhanced Raman detection system with a localized surface plasmon amplifier.
背景技术Background technique
本领域技术人员均知道,光照射到物质上发生弹性散射和非弹性散射,弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,称之为拉曼效应,所获得的光谱称之为拉曼光谱。拉曼光谱属于分子振动光谱,是物质分子的指纹,依据拉曼效应制作的拉曼光谱仪可以用于准确定性鉴别样品。拉曼光谱的分析方法一般不需要对样品进行前处理,并且在分析过程中操作简便,测定时间短,是一种可以对样品同时进行定性和定量的分析技术,具有极为广泛的应用前景,但其缺点是灵敏度较低。Those skilled in the art all know that elastic scattering and inelastic scattering occur when light is irradiated onto a substance. The scattered light of elastic scattering has the same wavelength as the excitation light, and the scattered light of inelastic scattering has wavelengths longer and shorter than that of the excitation light. composition, called the Raman effect, and the obtained spectrum is called the Raman spectrum. Raman spectroscopy belongs to molecular vibrational spectroscopy, which is the fingerprint of material molecules. Raman spectrometers based on Raman effect can be used to accurately and qualitatively identify samples. The analysis method of Raman spectroscopy generally does not require pretreatment of the sample, and it is easy to operate and has a short measurement time during the analysis process. The disadvantage is the low sensitivity.
表面增强拉曼光谱(surface-enhanced Raman scattering,简称SERS)是一种在20世纪90年代随着纳米技术发展而发展起来的高灵敏度光谱分析技术。与拉曼光谱一样,SERS可以用于准确定性鉴别样品;SERS具有超高的分析灵敏度,较普通拉曼分析灵敏度提高约6-10个数量级,可分析小到单分子,大到细胞水平的研究对象。Surface-enhanced Raman scattering (SERS) is a high-sensitivity spectroscopic analysis technique developed with the development of nanotechnology in the 1990s. Like Raman spectroscopy, SERS can be used to accurately and qualitatively identify samples; SERS has ultra-high analytical sensitivity, which is about 6-10 orders of magnitude higher than ordinary Raman analysis, and can analyze studies ranging from single molecules to large cells at the cellular level. object.
但是,用于增强拉曼光谱的一般都是金属纳米结构(金属纳米球,纳米棒,纳米线等);通常金属纳米结构的只对一定频域范围的光波具有增强作用;待测物质的拉曼光谱具有一定的宽度,通常有一部分拉曼频域落在金属纳米结构能够增强的频域范围以外。在这种情况下,对待测物质的高频拉曼谱的增强作用减弱,这就对后续光路中的光探测器的灵敏度提出了极高的要求。However, metal nanostructures (metal nanospheres, nanorods, nanowires, etc.) are generally used to enhance Raman spectroscopy; usually metal nanostructures only have an enhancement effect on light waves in a certain frequency range; The Mann spectrum has a certain width, and usually a part of the Raman frequency domain falls outside the range of the frequency domain that the metal nanostructure can enhance. In this case, the enhancement effect of the high-frequency Raman spectrum of the substance to be measured is weakened, which puts forward extremely high requirements on the sensitivity of the photodetector in the subsequent optical path.
另外一方面,待测物质的典型拉曼特征峰通常在一些特定的拉曼峰位上(即不同波长处)。传统的拉曼光谱检测方法是对全光谱的探测,即携带有待测物质信息的拉曼光谱是进入拉曼光谱仪,从而得到拉曼光谱信号,再经过数据处理得到待测物质的信息。拉曼光谱仪结构复杂,体积较大,价格较高。On the other hand, the typical Raman characteristic peaks of the substance to be tested are usually at some specific Raman peak positions (ie, at different wavelengths). The traditional Raman spectrum detection method is to detect the full spectrum, that is, the Raman spectrum carrying the information of the substance to be tested enters the Raman spectrometer to obtain the Raman spectrum signal, and then the information of the substance to be tested is obtained through data processing. Raman spectrometers have complex structures, large volumes and high prices.
针对上述问题,提出通过光放大器对拉曼信号光进行放大后再探测,目前的光放大器主要有EDFA和光纤拉曼放大器两种,这些放大器存在着自发辐射噪声,其输入信号最低的阈值约为-40dBm(100nw)数量级,而在实际拉曼光谱检测应用中的激励光源的功率一般较小,一般在1w激光激励下,拉曼散射光的信号强度通常几个10pw~1nw数量级,远小于这些光放大器的阈值,无法实现放大。In view of the above problems, it is proposed to amplify the Raman signal light through an optical amplifier and then detect it. The current optical amplifiers mainly include EDFA and fiber Raman amplifiers. These amplifiers have spontaneous emission noise, and the lowest threshold of the input signal is about -40dBm (100nw) order of magnitude, and the power of the excitation light source in the actual Raman spectrum detection application is generally small, generally under 1w laser excitation, the signal intensity of Raman scattered light is usually several orders of magnitude of 10pw ~ 1nw, much smaller than these The threshold value of the optical amplifier cannot achieve amplification.
因此,为解决以上问题,需要一种双增强拉曼检测系统,针对低功率激励光源,能够对微弱的拉曼信号光进行有效检测,并且结构简单紧凑,检测精度高,成本较低,利于推广。Therefore, in order to solve the above problems, a dual-enhanced Raman detection system is needed, which can effectively detect weak Raman signal light for low-power excitation light sources, and has a simple and compact structure, high detection accuracy, and low cost, which is conducive to popularization. .
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的是克服现有技术中的缺陷,提供双增强拉曼检测系统,针对低功率激励光源,能够对微弱的拉曼信号光进行有效检测,并且结构简单紧凑,检测精度高,成本较低,利于推广。In view of this, the purpose of the present invention is to overcome the defects in the prior art and provide a double-enhanced Raman detection system, which can effectively detect weak Raman signal light for a low-power excitation light source, and has a simple and compact structure and high detection accuracy. High, low cost, conducive to promotion.
本发明的双增强拉曼检测系统,包括激励光源、光纤耦合器、检测探头、局域表面等离子体放大器、滤波器和探测器;The dual-enhanced Raman detection system of the present invention includes an excitation light source, a fiber coupler, a detection probe, a localized surface plasmon amplifier, a filter and a detector;
激励光源,用于产生激励光并通过光纤将激励光传输至光纤耦合器;an excitation light source for generating excitation light and transmitting the excitation light to a fiber coupler through an optical fiber;
光纤耦合器,用于分别对激励光源发出的激励光和由检测探头产生并返回的拉曼信号光进行耦合,并将耦合后的拉曼信号光通过光纤输送至局域表面等离子体放大器中进行放大;The fiber coupler is used to couple the excitation light emitted by the excitation light source and the Raman signal light generated and returned by the detection probe respectively, and transmit the coupled Raman signal light to the local surface plasmon amplifier through the optical fiber. enlarge;
检测探头,输入端与光纤耦合器的输出端通过光纤连接,用于在激励光的激励下产生并收集待测物质的拉曼信号光,其工作面设置有第一金属纳米结构实现一次拉曼表面增强;The detection probe, whose input end is connected to the output end of the fiber coupler through an optical fiber, is used to generate and collect the Raman signal light of the substance to be tested under the excitation of the excitation light, and its working surface is provided with a first metal nanostructure to realize the primary Raman surface enhancement;
局域表面等离子体放大器,内设有用于产生局域等离子体的第二金属纳米结构,通过该局域等离子体对经过的拉曼信号光传递能量实现二次拉曼信号放大;The localized surface plasmon amplifier is provided with a second metal nanostructure for generating localized plasmon, and the secondary Raman signal amplification is realized by transferring energy to the passing Raman signal light through the localized plasmon;
滤波器,其输入端与局域表面等离子体放大器的输出端连接,用于过滤除信号中波长和激励光相同波长的光并获得分离波长后的拉曼光信号;所述局域表面等离子体放大器包括波导结构和设置于波导结构内的第二金属纳米结构,所述波导结构内部为真空状态;a filter, the input end of which is connected to the output end of the localized surface plasmon amplifier, and is used for filtering out the light with the same wavelength as the excitation light in the signal and obtaining the Raman light signal with the separated wavelength; the localized surface plasmon The amplifier includes a waveguide structure and a second metal nanostructure arranged in the waveguide structure, and the inside of the waveguide structure is in a vacuum state;
探测器,用于探测从滤波器出来的拉曼信号光并转换成电信号供输出处理。The detector is used to detect the Raman signal light coming out of the filter and convert it into an electrical signal for output processing.
进一步,所述第二金属纳米结构的吸收谱所对应的波长包括激励光波长和拉曼信号光波长。Further, the wavelength corresponding to the absorption spectrum of the second metal nanostructure includes the wavelength of excitation light and the wavelength of Raman signal light.
进一步,所述滤波器和探测器分别为多个并一一对应设置。Further, the filters and detectors are respectively multiple and set in one-to-one correspondence.
进一步,所述激励光源的输出端还与局域表面等离子体放大器的输入端通过光纤连接。Further, the output end of the excitation light source is also connected with the input end of the local surface plasmon amplifier through an optical fiber.
进一步,所述波导为管状空心波导,由中空腔和外围的管状介质反射层组成,所述第二金属纳米结构为位于管状介质反射层内壁的金属纳米粒子,且所述金属纳米粒子形成圆柱状壳核结构,所述纳米粒子的平均粒径为d1,纳米粒子间距为g1,圆柱状壳核结构的长度为h1,所述d1为20-100nm,g1为1-10nm,h1为1-100um。Further, the waveguide is a tubular hollow waveguide, consisting of a hollow cavity and a peripheral tubular dielectric reflection layer, the second metal nanostructure is a metal nanoparticle located on the inner wall of the tubular dielectric reflection layer, and the metal nanoparticle forms a cylindrical shape Shell-core structure, the average particle size of the nanoparticles is d 1 , the nanoparticle spacing is g 1 , the length of the cylindrical shell-core structure is h 1 , the d 1 is 20-100 nm, and g 1 is 1-10 nm, h 1 is 1-100um.
进一步,所述波导为管状空心波导,由中空腔和外围的管状介质反射层组成,所述第二金属纳米结构为位于中心层内沿径向分布的薄膜,所述薄膜内开设有周期性的圆孔,所述圆孔的直径为d2,相邻圆孔边缘的间距为g2,薄膜的厚度为h2,所述d2为20-100nm,g2为1-10nm,h2为1-100um。Further, the waveguide is a tubular hollow waveguide, which is composed of a hollow cavity and a peripheral tubular dielectric reflection layer, the second metal nanostructure is a thin film located in the central layer and distributed along the radial direction, and the thin film is provided with periodic A circular hole, the diameter of the circular hole is d 2 , the distance between the edges of adjacent circular holes is g 2 , the thickness of the film is h 2 , the d 2 is 20-100 nm, g 2 is 1-10 nm, and h 2 is 1-100um.
进一步,所述波导为管状空心波导,由中空腔和外围的管状介质反射层组成,所述第二金属纳米结构为位于高折射率中心层内沿径向分布的复合薄膜,所述复合薄膜包括由碳纳米管组成的基础膜和附着于基础膜的金属纳米粒子,所述金属纳米粒子的平均粒径为d3,相邻纳米粒子的间距为g3,基础膜的厚度为h3,所述d3为20-100nm,g3为1-10nm,h3为1-100um。Further, the waveguide is a tubular hollow waveguide, which is composed of a hollow cavity and a peripheral tubular dielectric reflection layer, the second metal nanostructure is a composite film located in the high-refractive index central layer and distributed along the radial direction, and the composite film includes A base film composed of carbon nanotubes and metal nanoparticles attached to the base film, the average particle size of the metal nanoparticles is d 3 , the distance between adjacent nanoparticles is g 3 , and the thickness of the base film is h 3 , so Said d3 is 20-100nm, g3 is 1-10nm , h3 is 1-100um .
本发明的有益效果是:本发明公开的一种双增强拉曼检测系统,通过局域表面等离子体放大器设置,避免由于放大器本身存在自发辐射的噪声,而无法对微弱的拉曼光信号放大的问题。传统的光放大器因为工作介质存在自发辐射,有一个最小输入信号阈值(通常为100nw),而采用1W的激光激励时,拉曼光信号强度大约为10pw-1nw数量级,小于传统的光放大器的阈值,因而微弱的拉曼光信号不能得到放大;而表面等离子共振光放大器的能量传递途径为“激励激光”→“局域表面等离子体”→“信号光”,当拉曼信号光强度远小于激励激光的时候,它可以从表面等离子体获得能量而得到放大;因为局域等离子体不存在能级结构,它受到激光激励的时候不会产生自发辐射光,它可以等效为噪声极低(输入信号阈值极低)的理想放大器,因此它可以放大非常微弱的拉曼信号;其结构简单紧凑,检测精度高,成本较低,利于推广。The beneficial effects of the present invention are as follows: the dual-enhanced Raman detection system disclosed by the present invention is set up by a localized surface plasmon amplifier to avoid the fact that the amplifier itself has spontaneous radiation noise and cannot amplify the weak Raman optical signal. question. Traditional optical amplifiers have a minimum input signal threshold (usually 100nw) due to the existence of spontaneous radiation in the working medium. When using 1W laser excitation, the Raman optical signal intensity is about the order of 10pw-1nw, which is smaller than the threshold of traditional optical amplifiers. , so the weak Raman light signal cannot be amplified; and the energy transfer path of the surface plasmon resonance optical amplifier is "excitation laser" → "localized surface plasmon" → "signal light", when the intensity of the Raman signal light is much smaller than the excitation light When the laser is used, it can obtain energy from the surface plasmon and be amplified; because the localized plasmon does not have an energy level structure, it will not generate spontaneous emission light when it is excited by the laser, and it can be equivalent to a very low noise (input It is an ideal amplifier with extremely low signal threshold), so it can amplify very weak Raman signals; the structure is simple and compact, the detection accuracy is high, and the cost is low, which is conducive to popularization.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步描述:Below in conjunction with accompanying drawing and embodiment, the present invention is further described:
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明中检测探头的结构示意图;2 is a schematic structural diagram of a detection probe in the present invention;
图3为本发明中滤波器的结构示意图及对应的典型拉曼特征峰的示意图;3 is a schematic diagram of a structure of a filter in the present invention and a schematic diagram of a corresponding typical Raman characteristic peak;
图4为本发明中第二金属纳米结构对应的吸收光谱图;Fig. 4 is the absorption spectrum corresponding to the second metal nanostructure in the present invention;
图5为本发明中局域表面等离子体放大器的第一结构示意图;Fig. 5 is the first structural schematic diagram of the localized surface plasmon amplifier in the present invention;
图6为本发明中局域表面等离子体放大器的第二结构示意图;Fig. 6 is the second structural schematic diagram of the localized surface plasmon amplifier in the present invention;
图7为本发明中局域表面等离子体放大器的第三结构示意图。FIG. 7 is a schematic diagram of the third structure of the localized surface plasmon amplifier in the present invention.
具体实施方式Detailed ways
图1为本发明的结构示意图,图2为本发明中检测探头的结构示意图,图3为本发明中滤波器的结构示意图及对应的典型拉曼特征峰的示意图,图4为本发明中第二金属纳米结构对应的吸收光谱图,图5为本发明中局域表面等离子体放大器的第一结构示意图,图6为本发明中局域表面等离子体放大器的第二结构示意图,图7为本发明中局域表面等离子体放大器的第三结构示意图,如图所示,本实施例中的双增强拉曼检测系统,包括激励光源1、光纤耦合器2、检测探头3、局域表面等离子体放大器4、滤波器5和探测器6;1 is a schematic structural diagram of the present invention, FIG. 2 is a structural schematic diagram of a detection probe in the present invention, FIG. 3 is a schematic structural diagram of a filter in the present invention and a schematic diagram of a corresponding typical Raman characteristic peak, and FIG. Absorption spectra corresponding to two metal nanostructures, FIG. 5 is a schematic diagram of the first structure of the local surface plasmon amplifier in the present invention, FIG. 6 is a schematic diagram of the second structure of the local surface plasmon amplifier in the present invention, and FIG. The third structural schematic diagram of the localized surface plasmon amplifier in the invention, as shown in the figure, the double-enhanced Raman detection system in this embodiment includes an
激励光源1,用于产生激励光并通过光纤将激励光传输至光纤耦合器2;所述激励光源1可为现有的低功率激光光源,保证适用于实际应用推广;拉曼信号的强度比常见放大器的阈值小2~3个数量级,而采用高功率激励光源具有以下劣势,一方面,输出功率高达100~1000瓦的连续激光器一方面价格昂贵、体积巨大,不适合用作仪器光源;另外一方面,高功率的激光容易破坏待测样品,特别是生物分子等;此外,光源能量增加,其本身的功率起伏带来的噪声也会随之增加。The
光纤耦合器2,用于分别对激励光源1发出的激励光和由检测探头3产生并返回的拉曼信号光进行耦合,并将耦合后的拉曼信号光通过光纤输送至局域表面等离子体放大器4中进行放大;通过光纤耦合器2对光信号进行分路和合路,采集从检测探头3返回的拉曼信号光;The
检测探头3,输入端与光纤耦合器2的输出端通过光纤连接,用于在激励光的激励下产生并收集待测物质11的拉曼信号光,其工作面设置有第一金属纳米结构7实现一次拉曼表面增强;所述第一金属纳米结构7可为银或金纳米粒子结构,待测物质附着于工作面上的第一金属纳米结构7是,在激励光的作用下实现一次拉曼表面增强,获得经过一次信号放大的拉曼信号光;The
局域表面等离子体放大器4,内设有用于产生局域等离子体的第二金属纳米结构8,通过该局域等离子体对经过的拉曼信号光传递能量实现二次拉曼信号放大;所述第二金属纳米结构8可通过在检测探头3由激励光与第一金属纳米结构7相互作用产生的瑞利散射光进行局域等离子体激发,局域表面等离子体放大器4不需要新的激光光源作为激励光,而利用光纤拉曼探针反射回来的瑞利散射光(和原激光波长相同)作为激励光,激励表面等离子体,并经由表面等离子体将能量转移给拉曼光,实现二次拉曼信号放大,因拉曼散光比上述瑞利散射光信号小2~3个数量级,则能量传递途径为“激励激光”→“局域表面等离子体”→“拉曼信号光”,此处“局域表面等离子体”相当于一个中间传递环节,它把强光(瑞利散射光)的能量传递给弱光(拉曼光);因为局域等离子体不存在能级结构,它受到激光激励的时候不会产生自发辐射,等效为一个极低噪声的理想放大器,可以放大非常微弱的拉曼信号;所述局域表面等离子体放大器4包括波导结构和设置于波导结构内的第二金属纳米结构8,所述波导结构内部为真空状态;波导内部抽真空以保证波导结构内没有任何拉曼散射,避免噪声干扰,实现对拉曼信号光低噪声放大,进而提高检测精度;The localized surface plasmon amplifier 4 is provided with a
滤波器5,其输入端与局域表面等离子体放大器4的输出端连接,用于过滤除信号中波长和激励激光相同的瑞利散射光,并且将特定波长(范围)内的拉曼散射光提取出来,形成一系列分离波长的拉曼光信号;如图3所示,所述滤波器的结构可相当于一个单输入的级联多输出带通滤波器,每个带通滤波器只把特定波长拉曼光提取出来,照射到对应的探测器上,其他波长的光可以无损的通过;对于特定的物质,不需要测量全部拉曼光谱,而只需要对特定的谱线测量既可以进行定性和定量分析;因此,对于不同的物质,需要不同的滤波器组合来滤出特定的谱线。区别于传统的拉曼光谱仪,其成本将大大下降,体积也可以做的非常微小,甚至可以实现做到一个芯片上;它的特点是体积小、价格低便于推广。The
探测器6,用于探测从滤波器5出来的拉曼信号光并将探测信号转换成电信号输出处理;通过探测器6所检测的信号对物质进行定性和定量分析为现有技术,在此不再赘述。The
本实施例中,所述第二金属纳米结构8的吸收谱所对应的波长包括激励光波长和拉曼信号光波长;如图所示,即激励光波长λpump和拉曼信号光波长λsignal均位于第二金属纳米结构8的吸收光谱所对应的波段;保证能量能够顺利传递至信号光。In this embodiment, the wavelengths corresponding to the absorption spectrum of the
本实施例中,所述滤波器5和探测器6分别为多个并一一对应设置;单个滤波器5对应的通过波长为物质对应的典型特征峰,对物质的多个典型特征峰进行探测,提高检测精度;物质通常具有多个特征峰,对多个特征峰进行分析,可以实现物质的定性和定量。In this embodiment, the
本实施例中,所述激励光源1的输出端还与局域表面等离子体放大器4的输入端通过光纤连接;进一步提高第二金属纳米的表面等离子体强度,提高能量传递效率,利于拉曼信号光强度放大。In this embodiment, the output end of the
本实施例中,所述波导结构为由射率为n1=1的中空腔9和折射率n2大于1的管状反射包层10组成的空心波导,所述第二金属纳米结构8为位于管状介质反射层10的内壁的金属纳米粒子,且所述金属纳米粒子形成圆柱状壳核结构,所述纳米粒子的平均粒径为d1,纳米粒子间距为g1,圆柱状壳核结构的长度为h1,所述d1为20-100nm,g1为1-10nm,h1为1-100um。所述壳核结构内部是金或银贵金属纳米粒子,外表面包裹一层几纳米厚的抗氧化膜,这样可以保护该金属纳米粒子长期不被氧化而保持高的拉曼增强活性;这种壳核结构可以用化学合成的方法制作,通过调整化学反应的时间、溶液的配方可以改变保证金属纳米粒子的大小和保护膜的厚度;此外,也可以用原子层镀膜仪,在购买的成品金属纳米粒子上镀保护层以实现核壳结构。In this embodiment, the waveguide structure is a hollow waveguide composed of a
在另一实施例中,所述波导结构为由射率为n1=1的中空腔9和折射率n2大于1的管状反射包层10组成的空心波导,所述第二金属纳米结构8为位于中空腔9内沿径向分布的薄膜,所述薄膜内开设有周期性的圆孔,所述圆孔的直径为d2,相邻圆孔边缘的间距为g2,薄膜的厚度为h2,所述d2为20-100nm,g2为1-10nm,h2为1-100um;所述金属纳米结构8可以用现有纳米加工方法进行加工以保证其精度;具体而言,可以采用“纳米压印”、”纳米光刻”或聚焦离子束(FIB)直接刻写等工艺保证。所述网状的第二金属纳米结构8也可以采用材料化学方法直接生长,调整生长的工艺参数可以获得不同的几何尺寸,以保证所述金属纳米结构8的参数精度。In another embodiment, the waveguide structure is a hollow waveguide composed of a
在另一实施例中,所述波导结构为由射率为n1=1的中空腔9和折射率n2大于1的管状反射包层10组成的空心波导,所述第二金属纳米结构8为位于中空腔9内沿径向分布的复合薄膜,所述复合薄膜包括由碳纳米管12组成的基础膜和附着于基础膜的金属纳米粒子,所述金属纳米粒子的平均粒径为d3,相邻纳米粒子的间距为g3,基础膜的厚度为h3,所述d3为20-100nm,g3为1-10nm,h3为1-100um。所述第二金属纳米结构8的制作步骤为:第一步,所述碳纳米管12采用化学气相沉积(CVD)的方法生长;第二步,将所述碳纳米管12制作成悬浊液,并采用真空抽滤法采用、滴定干燥发或者离心机旋涂的方法可以制成所述碳纳米管基础薄膜;第三步,制作化学银溶胶或金溶胶并涂覆在所述碳纳米管基础薄膜上,干燥以后形成所述第二金属纳米结构8;或者在所述碳纳米管基础薄膜上溅射一层贵金属薄膜,然后采用高温退火的方法生长成金属纳米粒子。所述的三个步骤中,需要大量的工艺试验确定工艺参数,方能保证所述第二金属纳米结构8的几何参数制作精度。In another embodiment, the waveguide structure is a hollow waveguide composed of a
本实施例描述了三种实现所述第二金属纳米结构8的方法,这三种方法既可以单独采用、也可以组合起来实现本发明的局域表面等离子体放大器。This embodiment describes three methods for realizing the
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent substitutions without departing from the spirit and scope of the technical solutions of the present invention should be included in the scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710720737.4A CN107561057B (en) | 2017-08-21 | 2017-08-21 | Dual-Enhanced Raman Detection System with Localized Surface Plasmon Amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710720737.4A CN107561057B (en) | 2017-08-21 | 2017-08-21 | Dual-Enhanced Raman Detection System with Localized Surface Plasmon Amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107561057A CN107561057A (en) | 2018-01-09 |
CN107561057B true CN107561057B (en) | 2020-06-12 |
Family
ID=60976536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710720737.4A Active CN107561057B (en) | 2017-08-21 | 2017-08-21 | Dual-Enhanced Raman Detection System with Localized Surface Plasmon Amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107561057B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI750718B (en) | 2020-07-03 | 2021-12-21 | 國立中興大學 | Signal enhancement structure and manufacturing method thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108152267B (en) * | 2018-01-31 | 2020-05-01 | 西北工业大学 | Method for efficiently exciting surface-enhanced Raman scattering of metalized optical fiber |
CN108593624B (en) * | 2018-04-13 | 2021-03-19 | 东南大学 | Selectively enhanced multi-wavelength metal plasmon resonance structure and preparation method thereof |
CN109781709B (en) * | 2019-03-19 | 2021-06-01 | 重庆大学 | Optical amplification Raman spectrum detection system based on waveguide structure |
CN111505474B (en) * | 2020-04-24 | 2021-11-02 | 中国科学院长春光学精密机械与物理研究所 | Device and method for upper energy level lifetime testing of CO2 laser amplifier |
CN113418902B (en) * | 2021-03-23 | 2023-10-13 | 重庆大学 | On-chip Raman detection system |
CN114923863B (en) * | 2022-05-26 | 2023-03-24 | 深圳市诺安智能股份有限公司 | Detection chamber with hollow tubule for detecting substance component |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101281134A (en) * | 2008-05-12 | 2008-10-08 | 中国科学院安徽光学精密机械研究所 | Nanostructure persistent toxic substance detection method and device |
JP2010160043A (en) * | 2009-01-08 | 2010-07-22 | Panasonic Corp | Surface intensifying raman spectrophotometric method, and surface intensifying raman spectrophotometric apparatus using the same |
CN103048308A (en) * | 2013-01-11 | 2013-04-17 | 中国科学院光电技术研究所 | Manufacturing method of surface enhanced Raman probe based on secondary enhancement |
JP2013087324A (en) * | 2011-10-18 | 2013-05-13 | Nippon Steel & Sumikin Chemical Co Ltd | Localized surface plasmon resonance sensor unit and method for producing the same |
CN103630515A (en) * | 2013-12-17 | 2014-03-12 | 哈尔滨工程大学 | Sensor for nano gold particles and preparation method thereof |
CN105699358A (en) * | 2016-04-29 | 2016-06-22 | 重庆大学 | Surface Raman and infrared spectroscopy double-enhanced detecting method based on graphene and nanogold compounding |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7760421B2 (en) * | 2004-04-06 | 2010-07-20 | Solaris Nanosciences, Inc. | Method and apparatus for enhancing plasmon polariton and phonon polariton resonance |
-
2017
- 2017-08-21 CN CN201710720737.4A patent/CN107561057B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101281134A (en) * | 2008-05-12 | 2008-10-08 | 中国科学院安徽光学精密机械研究所 | Nanostructure persistent toxic substance detection method and device |
JP2010160043A (en) * | 2009-01-08 | 2010-07-22 | Panasonic Corp | Surface intensifying raman spectrophotometric method, and surface intensifying raman spectrophotometric apparatus using the same |
JP2013087324A (en) * | 2011-10-18 | 2013-05-13 | Nippon Steel & Sumikin Chemical Co Ltd | Localized surface plasmon resonance sensor unit and method for producing the same |
CN103048308A (en) * | 2013-01-11 | 2013-04-17 | 中国科学院光电技术研究所 | Manufacturing method of surface enhanced Raman probe based on secondary enhancement |
CN103630515A (en) * | 2013-12-17 | 2014-03-12 | 哈尔滨工程大学 | Sensor for nano gold particles and preparation method thereof |
CN105699358A (en) * | 2016-04-29 | 2016-06-22 | 重庆大学 | Surface Raman and infrared spectroscopy double-enhanced detecting method based on graphene and nanogold compounding |
Non-Patent Citations (2)
Title |
---|
Controlling gold nanoparticle assemblies for efficient surface-enhanced Raman scattering and localized surface plasmon resonance sensors;Felicia Toderas 等;《Nanotechnology》;20070529(第18期);全文 * |
表面等离子体受激辐射放大领结型纳米天线的;张昊鹏 等;《中国激光》;20140930;第41卷(第9期);全文 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI750718B (en) | 2020-07-03 | 2021-12-21 | 國立中興大學 | Signal enhancement structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107561057A (en) | 2018-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107561057B (en) | Dual-Enhanced Raman Detection System with Localized Surface Plasmon Amplifier | |
Wang et al. | Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design | |
Zhi et al. | Single nanoparticle detection using optical microcavities | |
Aroca | Plasmon enhanced spectroscopy | |
Wang et al. | Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure | |
Jayawardhana et al. | Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism | |
CN111896500B (en) | Refractive index sensor based on metal nano structure and single-layer TMDs (transition metal-doped regions) composite system and method | |
Du et al. | Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering | |
Marshall et al. | Determining molecular orientation via single molecule SERS in a plasmonic nano-gap | |
US9488583B2 (en) | Molecular analysis device | |
He et al. | Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods | |
CN103176283A (en) | Micro-medium cone and nanometal grating-compounded optical probe | |
Raza et al. | Raman scattering in high-refractive-index nanostructures | |
Gomaa et al. | Superior enhancement of SPR fiber optic sensor using laser sensitized dip-coated graphene gold nanocomposite probes | |
CN109781709B (en) | Optical amplification Raman spectrum detection system based on waveguide structure | |
CN103105511A (en) | Surface plasma longitudinal field scanning near-field optic microscope device and detection method | |
US20200056997A1 (en) | Simple sensing method employing raman scattering | |
Mercedi et al. | Reliable methodology for measuring SERS enhancement factor on colloidal and solid substrates: A practical guide | |
CN114034642B (en) | Raman spectrum on-chip detection system and method based on micro-ring resonance array | |
Lange et al. | Lightwave‐Driven Long‐Wavelength Photomultipliers | |
CN108918497B (en) | Raman detection system based on composite filter demodulation | |
Itoh et al. | Electromagnetic enhancement spectra of one-dimensional plasmonic hotspots along silver nanowire dimer derived via surface-enhanced fluorescence | |
Wang et al. | A compact device of optical fiber taper coupled monolayer silver nanoparticles for Raman enhancement | |
JP2005321392A (en) | Spectrum analysis using evanescent field excitation | |
CN111879748A (en) | Raman spectrum signal enhancement structure and detection system light path adopting same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |