CN107560214A - 一种膨胀阀的控制方法及装置 - Google Patents

一种膨胀阀的控制方法及装置 Download PDF

Info

Publication number
CN107560214A
CN107560214A CN201710650431.6A CN201710650431A CN107560214A CN 107560214 A CN107560214 A CN 107560214A CN 201710650431 A CN201710650431 A CN 201710650431A CN 107560214 A CN107560214 A CN 107560214A
Authority
CN
China
Prior art keywords
working state
expansion valve
interior machine
interior
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710650431.6A
Other languages
English (en)
Inventor
王军
程绍江
禚百田
张锐钢
邵文俊
张万英
时斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioning Electric Co Ltd
Original Assignee
Qingdao Haier Air Conditioning Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioning Electric Co Ltd filed Critical Qingdao Haier Air Conditioning Electric Co Ltd
Priority to CN201710650431.6A priority Critical patent/CN107560214A/zh
Publication of CN107560214A publication Critical patent/CN107560214A/zh
Priority to EP18840409.9A priority patent/EP3647680B1/en
Priority to PCT/CN2018/096155 priority patent/WO2019024683A1/zh
Priority to US16/780,420 priority patent/US20200191430A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本发明实施例提供了一种膨胀阀的控制方法,涉及终端技术领域,在一定程度上降低冷媒噪声。该方法包括当第一指定数量的内机处于非工作状态时,关闭所有处于非工作状态的内机对应的膨胀阀;按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀。本发明实施例适用于空调噪音控制的过程中。

Description

一种膨胀阀的控制方法及装置
【技术领域】
本发明涉及终端技术领域,尤其涉及一种膨胀阀的控制方法及装置。
【背景技术】
在多联机系统中,室内机作为用户可直接感受体验到的单元,其制冷制热效果好坏以及噪音大小直接影响用户体验。当室内机以制热模式运行时,室内机换热器作为冷凝器,室外机换热器作为蒸发器,压缩机输出的高温高压气态冷媒在室内机换热器中冷凝为高压常温液态冷媒,再经过电子膨胀阀进入室外机,并在节流降压后在室外机换热器处蒸发成低温气态冷媒,然后经过压缩机压缩成高温高压气态冷媒,完成制冷系统的循环。
当室内机以制热模式运行时,受环境温度以及其他各种不同条件因素的影响,高温气态冷媒在室内机换热器处可能没有充分冷凝,在室内机换热器出口以气液两相态流经室内机的电子膨胀阀。因此,如果室内机以制热模式运行,由于经过室内机电子膨胀阀的冷媒可能为气液两相态甚至液态,当室内机停机时,冷媒流经室内机电子膨胀阀时可能会产生较大的噪音,这样会严重影响用户体验。
【发明内容】
有鉴于此,本发明实施例提供了一种膨胀阀的控制方法及装置,在一定程度上降低冷媒噪声。
一方面,本发明实施例提供了一种膨胀阀的控制方法,所述方法包括:
当第一指定数量的内机处于非工作状态时,关闭所有处于非工作状态的内机对应的膨胀阀;
按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在所述关闭所有处于非工作状态的内机对应的膨胀阀之后,所述方法还包括:
根据处于非工作状态的内机数量,调整外机压机的工作频率。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据处于非工作状态的内机数量,调整外机压机的工作频率包括:
获取处于非工作状态的内机数量;
根据公式X=X1–N*A,调整外机压机的工作频率;
其中,X为目标工作频率,X1为外机正常工作频率,N为处于非工作状态的内机数量,A为调整系数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀包括:
按照预定周期轮流将第二指定数量处于非工作状态的内机对应的膨胀阀开启至指定阈值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在所述关闭所有处于非工作状态的内机对应的膨胀阀之前,还包括:
判断当前处于工作状态的内机数量是否超过第三指定数量;
当确定当前处于工作状态的内机数量未超过第三指定数量时,则关闭所有处于非工作状态的内机对应的膨胀阀。
另一方面,本发明实施例还提供了一种膨胀阀的控制装置,所述装置包括:
关闭单元,用于当第一指定数量的内机处于非工作状态时,关闭所有处于非工作状态的内机对应的膨胀阀;
开启单元,用于按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述装置还包括:
调整单元,用于根据处于非工作状态的内机数量,调整外机压机的工作频率。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述调整单元,具体用于获取处于非工作状态的内机数量;根据公式X=X1–N*A,调整外机压机的工作频率;其中,X为目标工作频率,X1为外机正常工作频率,N为处于非工作状态的内机数量,A为调整系数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述开启单元具体用于按照预定周期轮流将第二指定数量处于非工作状态的内机对应的膨胀阀开启至指定阈值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述装置还包括:
判断单元,用于判断当前处于工作状态的内机数量是否超过第三指定数量;
所述关闭单元,用于当确定当前处于工作状态的内机数量未超过第三指定数量时,则关闭所有处于非工作状态的内机对应的膨胀阀。
本发明实施例提供了膨胀阀的控制方法,通过在所有处于非工作状态的内机中轮流开启部分内机的膨胀阀,同时关闭剩余内机的膨胀阀,从而保证在处于非工作状态的内机中只允许少量可以产生噪音,相比于现有技术中处于非工作状态下的内机全部会开启膨胀阀的方案来说,本发明实施例所采用的方法只允许部分内机产生噪音,可以有效降低因噪音造成的干扰。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种膨胀阀的控制方法流程图;
图2是本发明实施例提供的另一种膨胀阀的控制方法流程图;
图3是本发明实施例提供的另一种膨胀阀的控制方法流程图;
图4是本发明实施例提供的另一种膨胀阀的控制方法流程图;
图5是本发明实施例提供的一种膨胀阀的控制装置的组成框图;
图6是本发明实施例提供的另一种膨胀阀的控制装置的组成框图;
图7是本发明实施例提供的另一种膨胀阀的控制装置的组成框图。
【具体实施方式】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明实施例提供了一种膨胀阀的控制方法,旨在解决多联机系统内内机处于非工作状态时的静音问题,该方法流程如图1所示,包括:
101、当第一指定数量的内机处于非工作状态时,关闭所有处于非工作状态的内机对应的膨胀阀。
在本发明实施例中非工作状态可以包括关机或待机状态。
关闭膨胀阀的作用在于停止内机与外机之间的冷媒流动,冷媒停止流动后就不会再产生因冷媒碰撞膨胀阀而产生的噪音。
第一指定数量用于表示多联机系统中处于非工作状态的内机数量,一般由实际情况决定。
102、按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀。
第二指定数量与第一指定数量存在一定的大小关系,在本发明实施例中要求第二指定数量不大于第一指定数量,以保证不会影响到处于工作状态的内机正常工作。由于是轮流开启,因此第二指定数量的设置不易过多,其原因在于启动过多会重新造成冷媒噪声。
第二指定数量一般可以设定为1个或不超过内机总数量的一定比例。
需要说明的是,虽然关闭膨胀阀后噪音消失,但是由于部分内机与外机之间的冷媒传导因膨胀阀的关闭而停止,这样会造成冷媒无法流经处于为工作状态的内机中,因而在一定程度上增大了外机与处于正常工作状态的内机进行冷媒交互的管道内压,有可能会降低安全性,因此需要按照预定周期轮流开启处于非工作状态的一定数量内机对应的膨胀阀,以缓解管道压力。
预定周期可根据实际需要或经验值进行设定,例如1分钟、5分钟、10分钟等。
本发明实施例提供了膨胀阀的控制方法,通过在所有处于非工作状态的内机中轮流开启部分内机的膨胀阀,同时关闭剩余内机的膨胀阀,从而保证在处于非工作状态的内机中只允许少量可以产生噪音,相比于现有技术中处于非工作状态下的内机全部会开启膨胀阀的方案来说,本发明实施例所采用的方法只允许部分内机产生噪音,可以有效降低因噪音造成的干扰。
为了能够进一步减小外机与处于正常工作状态的内机进行冷媒交互的管道内压,本发明实施例在执行步骤102在所述关闭所有处于非工作状态的内机对应的膨胀阀之后,还提供了以下步骤103,如图2所示,包括:
103、根据处于非工作状态的内机数量,调整外机压机的工作频率。
外机压机工作频率的调整方法为:
获取处于非工作状态的内机数量,根据公式X=X1–N*A,调整外机压机的工作频率。其中,X为目标工作频率,X1为外机正常工作频率,一般会配置在20Hz到120Hz,N为处于非工作状态的内机数量,可以通过多联机系统的控制器或管理器统一采集,A为调整系数,调整系数可以根据不同数量内机工作时的冷媒压力对应设置,具体大小本发明实施例不做限制,只要使目标工作频率被调整至20Hz到100Hz之间即可。
通过该调整方法,使得外机压机的工作频率可以根据处于非工作状态的内机数量而降低,从而避免过量的冷媒在外机与处于正常工作状态的内机进行冷媒交互的管道中传导。
为了进一步减少噪音,本发明实施例还对步骤102的执行过程中,膨胀阀的开度限定,如图3所示,步骤102可具体执行为以下步骤D102,包括:
D102、按照预定周期轮流将第二指定数量处于非工作状态的内机对应的膨胀阀开启至指定阈值。
指定阈值一般需要设定为比正常工作时的开度要小,以达到降低冷媒通过量减少噪音的效果,例如60pls。当然也可以根据实际需要将指定阈值设置得比正常工作时还要大,以尽快平衡管道压力。
本发明实施例在执行前述步骤101之前,还需要对当前正在运行的内机数量进行判别,以确定当前环境下是否适合进行噪音控制。具体流程如图4所示,包括:
104、判断当前处于工作状态的内机数量是否超过第三指定数量。当确定当前处于工作状态的内机数量未超过第三指定数量时,执行步骤101。否则执行步骤105。
第三指定数量设定一般不超过多联机系统内总机数的3%到5%。例如1拖32的多联机系统中,3%到5%就是1到2台。超过一定比例后,内机正常工作时的音量就会明显超过冷媒噪声的音量,而使得对冷媒噪声的控制变得不是很明显。当然本发明实施例也不限制再超过当前处于工作状态的内机数量第三指令数量的条件仍然执行前述流程。
105、维持各内机当前运行状态。
本发明实施例提供了一种膨胀阀的控制装置,可用于实现前述各方法流程,如图5所示,所述装置包括:
关闭单元21,用于当第一指定数量的内机处于非工作状态时,关闭所有处于非工作状态的内机对应的膨胀阀。
开启单元22,用于按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀。
可选的是,如图6所示,所述装置还包括:
调整单元23,用于获取处于非工作状态的内机数量;根据处于非工作状态的内机数量,调整外机压机的工作频率。
可选的是,所述调整单元23,具体用于根据公式X=X1–N*A,调整外机压机的工作频率;其中,X为目标工作频率,X1为外机正常工作频率,N为处于非工作状态的内机数量,A为调整系数。
可选的是,所述开启单元22具体用于按照预定周期轮流将第二指定数量处于非工作状态的内机对应的膨胀阀开启至指定阈值。
可选的是,如图7所示,所述装置还包括:
判断单元24,用于判断当前处于工作状态的内机数量是否超过第三指定数量。
所述关闭单元21,用于当确定当前处于工作状态的内机数量未超过第三指定数量时,则关闭所有处于非工作状态的内机对应的膨胀阀。
本发明实施例提供了膨胀阀的控制装置,通过在所有处于非工作状态的内机中轮流开启部分内机的膨胀阀,同时关闭剩余内机的膨胀阀,从而保证在处于非工作状态的内机中只允许少量可以产生噪音,相比于现有技术中处于非工作状态下的内机全部会开启膨胀阀的方案来说,本发明实施例所采用的方法只允许部分内机产生噪音,可以有效降低因噪音造成的干扰。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (10)

1.一种膨胀阀的控制方法,其特征在于,所述方法包括:
当第一指定数量的内机处于非工作状态时,关闭所有处于非工作状态的内机对应的膨胀阀;
按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀。
2.根据权利要求1所述的方法,其特征在于,在所述关闭所有处于非工作状态的内机对应的膨胀阀之后,所述方法还包括:
根据处于非工作状态的内机数量,调整外机压机的工作频率。
3.根据权利要求2所述的方法,其特征在于,所述根据处于非工作状态的内机数量,调整外机压机的工作频率包括:
获取处于非工作状态的内机数量;
根据公式X=X1–N*A,调整外机压机的工作频率;
其中,X为目标工作频率,X1为外机正常工作频率,N为处于非工作状态的内机数量,A为调整系数。
4.根据权利要求3所述的方法,其特征在于,所述按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀包括:
按照预定周期轮流将第二指定数量处于非工作状态的内机对应的膨胀阀开启至指定阈值。
5.根据权利要求4所述的方法,其特征在于,在所述关闭所有处于非工作状态的内机对应的膨胀阀之前,还包括:
判断当前处于工作状态的内机数量是否超过第三指定数量;
当确定当前处于工作状态的内机数量未超过第三指定数量时,则关闭所有处于非工作状态的内机对应的膨胀阀。
6.一种膨胀阀的控制装置,其特征在于,所述装置包括:
关闭单元,用于当第一指定数量的内机处于非工作状态时,关闭所有处于非工作状态的内机对应的膨胀阀;
开启单元,用于按照预定周期轮流开启第二指定数量处于非工作状态的内机对应的膨胀阀。
7.根据权利要求6所述的装置,其特征在于,所述装置还包括:
调整单元,用于根据处于非工作状态的内机数量,调整外机压机的工作频率。
8.根据权利要求7所述的装置,其特征在于,所述调整单元,具体用于获取处于非工作状态的内机数量;根据公式X=X1–N*A,调整外机压机的工作频率;其中,X为目标工作频率,X1为外机正常工作频率,N为处于非工作状态的内机数量,A为调整系数。
9.根据权利要求8所述的装置,其特征在于,所述开启单元具体用于按照预定周期轮流将第二指定数量处于非工作状态的内机对应的膨胀阀开启至指定阈值。
10.根据权利要求9所述的装置,其特征在于,所述装置还包括:
判断单元,用于判断当前处于工作状态的内机数量是否超过第三指定数量;
所述关闭单元,用于当确定当前处于工作状态的内机数量未超过第三指定数量时,则关闭所有处于非工作状态的内机对应的膨胀阀。
CN201710650431.6A 2017-08-02 2017-08-02 一种膨胀阀的控制方法及装置 Pending CN107560214A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710650431.6A CN107560214A (zh) 2017-08-02 2017-08-02 一种膨胀阀的控制方法及装置
EP18840409.9A EP3647680B1 (en) 2017-08-02 2018-07-18 Method and device for controlling a plurality of expansion valves
PCT/CN2018/096155 WO2019024683A1 (zh) 2017-08-02 2018-07-18 一种膨胀阀的控制方法及装置
US16/780,420 US20200191430A1 (en) 2017-08-02 2020-02-03 Method and device for controlling expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710650431.6A CN107560214A (zh) 2017-08-02 2017-08-02 一种膨胀阀的控制方法及装置

Publications (1)

Publication Number Publication Date
CN107560214A true CN107560214A (zh) 2018-01-09

Family

ID=60974156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710650431.6A Pending CN107560214A (zh) 2017-08-02 2017-08-02 一种膨胀阀的控制方法及装置

Country Status (4)

Country Link
US (1) US20200191430A1 (zh)
EP (1) EP3647680B1 (zh)
CN (1) CN107560214A (zh)
WO (1) WO2019024683A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024683A1 (zh) * 2017-08-02 2019-02-07 青岛海尔空调电子有限公司 一种膨胀阀的控制方法及装置
CN110081554A (zh) * 2019-05-07 2019-08-02 珠海格力电器股份有限公司 多联机空调系统的控制方法及装置
CN113494764A (zh) * 2020-04-08 2021-10-12 广东美的制冷设备有限公司 一拖多空调器的控制方法、一拖多空调器及存储介质
CN115899997A (zh) * 2022-12-22 2023-04-04 珠海格力电器股份有限公司 多联机内机制热的停机控制方法和多联机空调机组

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110332648B (zh) * 2019-07-22 2021-12-21 宁波奥克斯电气股份有限公司 一种电子膨胀阀的控制方法、装置及多联空调系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048137A (ko) * 1999-11-25 2001-06-15 구자홍 멀티형 공기조화기 및 그 운전제어방법
CN1645007A (zh) * 2004-01-19 2005-07-27 Lg电子株式会社 多子机空调机的控制方法
CN103940023A (zh) * 2013-01-21 2014-07-23 山东朗进科技股份有限公司 一种一拖多空调膨胀阀智能控制方法
CN104697120A (zh) * 2015-03-24 2015-06-10 广东美的暖通设备有限公司 多联机系统及其的降噪控制方法
CN105066287A (zh) * 2015-07-20 2015-11-18 特灵空调系统(中国)有限公司 多联机及其控制方法
CN105588261A (zh) * 2015-01-08 2016-05-18 青岛海信日立空调系统有限公司 一种室内机电子膨胀阀的控制方法及装置
CN106907834A (zh) * 2017-03-15 2017-06-30 广东美的暖通设备有限公司 多联机系统及其制热室内机停机时的噪音控制方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198672A (ja) * 1990-11-28 1992-07-20 Matsushita Seiko Co Ltd 多室形空気調和機の電動膨張弁制御装置
JPH11325655A (ja) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd 消音器および空気調和機
JP4797727B2 (ja) * 2006-03-22 2011-10-19 ダイキン工業株式会社 冷凍装置
JP4957342B2 (ja) * 2007-04-04 2012-06-20 ダイキン工業株式会社 空気調和システム及び空調管理装置
CN107560214A (zh) * 2017-08-02 2018-01-09 青岛海尔空调电子有限公司 一种膨胀阀的控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048137A (ko) * 1999-11-25 2001-06-15 구자홍 멀티형 공기조화기 및 그 운전제어방법
CN1645007A (zh) * 2004-01-19 2005-07-27 Lg电子株式会社 多子机空调机的控制方法
CN103940023A (zh) * 2013-01-21 2014-07-23 山东朗进科技股份有限公司 一种一拖多空调膨胀阀智能控制方法
CN105588261A (zh) * 2015-01-08 2016-05-18 青岛海信日立空调系统有限公司 一种室内机电子膨胀阀的控制方法及装置
CN104697120A (zh) * 2015-03-24 2015-06-10 广东美的暖通设备有限公司 多联机系统及其的降噪控制方法
CN105066287A (zh) * 2015-07-20 2015-11-18 特灵空调系统(中国)有限公司 多联机及其控制方法
CN106907834A (zh) * 2017-03-15 2017-06-30 广东美的暖通设备有限公司 多联机系统及其制热室内机停机时的噪音控制方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024683A1 (zh) * 2017-08-02 2019-02-07 青岛海尔空调电子有限公司 一种膨胀阀的控制方法及装置
CN110081554A (zh) * 2019-05-07 2019-08-02 珠海格力电器股份有限公司 多联机空调系统的控制方法及装置
CN113494764A (zh) * 2020-04-08 2021-10-12 广东美的制冷设备有限公司 一拖多空调器的控制方法、一拖多空调器及存储介质
CN115899997A (zh) * 2022-12-22 2023-04-04 珠海格力电器股份有限公司 多联机内机制热的停机控制方法和多联机空调机组

Also Published As

Publication number Publication date
WO2019024683A1 (zh) 2019-02-07
EP3647680B1 (en) 2023-04-19
EP3647680A4 (en) 2020-07-01
US20200191430A1 (en) 2020-06-18
EP3647680A1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
CN107560214A (zh) 一种膨胀阀的控制方法及装置
CN103982988B (zh) 防止一拖多空调过度制热的方法及装置
CN104006497B (zh) 一拖多空调系统的冷媒流量的控制方法及装置
CN108489029A (zh) 空调器及其控制方法和计算机可读存储介质
CN104913445B (zh) 风机档位的控制方法、风机档位的控制系统和空调器
CN108361954B (zh) 空调防凝露控制的方法、装置及计算机存储介质
CN109708225A (zh) 空调器及其控制方法、装置和可读存储介质
CN109163427B (zh) 多联机系统的控制方法、控制装置和多联机系统
CN112797581B (zh) 空调温度控制方法、空调器及计算机可读存储介质
CN108458452A (zh) 空调器及其的控制方法和计算机可读存储介质
CN110677014B (zh) 可使变频器均匀降温的变频器的冷却系统、方法及空调设备
CN108375166A (zh) 空调防凝露控制的方法、装置及计算机存储介质
CN108375186A (zh) 空调防凝露控制的方法、装置及计算机存储介质
CN107676939A (zh) 一种定频空调的控制方法、控制系统及控制装置
CN108592303A (zh) 空调器的控制方法以及空调器
CN110131838A (zh) 空调机组控制方法、装置、计算机设备和存储介质
CN108278729B (zh) 空调控制方法、装置及空调
CN107631424A (zh) 自动调温空调器控制方法及空调器
CN113251500A (zh) 空调室外机、空调器、空调控制方法、装置、设备及介质
CN114963426A (zh) 一种空调器恒温除湿方法、系统、存储介质及空调器
CN108375174B (zh) 空调防凝露控制的方法、装置及计算机存储介质
CN107621058A (zh) 室内机冷媒控制装置及其控制方法、室内机和空调系统
WO2023082678A1 (zh) 用于除菌舱空调器除菌的方法及装置、除菌舱空调器
CN105650819B (zh) 一种用于多联机空调高温制冷的控制方法
CN109668273A (zh) 制冷装置控制方法、制冷装置以及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180109

RJ01 Rejection of invention patent application after publication