CN107544610A - 一种基于mpp电压规律与梯度寻优的光伏mppt控制方法 - Google Patents

一种基于mpp电压规律与梯度寻优的光伏mppt控制方法 Download PDF

Info

Publication number
CN107544610A
CN107544610A CN201710895679.9A CN201710895679A CN107544610A CN 107544610 A CN107544610 A CN 107544610A CN 201710895679 A CN201710895679 A CN 201710895679A CN 107544610 A CN107544610 A CN 107544610A
Authority
CN
China
Prior art keywords
voltage
output voltage
photovoltaic
gradient search
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710895679.9A
Other languages
English (en)
Other versions
CN107544610B (zh
Inventor
张勇军
李伟
肖雄
李小占
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710895679.9A priority Critical patent/CN107544610B/zh
Publication of CN107544610A publication Critical patent/CN107544610A/zh
Application granted granted Critical
Publication of CN107544610B publication Critical patent/CN107544610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种基于MPP电压规律与梯度寻优的光伏MPPT控制方法,属于光伏发电系统控制技术领域。该方法首先采集光伏电池阵列的输出电流与输出电压,将输出电压与其标准条件下的开路电压进行比较,并根据比较结果确定如何选取输出电压的扰动步长;当光伏电池阵列输出电压较为靠近最大功率点电压时,采用梯度寻优的方法计算扰动步长;将扰动步长施加到采集到的输出电压上得到期望电压值,再与输出电压值作差,并将差值输入到PI控制器;PI控制器的输出值经脉冲宽度调制器后得到开关信号,通过开关信号控制Boost电路功率开关器件的开断。该方法使光伏系统在不同光照条件下都具有动态响应快、稳态不振荡的优点。

Description

一种基于MPP电压规律与梯度寻优的光伏MPPT控制方法
技术领域
本发明涉及光伏发电系统控制技术领域,特别是指一种基于MPP电压规律与梯度寻优的光伏MPPT控制方法。
背景技术
光伏电池的输出特性具有复杂非线性特点,在外界环境变化时会随之改变,其最大功率点跟踪(MPPT)控制决定了系统的发电效率。MPPT控制方法多种多样,控制过程也各不相同。根据控制方法的特征和理论依据的不同,可将MPPT策略分为:1)基于数学模型优化的开环控制策略。开路电压法、短路电流法分别需要周期性断开、短路电池板,检测断路电压或短路电流,根据MPP点电压、电流与开路电压或短路电流的比例关系控制。这种方法控制稳定但精度低,并没有实现真正意义上的MPPT跟踪。2)基于参数选择的间接控制策略。主要有曲线拟合法、查表法等,这种控制策略在实际控制中运用不方便,在工程中应用不多。3)基于智能控制与近代先进控制理论的MPPT 控制策略。具体有:遗传算法、粒子群算法、模糊控制法、神经网络法和滑模控制法等。这类控制策略稳态时稳定且MPP点跟踪准确,但算法复杂、动态性能差。4)基于电压采样的扰动寻优直接控制策略。爬山法与扰动观察法分别对功率开关管的占空比和电池输出电压进行扰动自寻优,实现MPPT控制,二者殊途同归。这两种方法简单、实现方便,但是有“误判”与稳态性能较差、易震荡的问题。电导增量法根据P-U曲线特征来控制电压大小,使系统运行在峰值点,不会发生“误判”,跟踪精度较高,但难以兼顾动态响应速度与稳态性能。
针对电导增量法难以兼顾动态响应速度与稳态性能的缺点,Fangrui L、 ShanxuD、Fei L等学者提出了一种基于P-U曲线斜率变化规律的变步长电导增量方法,能够实现稳态无振荡,被国内外许多学者引用,在国际上获得了广泛认可,但该方法的适用条件具有局限性,在光照强度突变时,动态性能或者稳态性能会变差。
发明内容
本发明要解决的技术问题是提供一种基于MPP电压规律与梯度寻优的光伏MPPT控制方法。
该方法包括如下步骤:
(1)采集光伏电池阵列的输出电流与输出电压,将输出电压与光伏电池阵列在标准条件(辐照强度1000W/m2、温度25℃)下的开路电压进行比较,并根据比较结果确定选取输出电压的扰动步长;
(2)当步骤(1)中光伏电池阵列输出电压位于标准条件下开路电压的 60%与94%之间时,采用梯度寻优的方法计算扰动步长;
(3)将步骤(1)或步骤(2)中计算得到的扰动步长施加到采集到的输出电压上得到期望电压值,再将期望电压值与输出电压值作差,并将差值输入到PI控制器;
(4)PI控制器的输出值经脉冲宽度调制器后得到开关信号,通过开关信号控制Boost电路功率开关器件的开断。
其中,步骤(1)中输出电压的扰动步长选取方法如下:
当输出电压小于标准条件下开路电压的60%时,以固定步长ΔU1增加电压;当输出电压大于标准条件下开路电压的94%时,以固定步长ΔU3减小电压;当输出电压位于标准条件下开路电压的60%与94%之间时,若前后两次采样电压无变化但电流有变化时以固定步长ΔU2增加或减小电压,否则,以梯度寻优的方法获取扰动步长,进行MPPT控制,
步骤(2)中梯度寻优计算扰动步长的方法,具体过程如下:
以正梯度方向为步长迭代方向,逐步迭代逼近光伏电池P-U曲线的最大值,以光伏电池阵列输出电压U作为自变量,则迭代算法为:
Uk+1=Uk+akgk
其中,gk为梯度,ak为增量系数,Uk-1、Uk分别为上一时刻与这一时刻的采样电压值。
梯度增量系数
其中,Ik为采样时刻电流值。
迭代算法中,若增量系数ak=0,则以固定步长ΔU2按照电流变化的方向扰动;若ak≠0,则用上述梯度寻优的方法进行MPPT控制。
本发明的上述技术方案的有益效果如下:
本发明与现有的光伏MPPT控制方法相比,所述方法在输出电压值较高与较低的情况下直接采用固定的扰动步长,并采用梯度寻优的方法捕获到最大功率点,使系统能够兼顾动态响应速度与稳态稳定性,并在光照突变的情况下依然能获得良好的动、稳态性能。
附图说明
图1为本发明的基于MPP电压规律与梯度寻优的光伏MPPT控制方法的 MPPT控制电路的结构示意图;
图2为本发明不同外界条件下光伏电池的P-U曲线图,其中,(a)为0℃不同光照P-U特性曲线,(b)为25℃不同光照P-U特性曲线,(c)为50℃不同光照P-U特性曲线,(d)为300W/m2不同温度P-U特性曲线,(e)为 1000W/m2不同温度P-U特性曲线,(f)为1500W/m2不同温度P-U特性曲线;
图3为本发明基于MPP电压规律与梯度寻优的光伏MPPT控制方法流程图;
图4为本发明实施例光照突变情况下的功率与电压仿真波形图;
图5为本发明实施例正弦波光照下的功率与电压仿真波形图,其中,(a) 为不同时间光照强度正弦波形图,(b)为不同时间功率和电压波形图;
图6为本发明实施例梯形波光照下的功率与电压仿真波形图,其中,(a) 为不同时间光照强度梯形波形图,(b)为不同时间功率和电压波形图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供一种基于MPP电压规律与梯度寻优的光伏MPPT控制方法。
该方法包括如下步骤:
(1)采集光伏电池阵列的输出电流与输出电压,将输出电压与光伏电池阵列在标准条件(辐照强度1000W/m2、温度25℃)下的开路电压进行比较,并根据比较结果确定选取输出电压的扰动步长;
(2)当步骤(1)中光伏电池阵列输出电压位于标准条件下开路电压的 60%与94%之间时,采用梯度寻优的方法计算扰动步长;
(3)将步骤(1)或步骤(2)中计算得到的扰动步长施加到采集到的输出电压上得到期望电压值,再将期望电压值与输出电压值作差,并将差值输入到PI控制器;
(4)PI控制器的输出值经脉冲宽度调制器后得到开关信号,通过开关信号控制Boost电路功率开关器件的开断。
其中,步骤(1)中输出电压的扰动步长选取方法如下:
当输出电压小于标准条件下开路电压的60%时,以固定步长ΔU1增加电压;当输出电压大于标准条件下开路电压的94%时,以固定步长ΔU3减小电压;当输出电压位于标准条件下开路电压的60%与94%之间时,若前后两次采样电压无变化但电流有变化时以固定步长ΔU2增加或减小电压,否则,以梯度寻优的方法获取扰动步长,进行MPPT控制,
步骤(2)中梯度寻优计算扰动步长的方法,具体过程如下:
以正梯度方向为步长迭代方向,逐步迭代逼近光伏电池P-U曲线的最大值,以光伏电池阵列输出电压U作为自变量,则迭代算法为:
Uk+1=Uk+akgk
其中,gk为梯度,ak为增量系数,Uk-1、Uk分别为上一时刻与这一时刻的采样电压值。
梯度增量系数
其中,Ik为采样时刻电流值。
迭代算法中,若增量系数ak=0,则以固定步长ΔU2按照电流变化的方向扰动;若ak≠0,则用上述梯度寻优的方法进行MPPT控制。
在具体控制过程中,采用的光伏MPPT控制电路的结构如图1所示,主要包括光伏电池板、Boost电路、MPPT控制器、PI控制器和PWM驱动电路。 Boost电路中C1为输入滤波电容,L为储能电感,VD为单向导通的二极管, VT为功率开关管,C2为输出滤波电容,R为负载。Ipv与Upv分别为光伏电池的输出电流与输出电压,采集后传送给MPPT控制器;MPPT控制器将输出电压与其标准条件下的开路电压进行比较,并根据比较结果确定输出电压的扰动步长;然后将扰动步长施加到采集到的输出电压上得到期望电压值,再与输出电压值作差,并将差值输入到PI控制器;PI控制器的输出值经脉冲宽度调制器后得到开关信号,通过开关信号控制Boost电路功率开关器件的开断,实现最大功率点跟踪控制。
光伏电池的输出特性表现为复杂非线性,最大功率点(MPP)电压Um随着环境的变化而变化,为了探寻不同条件下的光伏电池最大功率点电压与标准条件下的开路电压的关系,分别在环境温度0℃与(300、600、1000、1500W/m2) 光照强度、环境温度25℃与(300、600、1000、1500W/m2)光照强度、环境温度50℃与(300、600、1000、1500W/m2)光照强度、光照强度300W/m2与 (0、10、25、50℃)环境温度、光照强度1000W/m2与(0、10、25、50℃) 环境温度、光照强度1500W/m2与(0、10、25、50℃)环境温度6组外界条件下仿真,得到图2所示的6组光伏电池P-U曲线图。从图2中的P-U曲线收集不同环境条件下的光伏电池最大功率点电压,然后除以标准条件下的开路电压,得到的比值结果如表1所示:
表1
a组 0.7352 0.7847 0.8319 0.9125
b组 0.6782 0.7319 0.8056 0.8407
c组 0.6435 0.6894 0.7458 0.7843
d组 0.7352 0.7037 0.6782 0.6435
e组 0.8319 0.8167 0.8056 0.7458
f组 0.9125 0.8931 0.8407 0.7843
分析表1中不同环境条件下的光伏电池最大功率点电压与标准条件下开路电压的比值数据,考虑到误差冗余量,本发明得出结论:在不同的外界条件下,电池运行在MPP点时的电压位于标准条件(25℃、1000W/m2)下断路电压的60%—94%之间。因此,本发明基于MPP电压规律与梯度寻优的MPPT 控制方法如下:当输出电压小于标准条件下开路电压的60%时,以固定步长ΔU1增加电压;当输出电压大于标准条件下开路电压的94%时,以固定步长ΔU3减小电压;当输出电压位于标准条件下开路电压的60%与94%之间时,若前后两次采样电压无变化但电流有变化时以固定步长ΔU2增加或减小电压,否则,以梯度寻优的方法获取扰动步长,进行MPPT控制。本发明的控制方法流程图如图3所示。
在Matlab/Simulink环境下搭建仿真模型,采用图1所示结构与图3所示 MPPT方法,参数如下:输入滤波电容C1为350μF,储能电感L为22mH,输出滤波电容C2为330μF,负载电阻R为15Ω,扰动步长ΔU1=0.6V,ΔU3=0.2V,ΔU2=0.05V。
设定初始条件为700W/m2的辐照强度与25℃的温度,0时刻系统启动,在0.1s时辐照强度变为1000W/m2,在0.2s时变回700W/m2,所述MPPT控制方法的仿真结果图4所示,仿真结果显示所述MPPT控制方法动态响应速度快,稳态几乎无振荡,并且在光照突变时依然能保持优良的动、稳态性能。
为进一步验证所述方法能适用于不同光照条件,将光照强度分别设置成正弦波、梯形波变化形式,仿真波形图分别如图5、图6所示。从图5可以看出,在光照呈正弦波形式连续变化的情况下,输出功率能够紧紧跟随光照的变化而变化、呈现出正弦波形,在光照强度前、后两次达到峰值的同时也达到最大值,且两次的输出功率值相同,与理论结果一致,在整个仿真过程中,功率波动非常小,说明了该方法在光照连续变化时能够迅速、准确地寻找到系统的MPP 点。
从图6可以看出,输出功率紧随光照变化表现为梯形波,当光照在0.3s、 0.5s、0.7s、0.9s分别达到700、900、800、1000W/m2并保持稳定时,输出功率也分别在0.3s、0.5s、0.7s、0.9s达到相应的最大功率点并保持稳定,整个仿真过程功率波动非常小,说明该方法在不同的光照情况下都能迅速跟踪到最大功率并平稳运行。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种基于MPP电压规律与梯度寻优的光伏MPPT控制方法,其特征在于:包括如下步骤:
(1)采集光伏电池阵列的输出电流与输出电压,将输出电压与光伏电池阵列在标准条件下的开路电压进行比较,并根据比较结果确定选取输出电压的扰动步长;
(2)当步骤(1)中光伏电池阵列输出电压位于标准条件下开路电压的60%与94%之间时,采用梯度寻优的方法计算扰动步长;
(3)将步骤(1)或步骤(2)中计算得到的扰动步长施加到采集到的输出电压上得到期望电压值,再将期望电压值与输出电压值作差,并将差值输入到PI控制器;
(4)PI控制器的输出值经脉冲宽度调制器后得到开关信号,通过开关信号控制Boost电路功率开关器件的开断。
2.根据权利要求1所述的基于MPP电压规律与梯度寻优的光伏MPPT控制方法,其特征在于:所述步骤(1)中输出电压的扰动步长选取方法如下:
当输出电压小于标准条件下开路电压的60%时,以固定步长ΔU1增加电压;当输出电压大于标准条件下开路电压的94%时,以固定步长ΔU3减小电压;当输出电压位于标准条件下开路电压的60%与94%之间时,若前后两次采样电压无变化但电流有变化时以固定步长ΔU2增加或减小电压,否则,以梯度寻优的方法获取扰动步长,进行MPPT控制。
3.根据权利要求1所述的基于MPP电压规律与梯度寻优的光伏MPPT控制方法,其特征在于:所述步骤(2)中梯度寻优计算扰动步长的方法,具体过程如下:
以正梯度方向为步长迭代方向,逐步迭代逼近光伏电池P-U曲线的最大值,以光伏电池阵列输出电压U作为自变量,则迭代算法为:
Uk+1=Uk+akgk
其中,gk为梯度,ak为增量系数,Uk-1、Uk分别为上一时刻与这一时刻的采样电压值。
4.根据权利要求3所述的基于MPP电压规律与梯度寻优的光伏MPPT控制方法,其特征在于:所述梯度所述增量系数
其中,Ik为采样时刻电流值。
5.根据权利要求3或4所述的基于MPP电压规律与梯度寻优的光伏MPPT控制方法,其特征在于:所述迭代算法中,若增量系数ak=0,则以固定步长ΔU2按照电流变化的方向扰动;若ak≠0,则用上述梯度寻优的方法进行MPPT控制。
6.根据权利要求1所述的基于MPP电压规律与梯度寻优的光伏MPPT控制方法,其特征在于:所述步骤(1)中标准条件为辐照强度1000W/m2、温度25℃。
CN201710895679.9A 2017-09-28 2017-09-28 一种基于mpp电压规律与梯度寻优的光伏mppt控制方法 Active CN107544610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710895679.9A CN107544610B (zh) 2017-09-28 2017-09-28 一种基于mpp电压规律与梯度寻优的光伏mppt控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710895679.9A CN107544610B (zh) 2017-09-28 2017-09-28 一种基于mpp电压规律与梯度寻优的光伏mppt控制方法

Publications (2)

Publication Number Publication Date
CN107544610A true CN107544610A (zh) 2018-01-05
CN107544610B CN107544610B (zh) 2019-04-09

Family

ID=60964642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710895679.9A Active CN107544610B (zh) 2017-09-28 2017-09-28 一种基于mpp电压规律与梯度寻优的光伏mppt控制方法

Country Status (1)

Country Link
CN (1) CN107544610B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112487347A (zh) * 2020-11-02 2021-03-12 东南大学 考虑环境和时变因素的光伏组件模型参数化方法
CN114123463A (zh) * 2021-11-17 2022-03-01 德力西(杭州)变频器有限公司 一种光伏水泵控制方法、系统及装置
CN115826669A (zh) * 2022-11-26 2023-03-21 天津大学 光伏发电系统的复合最大功率点跟踪控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102270A (zh) * 2014-06-20 2014-10-15 北京京东方能源科技有限公司 最大功率点跟踪方法及装置、光伏发电系统
CN105116959A (zh) * 2015-09-22 2015-12-02 合肥河野电子科技有限公司 基于最优梯度变步长的最大功率点跟踪控制与预测方法
CN105892552A (zh) * 2016-05-05 2016-08-24 江苏方天电力技术有限公司 基于全局扫描和准梯度式扰动观测法的光伏组件mppt算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102270A (zh) * 2014-06-20 2014-10-15 北京京东方能源科技有限公司 最大功率点跟踪方法及装置、光伏发电系统
US9354652B2 (en) * 2014-06-20 2016-05-31 Boe Technology Group Co., Ltd. Maximum power point tracking method and device, and photovoltaic power generation system
CN105116959A (zh) * 2015-09-22 2015-12-02 合肥河野电子科技有限公司 基于最优梯度变步长的最大功率点跟踪控制与预测方法
CN105892552A (zh) * 2016-05-05 2016-08-24 江苏方天电力技术有限公司 基于全局扫描和准梯度式扰动观测法的光伏组件mppt算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏巍: "光伏发电系统中最大功率点跟踪方法的研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112487347A (zh) * 2020-11-02 2021-03-12 东南大学 考虑环境和时变因素的光伏组件模型参数化方法
CN112487347B (zh) * 2020-11-02 2024-02-06 东南大学 考虑环境和时变因素的光伏组件模型参数化方法
CN114123463A (zh) * 2021-11-17 2022-03-01 德力西(杭州)变频器有限公司 一种光伏水泵控制方法、系统及装置
CN115826669A (zh) * 2022-11-26 2023-03-21 天津大学 光伏发电系统的复合最大功率点跟踪控制方法
CN115826669B (zh) * 2022-11-26 2024-04-12 天津大学 光伏发电系统的复合最大功率点跟踪控制方法

Also Published As

Publication number Publication date
CN107544610B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN106444957B (zh) 一种基于自适应三步长的光伏最大功率点跟踪方法
Reisi et al. Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review
Salas et al. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems
CN101783621B (zh) 光伏发电系统全局最大功率点跟踪方法
CN103441526B (zh) 一种并网不上网的小型光伏发电系统及控制方法
CN103488239A (zh) 一种光伏并网逆变器中的最大功率点跟踪方法
CN101604848A (zh) 单级三相光伏并网系统的模糊滑模控制方法
CN101572417A (zh) 单级三相光伏并网系统的最大功率跟踪控制方法
CN103019294B (zh) 一种自适应扰动频率和步长的最大功率点跟踪方法
CN104035476B (zh) 基于输出电压频率步进扰动的最大功率点跟踪方法
CN105573400A (zh) 一种光伏发电系统最大功率跟踪控制方法
CN108336758A (zh) 一种基于纹波关联法的光伏组件mppt算法
CN107544610B (zh) 一种基于mpp电压规律与梯度寻优的光伏mppt控制方法
CN110112818B (zh) 一种车载光伏系统太阳能变换器的运行控制方法及系统
CN110737302A (zh) 一种基于光伏发电系统电阻匹配的mppt控制方法
CN111049381A (zh) 一种应用于直流三电平变换器的多目标协同优化控制方法
CN203535530U (zh) 一种实现光伏电池最大功率点跟踪的模拟控制电路
CN108874017A (zh) 一种光伏发电系统的最大功率点跟踪方法
CN112688307A (zh) 一种交直流混合微电网控制器及控制方法
CN206115323U (zh) 一种光伏发电系统
Radjai et al. The new FLC-variable incremental conductance MPPT with direct control method using Cuk converter
CN105652951B (zh) 一种变步长mppt控制方法
CN108181966B (zh) 一种基于电压-功率扫描的光伏多峰mpp快速跟踪方法
CN110488907A (zh) 一种用于光伏发电的混合步长最大功率跟踪控制方法
CN111694395B (zh) 基于伏安特性方程和二分法的光伏最大功率点跟踪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant