CN107541187A - 纳米陶瓷红外阻隔材料 - Google Patents

纳米陶瓷红外阻隔材料 Download PDF

Info

Publication number
CN107541187A
CN107541187A CN201710907368.XA CN201710907368A CN107541187A CN 107541187 A CN107541187 A CN 107541187A CN 201710907368 A CN201710907368 A CN 201710907368A CN 107541187 A CN107541187 A CN 107541187A
Authority
CN
China
Prior art keywords
infrared barrier
barrier material
nano ceramics
dopant
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710907368.XA
Other languages
English (en)
Inventor
李曼
管小敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HU BEN NEW MATERIAL TECHNOLOGY (SHANGHAI) Co Ltd
Original Assignee
HU BEN NEW MATERIAL TECHNOLOGY (SHANGHAI) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HU BEN NEW MATERIAL TECHNOLOGY (SHANGHAI) Co Ltd filed Critical HU BEN NEW MATERIAL TECHNOLOGY (SHANGHAI) Co Ltd
Priority to CN201710907368.XA priority Critical patent/CN107541187A/zh
Publication of CN107541187A publication Critical patent/CN107541187A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

本发明公开了一种纳米陶瓷红外阻隔材料,属于红外阻隔材料领域。它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且0<x≤2.5,0<y≤2.5,0<z≤3.5,0<s<3.5,通过控制掺杂比例,可以调整目标产物的红外阻隔性能和可见光透过率。采用含铯化合物掺杂含钨化合物,制成红外阻隔材料,它的晶体强度得到了提高,红外阻隔波段得到拓宽,阻隔率显著提升,而且对可见光的衰减率变小。

Description

纳米陶瓷红外阻隔材料
技术领域
本发明涉及一种纳米陶瓷红外阻隔材料,属于红外阻隔材料领域。
背景技术
红外阻隔材料是一种能够将太阳光中的红外部分阻隔在外,同时能够透过可见光部分。太阳光中的红外部分含有大量热量,被照射的物体将会升温。例如,在汽车玻璃领域,使用这种红外阻隔涂层的玻璃,能够过滤掉红外部分的光,透过可见光,保持车内温度不过高。目前,红外阻隔材料的红外光阻隔波段较窄,阻隔率有待进一步提高。
发明内容
本发明所要解决的技术问题在于:提供一种纳米陶瓷红外阻隔材料,它解决了目前的红外阻隔材料的红外光阻隔波段较窄的问题。
本发明所要解决的技术问题采取以下技术方案来实现:
纳米陶瓷红外阻隔材料,它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且0<x≤2.5,0<y≤2.5,0<z≤3.5,0<s<3.5,通过控制掺杂比例,可以调整目标产物的红外阻隔性能和可见光透过率。
作为优选实例,所述含铯化合物为碳酸铯。
作为优选实例,所述纳米陶瓷红外阻隔材料的颗粒大小为10-500纳米。
本发明的有益效果是:采用含铯化合物掺杂含钨化合物,制成红外阻隔材料,它的晶体强度得到了提高,红外阻隔波段得到拓宽,阻隔率显著提升,而且对可见光的衰减率变小。
具体实施方式
为了对本发明的技术手段、创作特征、达成目的与功效易于明白了解,下面进一步阐述本发明。
纳米陶瓷红外阻隔材料,它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且0<x≤2.5,0<y≤2.5,0<z≤3.5,0<s<3.5,通过控制掺杂比例,可以调整目标产物的红外阻隔性能和可见光透过率。
含铯化合物为碳酸铯。
纳米陶瓷红外阻隔材料的颗粒大小为10-500纳米。
制作工艺:
(1)按照表达式MxWCyHzNs,且0<x≤2.5,0<y≤2.5,0<z≤3.5,0<s<3.5,各组分的摩尔比称取含铯化合物和含钨化合物粉末;
(2)充分混合含铯化合物和含钨化合物粉末,形成混合粉末;
(3)混合粉末在纳米级研磨机中充分研磨,研磨至颗粒大小为10-500纳米;
(4)在保护气体气氛下,对混合粉末进行100~1200℃热处理6-24小时,得到掺杂的红外阻隔材料。
使用方法:
(1)使用分散剂对掺杂的红外阻隔材料进行分散;
(2)再向其中添加溶剂,形成分散液;
(3)将分散液涂在透明基材上,干化后形成薄膜。薄膜能够阻隔更宽频段的红外光,而对可见光的衰减率很低。
实施例1
纳米陶瓷红外阻隔材料,它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且x=2.5,y=2.5,z=3.5,s=2.5。
含铯化合物为碳酸铯。
纳米陶瓷红外阻隔材料的颗粒大小为50纳米。
实施例2
纳米陶瓷红外阻隔材料,它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且x=2.5,y=1.5,z=1.5,s=2.5。
含铯化合物为碳酸铯。
纳米陶瓷红外阻隔材料的颗粒大小为100纳米。
实施例3
纳米陶瓷红外阻隔材料,它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且x=1,y=2.5,z=0.5,s=3。
含铯化合物为碳酸铯。
纳米陶瓷红外阻隔材料的颗粒大小为200纳米.
实施例4
纳米陶瓷红外阻隔材料,它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且x=0.5,y=0.5,z=0.5,s=2.5。
含铯化合物为碳酸铯。
纳米陶瓷红外阻隔材料的颗粒大小为10纳米。
实施例5
纳米陶瓷红外阻隔材料,它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且x=2.5,y=2.5,z=1.5,s=0.5。
含铯化合物为碳酸铯。
纳米陶瓷红外阻隔材料的颗粒大小为250纳米。
采用含铯化合物掺杂含钨化合物,制成红外阻隔材料,它的晶体强度得到了提高,红外阻隔波段得到拓宽,阻隔率显著提升,而且对可见光的衰减率变小。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入本发明要求保护的范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

1.纳米陶瓷红外阻隔材料,其特征在于:它的表达式为MxWCyHzNs,其中M为掺杂物,该掺杂物为含铯化合物,且0<x≤2.5,0<y≤2.5,0<z≤3.5,0<s<3.5,通过控制掺杂比例,可以调整目标产物的红外阻隔性能和可见光透过率。
2.根据权利要求1所述纳米陶瓷红外阻隔材料,其特征在于:所述含铯化合物为碳酸铯。
3.根据权利要求1所述纳米陶瓷红外阻隔材料,其特征在于:所述纳米陶瓷红外阻隔材料的颗粒大小为10-500纳米。
CN201710907368.XA 2017-09-29 2017-09-29 纳米陶瓷红外阻隔材料 Pending CN107541187A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710907368.XA CN107541187A (zh) 2017-09-29 2017-09-29 纳米陶瓷红外阻隔材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710907368.XA CN107541187A (zh) 2017-09-29 2017-09-29 纳米陶瓷红外阻隔材料

Publications (1)

Publication Number Publication Date
CN107541187A true CN107541187A (zh) 2018-01-05

Family

ID=60964879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710907368.XA Pending CN107541187A (zh) 2017-09-29 2017-09-29 纳米陶瓷红外阻隔材料

Country Status (1)

Country Link
CN (1) CN107541187A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616800A (zh) * 2007-02-20 2009-12-30 琳得科株式会社 近红外线遮蔽薄膜
JP2010002825A (ja) * 2008-06-23 2010-01-07 Dainippon Printing Co Ltd 近赤外線吸収能を有する反射防止材
US20120068292A1 (en) * 2010-09-22 2012-03-22 Fujifilm Corporation Polymerizable composition, and photosensitive layer, permanent pattern, wafer-level lens, solid-state imaging device and pattern forming method each using the composition
CN103229100A (zh) * 2010-11-30 2013-07-31 富士胶片株式会社 可聚合组成物以及各自使用所述组成物的感光层、永久图案、晶圆级透镜、固态摄影组件及图案形成方法
CN105817639A (zh) * 2015-11-30 2016-08-03 沪本新材料科技(上海)有限公司 作为红外线遮蔽体的铯掺杂钨青铜纳米粉体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616800A (zh) * 2007-02-20 2009-12-30 琳得科株式会社 近红外线遮蔽薄膜
JP2010002825A (ja) * 2008-06-23 2010-01-07 Dainippon Printing Co Ltd 近赤外線吸収能を有する反射防止材
US20120068292A1 (en) * 2010-09-22 2012-03-22 Fujifilm Corporation Polymerizable composition, and photosensitive layer, permanent pattern, wafer-level lens, solid-state imaging device and pattern forming method each using the composition
CN103229100A (zh) * 2010-11-30 2013-07-31 富士胶片株式会社 可聚合组成物以及各自使用所述组成物的感光层、永久图案、晶圆级透镜、固态摄影组件及图案形成方法
CN105817639A (zh) * 2015-11-30 2016-08-03 沪本新材料科技(上海)有限公司 作为红外线遮蔽体的铯掺杂钨青铜纳米粉体及其制备方法

Similar Documents

Publication Publication Date Title
Wasly et al. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method
Zaberca et al. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers
Berlin et al. Enhancement of photoluminescence emission intensity of zirconia thin films via aluminum doping for the application of solid state lighting in light emitting diode
Verma et al. Investigation of structural, morphological and optical properties of Mg: ZnO thin films prepared by sol-gel spin coating method
Muthukumaran et al. Structural, optical, FTIR and photoluminescence properties of Zn0. 96− xCo0. 04CuxO (x= 0.03, 0.04 and 0.05) nanopowders
Ahmed et al. Structural, morphological and optical properties of Cr doped ZnS nanoparticles prepared without any capping agent
Bouznit et al. Sprayed lanthanum doped zinc oxide thin films
Chen et al. Structure and photoluminescence property of Eu-doped SnO2 nanocrystalline powders fabricated by sol–gel calcination process
Nilavazhagan et al. Investigation of optical and structural properties of Fe, Cu co-doped SnO2 nanoparticles
Kayani et al. Optical and structural properties of thin films of ZnO at elevated temperature
Tripathi et al. Structural, optical and photoluminescence study of nanocrystalline SnO 2 thin films deposited by spray pyrolysis
Karbassi et al. Deposition of Cu2ZnSnS4 films by doctor blade printing using a one-step microwave heated ink as an absorber layer for solar cells
CN109928640B (zh) 无机卤化铅铯纳米晶复合硫系玻璃陶瓷材料及其制备方法
CN101126025B (zh) 红光荧光粉及多层光转换膜
KR101602486B1 (ko) 차광 구조물의 제조방법
Peng et al. Blue-violet luminescence double peak of In-doped films prepared by radio frequency sputtering
CN107541187A (zh) 纳米陶瓷红外阻隔材料
Mahajan et al. Investigation of optical and electrical properties of lithium doped ZnO nano films
Pal et al. Effect of Li+ co-doping on the luminescence properties of ZnO: Tb 3+ nanophosphors
de Pablos-Martín et al. High-energy milled, Eu3+-doped fresnoite glass-ceramic powders: Structural characterization and luminescent properties
Rajput et al. A comparative study on structural and optical properties of ZnO nanoparticles prepared by three different synthesis methods
Chen et al. Effect of sputtering parameters on photoluminescence properties of Al doped ZnO films deposited on Si substrates
CN104357798B (zh) 一种CdZnOS四元ZnO合金半导体材料及其制备方法
Ramakrishna et al. Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4: Mn2+ composite phosphor
Sharma et al. Role of the surface polarity in governing the luminescence properties of ZnO nanoparticles synthesized by Sol–gel route

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180105