CN107540402B - Preparation method of porous copper calcium titanate film - Google Patents
Preparation method of porous copper calcium titanate film Download PDFInfo
- Publication number
- CN107540402B CN107540402B CN201710896396.6A CN201710896396A CN107540402B CN 107540402 B CN107540402 B CN 107540402B CN 201710896396 A CN201710896396 A CN 201710896396A CN 107540402 B CN107540402 B CN 107540402B
- Authority
- CN
- China
- Prior art keywords
- porous
- temperature
- calcium copper
- calcium
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- HAUBPZADNMBYMB-UHFFFAOYSA-N calcium copper Chemical compound [Ca].[Cu] HAUBPZADNMBYMB-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 15
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 15
- 239000011575 calcium Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 9
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 8
- 239000012456 homogeneous solution Substances 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 4
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 4
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 241000877463 Lanio Species 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 1
- 239000007888 film coating Substances 0.000 claims 1
- 238000009501 film coating Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 239000000919 ceramic Substances 0.000 abstract description 7
- 238000004146 energy storage Methods 0.000 abstract description 4
- 229910002966 CaCu3Ti4O12 Inorganic materials 0.000 abstract 1
- 229910002340 LaNiO3 Inorganic materials 0.000 abstract 1
- 239000010408 film Substances 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000089 atomic force micrograph Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 229910020851 La(NO3)3.6H2O Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Ceramic Capacitors (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于无机非金属材料制备技术领域,尤其涉及一种钛酸铜钙薄膜材料的制备方法,是指通过溶液化学方法在各种衬底上制备多孔钛酸铜钙薄膜的方法。The invention belongs to the technical field of preparation of inorganic non-metallic materials, in particular to a preparation method of a calcium copper titanate thin film material, which refers to a method for preparing porous calcium copper titanate thin films on various substrates by a solution chemical method.
技术背景technical background
多孔陶瓷的发展始于十九世纪七十年代,初期仅仅是作为细菌过滤和铀提纯材料来使用。随着材料制备水平的不断提高以及工艺的多样化,各种新材质、高性能多孔陶瓷材料不断出现,其应用领域和范围也在不断扩大和发展。由于多孔陶瓷的共价键和复杂离子键的键合以及复杂的晶体结构,具有耐高温、耐腐蚀及热稳定性好的特点。并且,当流体流经孔隙时,多孔陶瓷材料内外表面会产生各种各样的物理化学效应(如毛细虹吸效应等)。多孔陶瓷由于其拥有密度低、透过性高、比表面积大、耐腐蚀、低热传导率以及耐高温等众多优良特性,引起了全世界材料界的高度关注。这种材料被广泛应用于催化剂载体,工业污水处理,熔融金属过滤,汽车尾气处理,隔热隔音材料等众多方面。随着科学技术的发展,多孔陶瓷的应用又扩展到电子领域、环保领域、生物化学领域、医用材料领域及航空领域等。The development of porous ceramics began in the 1870s, initially only as a material for bacterial filtration and uranium purification. With the continuous improvement of the level of material preparation and the diversification of processes, various new materials and high-performance porous ceramic materials continue to emerge, and their application fields and scopes are also expanding and developing. Due to the bonding of covalent bonds and complex ionic bonds and the complex crystal structure of porous ceramics, it has the characteristics of high temperature resistance, corrosion resistance and thermal stability. Moreover, when the fluid flows through the pores, various physicochemical effects (such as capillary siphon effect, etc.) will occur on the inner and outer surfaces of the porous ceramic material. Porous ceramics have attracted great attention in the world of materials due to their many excellent properties such as low density, high permeability, large specific surface area, corrosion resistance, low thermal conductivity, and high temperature resistance. This material is widely used in catalyst carrier, industrial sewage treatment, molten metal filtration, automobile exhaust gas treatment, thermal insulation and sound insulation materials and many other aspects. With the development of science and technology, the application of porous ceramics has expanded to the field of electronics, environmental protection, biochemistry, medical materials and aviation.
随着信息科技产业和电子、电力相关工业迅猛发展,具有高介电常数和低介电损耗的电子陶瓷材料,成为了行业关注的热点。此类材料主要应用于大功率电容器的生产,因而要求其具有重量轻、储能密度高、稳定性强的特点,这就要求材料具有密度小、介电常数大的特性。2000年左右,科学家发现了CaCu3Ti4O12(简称CCTO)材料,这种材料具有非常高的介电常数、较低的损耗和较高的热稳定性,引起了人们的广泛关注。其良好的综合性能,使其有望在高密度能量存储、高介电电容器等电子陶瓷元器件中获得应用。目前文献中报道的CCTO陶瓷材料制备多采用固相反应法,烧结温度从850℃至1000℃以上,恒温时间从几小时至几十小时不等。固相反应法存在较大的能源浪费,不符合国家可持续发展的战略趋势。CCTO薄膜的制备主要有物理方法(脉冲激光沉积、磁控溅射等)和化学方法(溶胶-凝胶法等)。其中,化学方法的成本低廉,退火温度较低(750℃),工艺步骤较为简单且易于操作,是一种方便高效的制备CCTO薄膜的方法。With the rapid development of the information technology industry and electronics and power-related industries, electronic ceramic materials with high dielectric constant and low dielectric loss have become the focus of the industry. This type of material is mainly used in the production of high-power capacitors, so it is required to have the characteristics of light weight, high energy storage density and strong stability, which requires the material to have the characteristics of low density and large dielectric constant. Around 2000, scientists discovered CaCu 3 Ti 4 O 12 (referred to as CCTO) material, which has a very high dielectric constant, low loss and high thermal stability, which has attracted widespread attention. Its good comprehensive properties make it expected to be used in electronic ceramic components such as high-density energy storage and high-dielectric capacitors. At present, the preparation of CCTO ceramic materials reported in the literature mostly adopts the solid-phase reaction method. The solid-phase reaction method has a large energy waste, which is not in line with the strategic trend of national sustainable development. The preparation of CCTO films mainly includes physical methods (pulsed laser deposition, magnetron sputtering, etc.) and chemical methods (sol-gel method, etc.). Among them, the chemical method has low cost, low annealing temperature (750°C), simple process steps and easy operation, which is a convenient and efficient method for preparing CCTO thin films.
虽然CCTO具有高的介电常数,可满足高密度能量存储的需求,但上述方法制备的CCTO材料均为致密的多晶陶瓷,表面形貌并无明显的特殊结构,无法满足器件/设备重量轻、密度小的要求。而目前多孔薄膜的制备,大多采用模板或有机聚合物小球填充的方法,需要采用腐蚀或烧结等工艺环节去除模板及填充物,增加了工艺的复杂程度。Although CCTO has a high dielectric constant and can meet the needs of high-density energy storage, the CCTO materials prepared by the above methods are all dense polycrystalline ceramics, and the surface morphology has no obvious special structure, which cannot meet the light weight of devices/equipment. , The requirement of low density. At present, the preparation of porous films mostly adopts the method of filling with templates or organic polymer balls, and it is necessary to remove the templates and fillers by etching or sintering, which increases the complexity of the process.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对现有技术中存在的问题,提出一种无需模板或填充物,即可制备出表面呈现多孔形貌的钛酸铜钙薄膜材料的方法。The purpose of the present invention is to solve the problems existing in the prior art, and propose a method for preparing a copper-calcium titanate thin film material with porous morphology on the surface without template or filler.
为实现上述目的,本发明采用的具体技术方案如下:For achieving the above object, the concrete technical scheme adopted in the present invention is as follows:
a、通过物理或化学方法在衬底上覆盖一层镍酸镧LaNiO3缓冲层,该缓冲层厚度10~30nm;a. Cover a layer of lanthanum nickelate LaNiO 3 buffer layer on the substrate by physical or chemical methods, and the thickness of the buffer layer is 10-30 nm;
b、钛酸铜钙前驱体溶液的配置b. Configuration of calcium copper titanate precursor solution
取硝酸铜Cu(NO3)2、硝酸钙Ca(NO3)2固体按摩尔比为3:1的比例溶入乙二醇甲醚中,在30~80℃ 水浴中加热搅拌1~6小时,使之形成均质溶液;再按照Ca:Ti原子摩尔比1:4的比例量取钛酸丁酯和相同摩尔数的乙酰丙酮加入溶液,在30~80℃水浴中搅拌加热1~8小时,使之形成均质溶液,最终配成浓度0.01~0.1mol/L的钛酸铜钙前驱体溶液;Dissolve copper nitrate Cu(NO 3 ) 2 and calcium nitrate Ca(NO 3 ) 2 into ethylene glycol methyl ether in a molar ratio of 3:1, and heat and stir in a water bath at 30~80℃ for 1~6 hours to form a homogeneous solution; then measure butyl titanate and the same moles of acetylacetone according to the ratio of Ca:Ti atomic molar ratio of 1:4, add the solution, stir and heat in a water bath at 30 to 80 ° C for 1 to 8 hours , to form a homogeneous solution, and finally prepare a calcium copper titanate precursor solution with a concentration of 0.01 to 0.1 mol/L;
c、制备多孔钛酸铜钙薄膜c. Preparation of porous calcium copper titanate film
采用旋转涂膜或提拉涂膜等方式,在带有镍酸镧缓冲层的衬底上涂覆钛酸铜钙前驱体溶液,获得钛酸铜钙湿膜;在快速退火炉中进行三段式热处理:第一段,温度140~200℃ 时长180~360秒;第二段,温度360~420℃ 时长180~360秒;第三段,温度650~850℃时长180~600秒,获得一层所述多孔钛酸铜钙薄膜,重复所述涂覆-热处理过程,获得多层钛酸铜钙多孔薄膜;其孔径范围在40~200nm之间。The copper calcium titanate precursor solution is coated on the substrate with the lanthanum nickelate buffer layer by means of spin coating or pulling coating to obtain a copper calcium titanate wet film; three stages are carried out in a rapid annealing furnace Type heat treatment: the first stage, the temperature is 140~200℃, the duration is 180~360 seconds; the second stage, the temperature is 360~420℃, the duration is 180~360 seconds; The porous calcium copper titanate film is layered, and the coating-heat treatment process is repeated to obtain a multilayer copper calcium titanate porous film;
与现有技术相比,本发明的特点在于:(1)所获得的钛酸铜钙薄膜为多孔结构;(2)在钛酸铜钙薄膜生长过程中无需模板或填充物;(3)多孔钛酸铜钙薄膜的孔径可调控。Compared with the prior art, the present invention is characterized in that: (1) the obtained calcium copper titanate film has a porous structure; (2) no template or filler is required during the growth process of the calcium copper titanate film; (3) porous The pore size of calcium copper titanate films can be adjusted.
附图说明Description of drawings
图1为实施例1的镍酸镧缓冲层表面的AFM图;Fig. 1 is the AFM image of the surface of the lanthanum nickelate buffer layer of embodiment 1;
图2为实施例1的多孔钛酸铜钙薄膜的AFM图;2 is an AFM image of the porous calcium copper titanate film of Example 1;
图3为图1所示AFM图的高度标尺图;Fig. 3 is the height scale diagram of the AFM diagram shown in Fig. 1;
图4为实施例1的多孔钛酸铜钙薄膜的截面曲线图。FIG. 4 is a cross-sectional graph of the porous calcium copper titanate thin film of Example 1. FIG.
具体实施方式Detailed ways
实施例1Example 1
a、衬底的选择和清洗a. Substrate selection and cleaning
采用<100>重掺硅衬底,衬底用乙醇和去离子水超声处理20分钟,再放入快速热处理装置,进行二段退火:第一段,温度200℃ 时长200s ;第二段,温度400℃时长200s。A <100> heavily doped silicon substrate was used, the substrate was ultrasonically treated with ethanol and deionized water for 20 minutes, and then placed in a rapid heat treatment device for two-stage annealing: the first stage, the temperature was 200 °C for 200s; the second stage, the temperature 400℃ for 200s.
b、镍酸镧缓冲层制备b. Preparation of lanthanum nickelate buffer layer
称取硝酸镧La(NO3)3·6H2O固体3.2克,按照La:Ni原子摩尔比1:1的比例称取乙酸镍C4H6O4Ni·4H2O固体,加入乙醇溶剂,在40℃ 水浴中搅拌加热3小时左右,获得浓度0.1mol/L的镍酸镧均质溶液。静置一段时间,无沉淀即可使用。Weigh 3.2 grams of lanthanum nitrate La(NO 3 ) 3 .6H 2 O solid, and weigh nickel acetate C 4 H 6 O 4 Ni 4H 2 O solid according to the ratio of La:Ni atomic molar ratio of 1:1, add ethanol solvent , stirred and heated in a 40° C. water bath for about 3 hours to obtain a homogeneous solution of lanthanum nickelate with a concentration of 0.1 mol/L. Let it stand for a while, and it can be used without precipitation.
将洗净的硅衬底置于匀胶机中,设置转速4000转/分钟,采用上述镍酸镧溶液在硅衬底上涂覆一层镍酸镧湿膜;放入快速热处理装置进行三段热处理:第一段,温度180℃ 时长240秒;第二段,温度380℃ 时长240秒;第三段,温度700℃ 时长300秒,即可生长一层厚度约为10纳米的镍酸镧缓冲层。从附图1可见,镍酸镧表面平整,不存在明显的孔洞。The cleaned silicon substrate was placed in a glue homogenizer, the rotational speed was set at 4000 rpm, and the above-mentioned lanthanum nickelate solution was used to coat a layer of lanthanum nickelate wet film on the silicon substrate; put into a rapid heat treatment device for three stages. Heat treatment: the first stage, the temperature is 180°C for 240 seconds; the second stage, the temperature is 380°C for 240 seconds; the third stage, the temperature is 700°C for 300 seconds, a layer of lanthanum nickelate buffer with a thickness of about 10 nanometers can be grown Floor. It can be seen from Fig. 1 that the surface of lanthanum nickelate is smooth, and there are no obvious holes.
c、钛酸铜钙前驱体溶液的配置c. Configuration of calcium copper titanate precursor solution
分别称取硝酸铜Cu(NO3)2和硝酸钙Ca(NO3)2固体0.3542克和1.0872克溶入乙二醇甲醚溶剂,在40℃ 水浴中加热搅拌1小时左右,使之形成均质溶液。再量取钛酸丁酯和乙酰丙酮各0.9毫升加入溶液,在40℃ 水浴中搅拌加热2小时左右,使之形成均质溶液,最终配成浓度0.05mol/L的钛酸铜钙溶液。Weigh copper nitrate Cu(NO 3 ) 2 and calcium nitrate Ca(NO 3 ) 2 solids 0.3542 g and 1.0872 g respectively, dissolve them in ethylene glycol methyl ether solvent, heat and stir them in a water bath at 40°C for about 1 hour to make them uniform. quality solution. Then add 0.9 ml of butyl titanate and acetylacetone into the solution, stir and heat in a 40°C water bath for about 2 hours to form a homogeneous solution, and finally prepare a calcium copper titanate solution with a concentration of 0.05mol/L.
d、制备多孔钛酸铜钙薄膜d. Preparation of porous calcium copper titanate film
将带有镍酸镧缓冲层的硅片放置在匀胶机上,设定转速4000r/min,时间20秒,涂覆钛酸铜钙溶液,获得钛酸铜钙湿膜。在快速退火炉中进行三段式热处理:第一段,温度180℃ 时长240秒;第二段,温度380℃ 时长240秒;第三段,温度700℃ 时长300秒,获得一层钛酸铜钙多孔薄膜,重复上述涂覆-热处理过程,获得两层钛酸铜钙多孔薄膜(见附图2),厚度约40纳米,最大孔径约120纳米(见附图4)。The silicon wafer with the lanthanum nickelate buffer layer was placed on the glue spinner, the speed was set to 4000r/min, the time was 20 seconds, and the calcium copper titanate solution was coated to obtain a calcium copper titanate wet film. A three-stage heat treatment is performed in a rapid annealing furnace: the first stage, the temperature is 180 °C for 240 seconds; the second stage, the temperature is 380 °C for 240 seconds; the third stage, the temperature is 700 °C for 300 seconds, to obtain a layer of copper titanate For the calcium porous film, repeat the above coating-heat treatment process to obtain a two-layer calcium copper titanate porous film (see Figure 2) with a thickness of about 40 nanometers and a maximum pore size of about 120 nanometers (see Figure 4).
实施例2Example 2
a、衬底的选择和清洗a. Substrate selection and cleaning
采用石英玻璃作为衬底。衬底用乙醇和去离子水超声处理20分钟,用高纯氮气吹干。Quartz glass was used as the substrate. The substrates were sonicated with ethanol and deionized water for 20 min, and blown dry with high-purity nitrogen.
b、镍酸镧缓冲层制备b. Preparation of lanthanum nickelate buffer layer
将清洗好的石英玻璃衬底固定在脉冲激光沉积系统的样品托盘上。沉积腔抽真空至10-5Pa以下;通入纯度不低于99.999%的氧气,腔体气压维持在5Pa;样品托盘加热至700oC;脉冲激光烧蚀镍酸镧靶材,激光频率5Hz;激光关闭后,腔体氧气压提升至100Pa,保温30分钟,得到厚度约10纳米的镍酸镧缓冲层。Fix the cleaned quartz glass substrate on the sample tray of the pulsed laser deposition system. The deposition chamber was evacuated to below 10 -5 Pa; oxygen with a purity of not less than 99.999% was introduced, and the pressure of the chamber was maintained at 5 Pa; the sample tray was heated to 700 o C; the lanthanum nickelate target was ablated by pulsed laser, and the laser frequency was 5Hz ; After the laser is turned off, the oxygen pressure in the cavity is increased to 100Pa, and the temperature is kept for 30 minutes to obtain a lanthanum nickelate buffer layer with a thickness of about 10 nanometers.
c、钛酸铜钙前驱体溶液的配置c. Configuration of calcium copper titanate precursor solution
将硝酸钙Ca(NO3)2、硝酸铜Cu(NO3)2按Ca:Cu原子摩尔比1:3溶入乙二醇甲醚中,加热搅拌使之形成均质溶液。再按照Ca:Ti原子摩尔比1:4量取钛酸丁酯和等量的乙酰丙酮加入溶液,在40℃ 水浴中搅拌加热2小时左右,使之形成均质溶液,最终配成浓度0.05mol/L的钛酸铜钙前驱体溶液。Calcium nitrate Ca(NO 3 ) 2 and copper nitrate Cu(NO 3 ) 2 were dissolved in ethylene glycol methyl ether at a Ca:Cu atomic molar ratio of 1:3, and heated and stirred to form a homogeneous solution. Then measure butyl titanate and an equal amount of acetylacetone according to the Ca:Ti atomic molar ratio of 1:4 and add it to the solution, stir and heat it in a water bath at 40°C for about 2 hours to form a homogeneous solution, and finally make up to a concentration of 0.05mol /L of calcium copper titanate precursor solution.
d、制备多孔钛酸铜钙薄膜d. Preparation of porous calcium copper titanate film
将带有镍酸镧缓冲层的衬底放置在匀胶机上,设定转速6000r/min,匀胶时间20秒,涂覆钛酸铜钙溶液,获得钛酸铜钙湿膜。在快速退火炉中进行三段方式热处理:第一段,温度180℃ 时长240秒;第二段,温度380℃ 时长240秒;第三段,温度750℃ 时长300秒,获得一层钛酸铜钙多孔薄膜,重复上述涂覆-热处理过程,获得多层钛酸铜钙多孔薄膜。The substrate with the lanthanum nickelate buffer layer was placed on the glue-spraying machine, the rotation speed was set at 6000 r/min, the glue-spreading time was 20 seconds, and the calcium copper titanate solution was coated to obtain a calcium copper titanate wet film. A three-stage heat treatment is performed in a rapid annealing furnace: the first stage, the temperature is 180 °C for 240 seconds; the second stage, the temperature is 380 °C for 240 seconds; the third stage, the temperature is 750 °C for 300 seconds, a layer of copper titanate is obtained For the calcium porous film, the above coating-heat treatment process is repeated to obtain a multilayer copper calcium titanate porous film.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710896396.6A CN107540402B (en) | 2017-09-28 | 2017-09-28 | Preparation method of porous copper calcium titanate film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710896396.6A CN107540402B (en) | 2017-09-28 | 2017-09-28 | Preparation method of porous copper calcium titanate film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107540402A CN107540402A (en) | 2018-01-05 |
CN107540402B true CN107540402B (en) | 2020-08-25 |
Family
ID=60964832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710896396.6A Expired - Fee Related CN107540402B (en) | 2017-09-28 | 2017-09-28 | Preparation method of porous copper calcium titanate film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107540402B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3656889B1 (en) * | 2018-10-08 | 2022-06-01 | Shenzhen Goodix Technology Co., Ltd. | Method for preparing copper calcium titanate thin film |
CN109748580A (en) * | 2019-03-15 | 2019-05-14 | 上海朗研光电科技有限公司 | A method for efficient synthesis of giant dielectric constant materials |
-
2017
- 2017-09-28 CN CN201710896396.6A patent/CN107540402B/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Preparation and properties of CaCu3Ti4O12 thin film grown on LaNiO3-coated silicon by sol-gel process;Y.W. Li等;《Journal of Crystal Growth》;20071113;第310卷;第378-381页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107540402A (en) | 2018-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103011817B (en) | Preparation method of yttrium-silicon-oxygen porous high-temperature ceramic material | |
CN103265018B (en) | A kind of dielectric base is directly prepared the method for Graphene | |
CN102400109A (en) | Method for growing large area of layer-number-controllable graphene at low temperature through chemical vapor deposition (CVD) method by using polystyrene solid state carbon source | |
CN103866256B (en) | Preparation method of metal oxide-porous nano films (MO-PNFs) | |
CN104649259A (en) | Large monocrystal graphene and preparation method thereof | |
CN104193316B (en) | Yttrium iron garnet film and preparation method thereof | |
CN105800602B (en) | Copper particle is remotely catalyzed the method for directly growing graphene on an insulating substrate | |
CN102383095A (en) | Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction | |
CN104498897B (en) | A kind of preparation method of carborundum films | |
CN107540402B (en) | Preparation method of porous copper calcium titanate film | |
CN108704491B (en) | Method for preparing layered metal organic framework film by vapor gel method | |
CN103739009A (en) | Method for preparing calcium copper titanate film by virtue of sol-gel method | |
CN102294179B (en) | Preparation method of inorganic mesoporous membrane | |
CN103695872B (en) | A kind of low-dielectric loss CaCu3Ti4O12The preparation method of thin film | |
CN113121221B (en) | Preparation method of high-dielectric-property calcium copper titanate epitaxial film | |
JP4912081B2 (en) | Method for forming dielectric film having ABOx type perovskite crystal structure | |
CN104692444B (en) | A kind of method preparing ceria nano-crystalline film | |
Li et al. | Preparation, structure and dielectric properties of substrate-free BaTiO3 thin films by sol–gel method | |
CN105734541B (en) | A kind of method that high-temperature superconducting thin film transition zone is prepared in alpha-alumina crystals substrate | |
CN106645077A (en) | A preparing method of an SERS active substrate having a 'hot spot' dimension of less than 5 nm based on a novel high- and low-temperature counterboring process with a step core drill | |
CN103572370B (en) | A kind of ytterbium acid bismuth single crystal epitaxial film and preparation method thereof | |
CN102229265B (en) | Barium strontium titanate multilayered film, and preparation method thereof | |
CN102241526B (en) | Preparation method of high temperature superconductive coating conductor buffer layer | |
CN110498615A (en) | A method for preparing dense CuO thin films using sol-gel spin coating method | |
JP2007055846A (en) | METHOD OF FORMING DIELECTRIC FILM HAVING ABOx TYPE PEROVSKITE CRYSTAL STRUCTURE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200825 |