CN107526891A - A kind of polymer flooding macropore oil reservoir well test analysis method - Google Patents

A kind of polymer flooding macropore oil reservoir well test analysis method Download PDF

Info

Publication number
CN107526891A
CN107526891A CN201710735830.2A CN201710735830A CN107526891A CN 107526891 A CN107526891 A CN 107526891A CN 201710735830 A CN201710735830 A CN 201710735830A CN 107526891 A CN107526891 A CN 107526891A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
macropore
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710735830.2A
Other languages
Chinese (zh)
Other versions
CN107526891B (en
Inventor
康晓东
张健
曾杨
唐恩高
谢晓庆
石爻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Center of CNOOC China Ltd
CNOOC China Ltd
Original Assignee
Beijing Research Center of CNOOC China Ltd
CNOOC China Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Center of CNOOC China Ltd, CNOOC China Ltd filed Critical Beijing Research Center of CNOOC China Ltd
Priority to CN201710735830.2A priority Critical patent/CN107526891B/en
Publication of CN107526891A publication Critical patent/CN107526891A/en
Application granted granted Critical
Publication of CN107526891B publication Critical patent/CN107526891B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Abstract

The invention discloses a kind of polymer flooding macropore oil reservoir well test analysis method, it is characterised in that:It comprises the following steps:1) according to polymer flooding macropore characteristics of reservoirs, polymer flooding macropore physical models of reservoir is established;2) according to the polymer flooding macropore physical models of reservoir obtained in step 1), polymer flooding macropore reservoir mathematical model is determined;3) use finite difference method solution procedure 2) in obtain polymer flooding macropore reservoir mathematical model, obtain the numerical solution of bottom pressure;4) relation that changed with time to pressure carries out nondimensionalization, draws polymer flooding macropore oil reservoir typical curve theory plate;5) the polymer flooding macropore oil reservoir typical curve theory plate obtained in step 4) is fitted with oil field measured data curve, obtains equivalent width, the Permeability Parameters of macropore.

Description

A kind of polymer flooding macropore oil reservoir well test analysis method
Technical field
The present invention relates to a kind of polymer flooding macropore oil reservoir well test analysis method, belong to Well Test Technology field.
Background technology
In long-term injecting water development process, oil reservoir pore structure is varied widely marine sandstone oil reservoir, due to Reservoir permeability increases, and pore throat radius increase, high infiltration strip and special high permeable strip, i.e. macropore is formed easily in reservoir.Greatly The presence in duct causes interlayer contradiction to aggravate, and the later stage takes the polymer for improving the injection of recovery ratio means, poorly efficient along macropore Or inefficient cycle makes other positions in reservoir be difficult to be imitated, and has a strong impact on oil displacement efficiency, causes remaining oil saturation in plane Difference is obvious, and polymer flooding development effectiveness is substantially deteriorated.Therefore, the identification of polymer flooding macropore oil reservoir and determine it in oil Distribution situation in Tibetan, harvested for taking corresponding measure to block macropore, improving polymer flooding effect and improve Rate is significant.
At present, the Main Means for identifying macropore are well test data identification, production performance observation, tracer monitoring, well logging Data identifies.And development parameters most sensitive in macropore identification process are exactly yield and pressure, led to using pressure fall-off test data Cross well testing means and judge the existing correlative study of the presence of macropore.Shi Yougang, Shang Zhiying use wellhead of water injection well pressure drop double-log Curve establishes to diagnose the presence of macropore and macropore water-drive pool Well Testing Theory model be present.Yang Shirong is tried using pressure drop Well test method, the situation of change of reservoir permeability is reflected by the feature of pressure drop double logarithmic curve after water filling.Gu Jianwei is proposed A kind of injection well radial direction model for considering macropore and being intercoupled with non-macropore region, is changed by injection well bottom pressure Feature judges the development area and development multiple of macropore.Liu Hong is established excellent by analyzing dominant flowing path grown form Gesture seepage channel well test model.Li Chengyong establishes asymmetric dominant flowing path well test analysis mathematics on the basis of Shi Yougang Model.But the method that they establish only is adapted to the identification of Water injected reservoir macropore, do not study noting poly- oil reservoir.
The content of the invention
In view of the above-mentioned problems, it is an object of the invention to provide a kind of polymer flooding macropore oil reservoir well test analysis method, should Method can explain to oil field measured data exactly, obtain the relevant parameter of macropore, be provided for the closure of macropore Data support that there is stronger filed application to be worth.
To achieve the above object, the present invention takes following technical scheme:A kind of polymer flooding macropore oil reservoir well test analysis Method, it is characterised in that it comprises the following steps:
1) according to polymer flooding macropore characteristics of reservoirs, polymer flooding macropore physical models of reservoir is established;
2) according to the polymer flooding macropore physical models of reservoir obtained in step 1), polymer flooding macropore oil reservoir is determined Mathematical modeling;
3) use finite difference method solution procedure 2) in obtain polymer flooding macropore reservoir mathematical model, obtain well The numerical solution of bottom pressure;
4) relation that changed with time to pressure carries out nondimensionalization, draws polymer flooding macropore oil reservoir typical curve reason By plate;
5) it is the polymer flooding macropore oil reservoir typical curve theory plate obtained in step 4) and oil field measured data is bent Line is fitted, and obtains the equivalent width and Permeability Parameters of macropore.
For the physical model established in the step 1) using pit shaft as symmetrical centre, two macropores are symmetrically distributed in well Cylinder both sides;The polymer flooding macropore characteristics of reservoirs in the step 1) includes:Reservoir-level, uniform thickness, homogeneous and respectively to The same sex;The equivalent development length of macropore is xf;Macropore permeability is Kf, reservoir permeability K, macropore permeability with oil The ratio between layer permeability is β, KfMuch larger than K;The thickness of macropore is core intersection H, equivalent width Wf;There is stream along macropore Body exchanges, and pressure drop be present.
The step 2) determines that the detailed process of polymer flooding macropore reservoir mathematical model is as follows:
1. determine the transient seepage flow differential equation of single-phase micro- compressible liquid:
In formula, P is strata pressure;K is reservoir permeability;μaFor the initial viscosity of polymer;CmCompression system is integrated for oil reservoir Number;φmFor oil reservoir porosity;T is fluid flow time;X is abscissa direction away from well centre distance;Y be ordinate direction away from Well centre distance;
2. determine primary condition equation, internal boundary condition equation and the external boundary of polymer flooding macropore reservoir mathematical model Conditional equation:
Wherein, the primary condition equation of polymer flooding macropore reservoir mathematical model is:
P(x,y,t)|T=0=P0 (2)
In formula, P0For original formation pressure;
The internal boundary condition equation of polymer flooding macropore reservoir mathematical model is:
In formula, H is core intersection;Q is well yield;C is bottom-hole storage coefficient;B is volume factor;S is reservoir epidermis system Number;PwfFor flowing bottomhole pressure (FBHP);PwFor the pressure at the borehole wall;rwFor wellbore radius;reFor external boundary radius;x0、y0Respectively oil well well The transverse and longitudinal coordinate at bottom center;Δ x, Δ y difference infinitesimals;E is constant, e=2.7182818;
The Outer Boundary Conditions equation of polymer flooding macropore reservoir mathematical model is:
In the step 3), using finite difference method solution procedure 2) in obtain polymer flooding macropore oil reservoir mathematics The detailed process of model is as follows:
1. mesh generation is carried out in room and time to the polymer flooding macropore physical models of reservoir in step 1);
2. the transient seepage flow differential equation, primary condition equation, internal boundary condition equation and Outer Boundary Conditions equation are entered Row difference discretization, i.e., difference discretization is carried out to (1)~(5) formula;
Wherein, the seepage flow diffusion equation after discrete is:
In formula, i, j are to the discrete of space;N is discrete to the time;Δ t is time step, and φ is porosity, works as φ Under when being designated as f, i.e. φfFor the porosity of macropore, when being designated as m under φ, i.e. φmFor the porosity of oil reservoir;
Wherein in formula (6)Value come by harmonic average it is true It is fixed, i.e.,:
Gauss-seidel solutions by iterative method equation (6), iterative equation formula are as follows:
In formula, ai,j、bi,j、ci,j、di,j、ei,jAnd gi,jIt is intermediate variable:
ci,j=-di,j-bi,j-ei,j-ai,j-gi,j
gi,j=277.78Hi,jΔxi,jΔyi,jφCt/Δt;
qi,jBe mesh coordinate be (i, j) place well yield, well point grid qi,j=q, non-well point grid qi,j=0;Pi,jIt is The strata pressure at mesh coordinate (i, j) place;
For internal boundary condition, Huiyuan's item processing by well as place grid, because barometric gradient is larger near shaft bottom, Linearization process is made to internal boundary condition difference gridding, obtained:
In formula:μ is viscosity of the polymer in any time;
Outer Boundary Conditions discretization is obtained:
P1,j=Pm,j=Pe(j=1,2 ... k) (13)
Pi,1=Pi,k=Pe(i=1,2 ... m) (14)
In formula, P1,jIt is the strata pressure that mesh coordinate is (1, j) place;Pm,jIt is that the ground that mesh coordinate is (m, j) place is laminated Power;Pi,1It is the strata pressure that mesh coordinate is (i, 1) place;Pi,kIt is the strata pressure that mesh coordinate is (i, k) place;PeFor outside Boundary's pressure;M represents the grid number in i directions, and k represents the grid number in j directions;
Solved for ease of Difference Calculation, the processing equation to barometric gradient is as follows:
3. iterative numerical solution is carried out to above-mentioned DIFFERENCE EQUATIONS, wherein, DIFFERENCE EQUATIONS is transient seepage flow differential side Journey, primary condition, the equation group of boundary condition composition, try to achieve the numerical solution of polymer flooding macropore oil reservoir bottom pressure.
The grid is rectangle or square, when for Rectangular grid when,When for just During square net, re=0.208 Δ x.
The step 4) the relation that changed with time to pressure carries out nondimensionalization, and its Non-di-mensional equation is as follows:
PwDFor polymer flooding macropore oil reservoir bottom pressure nondimensionalization value;CDFor bottom-hole storage coefficient nondimensionalization value; xDFor abscissa nondimensionalization numerical value;yDFor total coordinate nondimensionalization numerical value;tDFor time nondimensionalization numerical value;CfFor macropore System compressibility;CmFor oil reservoir system compressibility;φfFor macropore internal porosity;β is permeability ratio.
The plan of polymer flooding macropore oil reservoir typical curve theory plate and oil field measured data curve in the step 5) Conjunction process is as follows:Basic data is inputted in the polymer flooding macropore oil reservoir theory plate program of establishment first, basic data The porosity of thickness, oil reservoir, the permeability of oil reservoir, system compressibility, skin factor, bottom-hole storage coefficient including oil reservoir, Injection well injection rate, volume factor, aqueous viscosity, polymer initial concentration, original formation pressure, hole diameter, the width of macropore With the permeability of macropore;Then by adjust the permeability of oil reservoir, skin factor, bottom-hole storage coefficient, macropore width And the permeability of macropore, theoretical pressure and theoretical pressure derivative curve is calculated;Then theoretical pressure curve, reason are utilized By the measured data of differential of pressure curve and field pressure, fitting theory pressure curve and real well pressure curve, and theoretical pressure Power derivative curve and real well pressure derivative curve;Width, the Permeability Parameters of macropore are finally obtained according to fitting result.
For the present invention due to taking above technical scheme, it has advantages below:The present invention is by establishing polymer flooding macropore The physical model and mathematical modeling of road oil reservoir, the bottom pressure number of polymer flooding macropore oil reservoir is obtained using Finite Element Difference Method Value solution, draws polymer flooding macropore oil reservoir typical curve theory plate, and polymer flooding macropore oil reservoir typical curve is theoretical Plate is fitted with oil field measured data curve, obtains the parameters such as macropore width, permeability, to be carried out from suitable blocking agent The closure of macropore, improve the raising recovery ratio offer data support of polymer flooding effect.
Brief description of the drawings
Fig. 1 is the overall flow schematic diagram of the present invention;
Fig. 2 is the structural representation that oil reservoir of the present invention simplifies physical model;
The schematic diagram of macropore oil reservoir typical curve plots contrast when Fig. 3 is water drive of the present invention and poly- drive;
Fig. 4 is the schematic diagram of oil reservoir well test analysis typical curve plots under the influence of the different initial polymer concentrations of the present invention;
Fig. 5 is the schematic diagram of oil reservoir well test analysis typical curve plots under the influence of the different permeability ratios of the present invention;
Fig. 6 is the schematic diagram of oil reservoir well test analysis typical curve plots under the different macropore widths affects of the present invention;
Fig. 7 is the schematic diagram of oil reservoir well test analysis theory plate of the present invention and real well test data matched curve.
Embodiment
The present invention is described in detail with reference to the accompanying drawings and examples.
As shown in figure 1, the present invention proposes a kind of polymer flooding macropore oil reservoir well test analysis method, it includes following step Suddenly:
1) according to polymer flooding macropore characteristics of reservoirs, establish polymer flooding macropore physical models of reservoir, the model with Pit shaft is symmetrical centre, and two macropores are symmetrically distributed in pit shaft both sides (as shown in Figure 2);
Wherein, polymer flooding macropore characteristics of reservoirs includes:Reservoir-level, uniform thickness, homogeneous and isotropism;2 macropores Road is symmetrical with pit shaft, and the equivalent development length of macropore is xf;Macropore permeability is Kf, reservoir permeability K, macropore oozes Saturating the ratio between rate and reservoir permeability are β, KfMuch larger than K;The thickness of macropore is core intersection H, equivalent width Wf;Along big There is fluid communication in duct, pressure drop be present.
2) according to the polymer flooding macropore physical models of reservoir obtained in step 1), polymer flooding macropore oil reservoir is determined Mathematical modeling, detailed process are as follows:
1. determine the transient seepage flow differential equation of single-phase micro- compressible liquid:
In formula, P is strata pressure;K is reservoir permeability;μaFor the initial viscosity of polymer;CmCompression system is integrated for oil reservoir Number;φmFor oil reservoir porosity;T is fluid flow time;X is abscissa direction away from well centre distance;Y be ordinate direction away from Well centre distance.
2. determine primary condition equation, internal boundary condition equation and the external boundary of polymer flooding macropore reservoir mathematical model Conditional equation:
Wherein, the primary condition equation of polymer flooding macropore reservoir mathematical model is:
P(x,y,t)|T=0=P0 (2)
In formula, P0For original formation pressure;
The internal boundary condition equation of polymer flooding macropore reservoir mathematical model is:
In formula, H is core intersection;Q is well yield;C is bottom-hole storage coefficient;B is volume factor;S is reservoir epidermis system Number;PwfFor flowing bottomhole pressure (FBHP);PwFor the pressure at the borehole wall;rwFor wellbore radius;reFor external boundary radius;x0、y0Respectively oil well well The transverse and longitudinal coordinate at bottom center;Δ x, Δ y are difference infinitesimal;E is constant, e=2.7182818;
The Outer Boundary Conditions equation of polymer flooding macropore reservoir mathematical model is:
3) use finite difference method solution procedure 2) in obtain polymer flooding macropore reservoir mathematical model, obtain well The numerical solution of bottom pressure, finite difference method detailed process are as follows:
1. mesh generation is carried out in room and time to the polymer flooding macropore physical models of reservoir in step 1);
2. the transient seepage flow differential equation, primary condition equation, internal boundary condition equation and Outer Boundary Conditions equation are entered Row difference discretization, i.e., difference discretization is carried out to (1)~(5) formula:
Wherein, the seepage flow diffusion equation after discrete is:
In formula, i, j are to the discrete of space;N is discrete to the time;Δ t is time step;φ is porosity, works as φ Under when being designated as f, i.e. φfFor the porosity of macropore, when being designated as m under φ, i.e. φmFor the porosity of oil reservoir;
WhereinValue determined by harmonic average, i.e.,:
Gauss-seidel solutions by iterative method equation (6), iterative equation formula are as follows:
In formula, ai,j、bi,j、ci,j、di,j、ei,jAnd gi,jIt is intermediate variable:
ci,j=-di,j-bi,j-ei,j-ai,j-gi,j
gi,j=277.78Hi,jΔxi,jΔyi,jφCt/Δt;
qi,jBe mesh coordinate be (i, j) place well yield, well point grid qi,j=q, non-well point grid qi,j=0;Pi,jIt is The strata pressure at mesh coordinate (i, j) place.
For internal boundary condition, Huiyuan's item processing by well as place grid, because barometric gradient is larger near shaft bottom, Linearization process is made to internal boundary condition difference gridding, obtained:
In formula:μ is viscosity of the polymer in any time;For Rectangular gridIt is right In square net re=0.208 Δ x.
Outer Boundary Conditions discretization is obtained:
P1,j=Pm,j=Pe(j=1,2 ... k) (13)
Pi,1=Pi,k=Pe(i=1,2 ... m) (14)
In formula, P1,jIt is the strata pressure that mesh coordinate is (1, j) place;Pm,jIt is that the ground that mesh coordinate is (m, j) place is laminated Power;Pi,1It is the strata pressure that mesh coordinate is (i, 1) place;Pi,kIt is the strata pressure that mesh coordinate is (i, k) place;PeFor outside Boundary's pressure;M represents the grid number in i directions;K represents the grid number in j directions;
Solved for ease of Difference Calculation, the processing equation to barometric gradient is as follows:
3. iterative numerical solution is carried out to above-mentioned DIFFERENCE EQUATIONS, wherein, DIFFERENCE EQUATIONS is transient seepage flow differential side Journey, primary condition, the equation group of boundary condition composition, try to achieve the numerical solution of polymer flooding macropore oil reservoir bottom pressure.
4) relation that changed with time to pressure carries out nondimensionalization, draws polymer flooding macropore oil reservoir typical curve reason It is as follows by plate, dimensionless equation:
PwDFor polymer flooding macropore oil reservoir bottom pressure nondimensionalization value;CDFor bottom-hole storage coefficient nondimensionalization value; xDFor abscissa nondimensionalization numerical value;yDFor total coordinate nondimensionalization numerical value;tDFor time nondimensionalization numerical value;CfFor macropore System compressibility;CmFor oil reservoir system compressibility;φfFor macropore internal porosity;β is permeability ratio;
As shown in figure 3, it is water drive and the schematic diagram of macropore oil reservoir typical curve plots contrast during poly- drive;As shown in figure 4, For the schematic diagram of oil reservoir well test analysis typical curve plots under the influence of different initial polymer concentrations;As shown in figure 5, oozed for difference The schematic diagram of oil reservoir well test analysis typical curve plots under saturating rate ratios affect;As shown in fig. 6, it is different macropore widths affects The schematic diagram of lower oil reservoir well test analysis typical curve plots.
5) it is the polymer flooding macropore oil reservoir typical curve theory plate obtained in step 4) and oil field measured data is bent Line is fitted, you can obtains equivalent width, the Permeability Parameters (being macropore permeability) of macropore, stratum is filled Divide profile control, select the blocking agent of suitable particles size to block macropore, so as to improve polymer flooding effect;
In step 5), basic data is inputted in the polymer flooding macropore oil reservoir theory plate program of establishment first, Basic data includes the thickness of oil reservoir, the porosity of oil reservoir, the permeability of oil reservoir, system compressibility, skin factor, pit shaft storage Collect coefficient, injection well injection rate, volume factor, aqueous viscosity, polymer initial concentration, original formation pressure, hole diameter, macropore Width and macropore permeability, then by adjusting the permeability of oil reservoir, skin factor, bottom-hole storage coefficient, macropore Width and macropore permeability, theoretical pressure and theoretical pressure derivative curve is calculated;Then theoretical pressure is utilized The measured data of curve, theoretical pressure derivative curve and field pressure, fitting theory pressure curve and real well pressure curve, and Theoretical pressure derivative curve and real well pressure derivative curve;The width of macropore is finally obtained according to fitting result, permeability is joined Number, and explanation results are utilized, abundant profile control is carried out to stratum, selects the blocking agent of suitable particles size to block macropore, Recovery ratio is improved so as to improve polymer flooding effect.
Specific embodiment is set forth below:
Embodiment
Instance data is derived from the drop of pressure data of Bohai Sea B oil fields injection well, and the oil reservoir is heterogeneous strong, porosity For 0.31, mean permeability 2000mD, pilot wellgroup is implemented metaideophone from August, 2013 and gathered, and injection of polymer concentration is 1500mg/L, since note is poly-, producing well is shown in that poly- speed is fast, produces poly- concentration height, aqueous to rise soon, notes poly- effect and declines, tentatively Conclude that the well group has macropore.The injection well carried out a pressure fall-off test on March 2nd, 2016.
Well testing solution is carried out to Bohai Sea B oil fields injection well using the polymer flooding macropore oil reservoir well test analysis method Release, oil field measured data and theoretical plate matched curve (as shown in Figure 7) in the present embodiment, model explanation obtains large pore path parameter For:β=4.4, Kf=8850mD, Wf=3.5m.According to explanation results, abundant profile control is carried out to stratum, selects suitable particles size Blocking agent macropore is blocked, the well group is aqueous at present is effectively controlled, and produces poly- concentration and declines.
The various embodiments described above are merely to illustrate the present invention, wherein the structure of each part, connected mode etc. are all can be Change, every equivalents carried out on the basis of technical solution of the present invention and improvement, it should not exclude the present invention's Outside protection domain.

Claims (7)

1. a kind of polymer flooding macropore oil reservoir well test analysis method, it is characterised in that it comprises the following steps:
1) according to polymer flooding macropore characteristics of reservoirs, polymer flooding macropore physical models of reservoir is established;
2) according to the polymer flooding macropore physical models of reservoir obtained in step 1), polymer flooding macropore oil reservoir mathematics is determined Model;
3) use finite difference method solution procedure 2) in obtain polymer flooding macropore reservoir mathematical model, obtain shaft bottom pressure The numerical solution of power;
4) relation that changed with time to pressure carries out nondimensionalization, draws polymer flooding macropore oil reservoir typical curve theoretical diagram Version;
5) the polymer flooding macropore oil reservoir typical curve theory plate obtained in step 4) is entered with oil field measured data curve Row fitting, obtains the equivalent width and Permeability Parameters of macropore.
A kind of 2. polymer flooding macropore oil reservoir well test analysis method as claimed in claim 1, it is characterised in that the step 1) for the physical model established in using pit shaft as symmetrical centre, two macropores are symmetrically distributed in pit shaft both sides;The step 1) the polymer flooding macropore characteristics of reservoirs in includes:Reservoir-level, uniform thickness, homogeneous and isotropism;Macropore etc. Effect development length is xf;Macropore permeability is Kf, reservoir permeability K, the ratio between macropore permeability and reservoir permeability are β, KfMuch larger than K;The thickness of macropore is core intersection H, equivalent width Wf;There is fluid communication along macropore, pressure drop be present.
A kind of 3. polymer flooding macropore oil reservoir well test analysis method as claimed in claim 2, it is characterised in that the step 2) determine that the detailed process of polymer flooding macropore reservoir mathematical model is as follows:
1. determine the transient seepage flow differential equation of single-phase micro- compressible liquid:
<mrow> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <mi>d</mi> <mi>P</mi> <mo>/</mo> <mi>d</mi> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>P</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <mi>d</mi> <mi>P</mi> <mo>/</mo> <mi>d</mi> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>P</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> <msub> <mi>C</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>P</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula, P is strata pressure;K is reservoir permeability;μaFor the initial viscosity of polymer;CmFor oil reservoir system compressibility; φmFor oil reservoir porosity;T is fluid flow time;X is abscissa direction away from well centre distance;Y is ordinate direction away from well Heart distance;
2. determine primary condition equation, internal boundary condition equation and the Outer Boundary Conditions of polymer flooding macropore reservoir mathematical model Equation:
Wherein, the primary condition equation of polymer flooding macropore reservoir mathematical model is:
P(x,y,t)|T=0=P0 (2)
In formula, P0For original formation pressure;
The internal boundary condition equation of polymer flooding macropore reservoir mathematical model is:
<mrow> <mi>B</mi> <mi>q</mi> <mo>=</mo> <mn>24</mn> <mi>C</mi> <mfrac> <mrow> <msub> <mi>dP</mi> <mrow> <mi>w</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mi>K</mi> <mi>H</mi> </mrow> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mfrac> <mrow> <mi>P</mi> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>f</mi> </mrow> </msub> </mrow> <mrow> <mi>l</mi> <mi>n</mi> <mfrac> <msub> <mi>r</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>r</mi> <mi>w</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>S</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mi>w</mi> </msub> <msub> <mo>|</mo> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>y</mi> <mo>=</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>S</mi> <mo>&amp;times;</mo> <mo>(</mo> <mrow> <mi>&amp;Delta;</mi> <mi>x</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>P</mi> <mi>w</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>y</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>P</mi> <mi>w</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>y</mi> <mo>=</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula, H is core intersection;Q is well yield;C is bottom-hole storage coefficient;B is volume factor;S is reservoir skin factor;Pwf For flowing bottomhole pressure (FBHP);PwFor the pressure at the borehole wall;rwFor wellbore radius;reFor external boundary radius;x0、y0Respectively oil well shaft bottom center Transverse and longitudinal coordinate;Δ x, Δ y difference infinitesimals;E is constant, e=2.7182818;
The Outer Boundary Conditions equation of polymer flooding macropore reservoir mathematical model is:
<mrow> <munder> <munder> <mi>lim</mi> <mrow> <mi>x</mi> <mo>&amp;RightArrow;</mo> <mi>&amp;infin;</mi> </mrow> </munder> <mrow> <mi>y</mi> <mo>&amp;RightArrow;</mo> <mi>&amp;infin;</mi> </mrow> </munder> <mi>P</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
A kind of 4. polymer flooding macropore oil reservoir well test analysis method as claimed in claim 3, it is characterised in that:The step 3) in, using finite difference method solution procedure 2) in obtain polymer flooding macropore reservoir mathematical model detailed process such as Under:
1. mesh generation is carried out in room and time to the polymer flooding macropore physical models of reservoir in step 1);
2. it is poor that the transient seepage flow differential equation, primary condition equation, internal boundary condition equation and Outer Boundary Conditions equation are carried out Dispersion is separated, i.e., difference discretization is carried out to (1)~(5) formula;
Wherein, the seepage flow diffusion equation after discrete is:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mfrac> <msubsup> <mi>K</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mfrac> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>K</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mfrac> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mfrac> <msubsup> <mi>K</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mfrac> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>K</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mfrac> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>=</mo> <msub> <mi>&amp;phi;C</mi> <mi>t</mi> </msub> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> </mrow> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
In formula, i, j are to the discrete of space;N is discrete to the time;Δ t is time step, and φ is porosity, when under φ When being designated as f, i.e. φfFor the porosity of macropore, when being designated as m under φ, i.e. φmFor the porosity of oil reservoir;
Wherein in formula (6)Value determined by harmonic average, i.e.,:
<mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> <mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> <mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>j</mi> </msub> </mrow> <mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>j</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>j</mi> </msub> </mrow> <mrow> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mi>j</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Gauss-seidel solutions by iterative method equation (6), iterative equation formula are as follows:
<mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mo>-</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>-</mo> <mn>11.57</mn> <msub> <mi>&amp;mu;Bq</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
In formula, ai,j、bi,j、ci,j、di,j、ei,jAnd gi,jIt is intermediate variable:
<mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>(</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>y</mi> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> <mo>(</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>x</mi> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>;</mo> </mrow>
ci,j=-di,j-bi,j-ei,j-ai,j-gi,j
<mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> <mo>(</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>x</mi> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>(</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mfrac> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow> <mi>y</mi> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>;</mo> </mrow>
gi,j=277.78Hi,jΔxi,jΔyi,jφCt/Δt;
qi,jBe mesh coordinate be (i, j) place well yield, well point grid qi,j=q, non-well point grid qi,j=0;Pi,jIt is grid The strata pressure at coordinate (i, j) place;
For internal boundary condition, Huiyuan's item processing by well as place grid, because barometric gradient is larger near shaft bottom, internally Boundary condition difference gridding makees linearization process, obtains:
<mrow> <msub> <mi>Bq</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0.54</mn> <msub> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>K</mi> <mi>H</mi> </mrow> <mi>&amp;mu;</mi> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>f</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>ln</mi> <mfrac> <msub> <mi>r</mi> <mi>e</mi> </msub> <msub> <mi>r</mi> <mi>w</mi> </msub> </mfrac> <mo>+</mo> <mi>S</mi> </mrow> </mfrac> <mo>-</mo> <mn>24</mn> <mi>C</mi> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>f</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>f</mi> </mrow> <mi>n</mi> </msubsup> </mrow> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In formula:μ is viscosity of the polymer in any time;
Outer Boundary Conditions discretization is obtained:
P1,j=Pm,j=Pe(j=1,2 ... k) (13)
Pi,1=Pi,k=Pe(i=1,2 ... m) (14)
In formula, P1,jIt is the strata pressure that mesh coordinate is (1, j) place;Pm,jIt is the strata pressure that mesh coordinate is (m, j) place; Pi,1It is the strata pressure that mesh coordinate is (i, 1) place;Pi,kIt is the strata pressure that mesh coordinate is (i, k) place;PeFor external boundary Pressure;M represents the grid number in i directions, and k represents the grid number in j directions;
Solved for ease of Difference Calculation, the processing equation to barometric gradient is as follows:
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>P</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mo>|</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mn>0.5</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>+</mo> <mo>|</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mn>0.5</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>P</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mo>|</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mn>0.5</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>+</mo> <mo>|</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>0.5</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;y</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
3. iterative numerical solution is carried out to above-mentioned DIFFERENCE EQUATIONS, wherein, DIFFERENCE EQUATIONS is the transient seepage flow differential equation, just The equation group of beginning condition, boundary condition composition, try to achieve the numerical solution of polymer flooding macropore oil reservoir bottom pressure.
A kind of 5. polymer flooding macropore oil reservoir well test analysis method as claimed in claim 4, it is characterised in that:The grid For rectangle or square, when for Rectangular grid when,When for square net when, re= 0.208Δx。
A kind of 6. polymer flooding macropore oil reservoir well test analysis method as claimed in claim 1, it is characterised in that the step 4) relation that changed with time to pressure carries out nondimensionalization, and its Non-di-mensional equation is as follows:
<mrow> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&amp;pi;</mi> <mi>K</mi> <mi>H</mi> </mrow> <mrow> <mn>1.842</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> <msub> <mi>&amp;mu;</mi> <mi>a</mi> </msub> <mi>B</mi> <mi>q</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>P</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>C</mi> <mi>D</mi> </msub> <mo>=</mo> <mfrac> <mi>C</mi> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> <msub> <mi>C</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>Hr</mi> <mi>w</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>x</mi> <mi>D</mi> </msub> <mo>=</mo> <mfrac> <mi>x</mi> <msub> <mi>r</mi> <mi>w</mi> </msub> </mfrac> <mo>,</mo> <msub> <mi>y</mi> <mi>D</mi> </msub> <mo>=</mo> <mfrac> <mi>y</mi> <msub> <mi>r</mi> <mi>w</mi> </msub> </mfrac> <mo>,</mo> <mi>&amp;beta;</mi> <mo>=</mo> <mfrac> <msub> <mi>K</mi> <mi>f</mi> </msub> <mi>K</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>t</mi> <mi>D</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3.6</mn> <mi>K</mi> <mi>t</mi> </mrow> <mrow> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> <msub> <mi>C</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <msup> <msub> <mi>r</mi> <mi>w</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
PwDFor polymer flooding macropore oil reservoir bottom pressure nondimensionalization value;CDFor bottom-hole storage coefficient nondimensionalization value;xDFor horizontal stroke Coordinate nondimensionalization numerical value;yDFor total coordinate nondimensionalization numerical value;tDFor time nondimensionalization numerical value;CfFor macropore trace integration pressure Contracting coefficient;CmFor oil reservoir system compressibility;φfFor macropore internal porosity;β is permeability ratio.
A kind of 7. polymer flooding macropore oil reservoir well test analysis method as claimed in claim 1, it is characterised in that the step 5) fit procedure of polymer flooding macropore oil reservoir typical curve theory plate and oil field measured data curve is as follows in:First will In the polymer flooding macropore oil reservoir theory plate program of basic data input establishment, basic data includes thickness, the oil of oil reservoir The porosity of layer, permeability, system compressibility, skin factor, bottom-hole storage coefficient, injection well injection rate, the volume of oil reservoir Coefficient, aqueous viscosity, polymer initial concentration, original formation pressure, hole diameter, the permeability of the width of macropore and macropore; Then by adjusting the permeability of oil reservoir, skin factor, bottom-hole storage coefficient, the width of macropore and the infiltration of macropore Rate, theoretical pressure and theoretical pressure derivative curve is calculated;Then using theoretical pressure curve, theoretical pressure derivative curve and The measured data of field pressure, fitting theory pressure curve and real well pressure curve, and theoretical pressure derivative curve and real well Differential of pressure curve;Width, the Permeability Parameters of macropore are finally obtained according to fitting result.
CN201710735830.2A 2017-08-24 2017-08-24 Polymer flooding large-pore oil reservoir well testing analysis method Active CN107526891B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710735830.2A CN107526891B (en) 2017-08-24 2017-08-24 Polymer flooding large-pore oil reservoir well testing analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710735830.2A CN107526891B (en) 2017-08-24 2017-08-24 Polymer flooding large-pore oil reservoir well testing analysis method

Publications (2)

Publication Number Publication Date
CN107526891A true CN107526891A (en) 2017-12-29
CN107526891B CN107526891B (en) 2020-11-10

Family

ID=60682023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710735830.2A Active CN107526891B (en) 2017-08-24 2017-08-24 Polymer flooding large-pore oil reservoir well testing analysis method

Country Status (1)

Country Link
CN (1) CN107526891B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033519A (en) * 2018-06-22 2018-12-18 中国石油天然气股份有限公司 A kind of Well Test Data Analysis Method and device of abnormal high pressure carbonate rock volatile oil reservoir
CN109441415A (en) * 2018-12-19 2019-03-08 克拉玛依新科澳石油天然气技术股份有限公司 The Well Test Data Analysis Method of Polymer Flooding Reservoirs testing well based on disturbance from offset wells
CN110175412A (en) * 2019-05-28 2019-08-27 广东海洋大学 Reservoir Data approximating method, Reservoir Data analysis method and device
CN110486004A (en) * 2018-05-14 2019-11-22 中国石油天然气股份有限公司 Identify the method and device of sandstone oil reservoir water flow predominant pathway
CN110630245A (en) * 2019-09-20 2019-12-31 中国石油集团川庆钻探工程有限公司 Single-well oil drainage area quantitative calculation method based on permeability advantage channel
CN112576243A (en) * 2019-09-30 2021-03-30 中国石油化工股份有限公司 Method for predicting oil and gas reservoir pore blockage caused by suspended matters in injected water
CN114060018A (en) * 2020-08-04 2022-02-18 中国石油天然气股份有限公司 Reservoir dynamic reserve determining method, system, equipment and readable storage medium
CN116562179A (en) * 2023-03-16 2023-08-08 东北石油大学 Semi-resolution method for dynamic characteristics of polymer flooding pressure by considering rheological characteristics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503407A (en) * 2016-12-05 2017-03-15 中海石油(中国)有限公司 There is the well test analysis method and device of the linear water enchroachment (invasion) oil reservoir of part connection tomography
CN106761621A (en) * 2017-02-08 2017-05-31 中海石油(中国)有限公司 A kind of three layers of acquisition methods of channelling oil reservoir well test analysis parameter of polymer flooding
CN107066679A (en) * 2017-03-09 2017-08-18 中海石油(中国)有限公司 One kind is used for the double-deck channelling oil reservoir well test analysis system and method for polymer flooding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503407A (en) * 2016-12-05 2017-03-15 中海石油(中国)有限公司 There is the well test analysis method and device of the linear water enchroachment (invasion) oil reservoir of part connection tomography
CN106761621A (en) * 2017-02-08 2017-05-31 中海石油(中国)有限公司 A kind of three layers of acquisition methods of channelling oil reservoir well test analysis parameter of polymer flooding
CN107066679A (en) * 2017-03-09 2017-08-18 中海石油(中国)有限公司 One kind is used for the double-deck channelling oil reservoir well test analysis system and method for polymer flooding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486004A (en) * 2018-05-14 2019-11-22 中国石油天然气股份有限公司 Identify the method and device of sandstone oil reservoir water flow predominant pathway
CN110486004B (en) * 2018-05-14 2022-05-10 中国石油天然气股份有限公司 Method and device for identifying water flow dominant channel of sandstone reservoir
CN109033519A (en) * 2018-06-22 2018-12-18 中国石油天然气股份有限公司 A kind of Well Test Data Analysis Method and device of abnormal high pressure carbonate rock volatile oil reservoir
CN109441415A (en) * 2018-12-19 2019-03-08 克拉玛依新科澳石油天然气技术股份有限公司 The Well Test Data Analysis Method of Polymer Flooding Reservoirs testing well based on disturbance from offset wells
CN109441415B (en) * 2018-12-19 2021-03-30 中国石油天然气股份有限公司 Well testing interpretation method of polymer flooding oil reservoir test well based on adjacent well interference
CN110175412A (en) * 2019-05-28 2019-08-27 广东海洋大学 Reservoir Data approximating method, Reservoir Data analysis method and device
CN110175412B (en) * 2019-05-28 2023-03-28 广东海洋大学 Oil reservoir data fitting method, oil reservoir data analysis method and device
CN110630245A (en) * 2019-09-20 2019-12-31 中国石油集团川庆钻探工程有限公司 Single-well oil drainage area quantitative calculation method based on permeability advantage channel
CN112576243A (en) * 2019-09-30 2021-03-30 中国石油化工股份有限公司 Method for predicting oil and gas reservoir pore blockage caused by suspended matters in injected water
CN114060018A (en) * 2020-08-04 2022-02-18 中国石油天然气股份有限公司 Reservoir dynamic reserve determining method, system, equipment and readable storage medium
CN116562179A (en) * 2023-03-16 2023-08-08 东北石油大学 Semi-resolution method for dynamic characteristics of polymer flooding pressure by considering rheological characteristics
CN116562179B (en) * 2023-03-16 2024-01-09 东北石油大学 Semi-resolution method for dynamic characteristics of polymer flooding pressure by considering rheological characteristics

Also Published As

Publication number Publication date
CN107526891B (en) 2020-11-10

Similar Documents

Publication Publication Date Title
CN107526891A (en) A kind of polymer flooding macropore oil reservoir well test analysis method
CN104533370B (en) Pressure break horizontal well oil reservoir, crack, pit shaft coupled model method
CN103867184B (en) A kind of gas well critical liquid carrying flow rate determines method and device
CN105089582B (en) Numerical reservoir simulation method and device based on downhole flow control device
CN107575207A (en) A kind of method predicted oilfield water flooding and involve radius
CN107045671A (en) Water-producing gas well hydrops Risk Forecast Method
CN111502593B (en) Method for determining dosage of temporary plugging diversion fracturing phase change temporary plugging agent in crack
CN106761621B (en) A kind of acquisition methods of three layers of channelling oil reservoir well test analysis parameter of polymer flooding
CN110593865B (en) Well testing interpretation method for characteristic parameters of oil reservoir fracture hole
CN105317407B (en) A kind of development approach of ultra-high water cut stage Untabulated reservoirs
CN108104801A (en) A kind of horizontal well tracer producing profile testing tubing string and method
CN104504230A (en) Estimation method for recovery ratio and limit drainage radius of low-permeability gas well
CN107762498A (en) A kind of pressure analysis method in the area of tight gas reservoir straight well volume fracturing two
CN102953726A (en) Method and device for water drive oilfield advantage channel recognition
CN103806904B (en) The computational methods of the non-homogeneous Damage length of sandstone reservoir
CN109577929A (en) A kind of Oil in Super-low Permeability compact oil reservoir horizontal well establishes the quantitative evaluation method of effective displacement
CN105205318B (en) The method and apparatus for determining the total output of multilayer multistage horizontal fracture producing well
CN103161436B (en) A kind of heavy crude heat extraction horizontal well Well Test Data Analysis Method
CN103643928B (en) A kind of depth profile control method step by step based on pressure field and velocity field distribution
CN104406895A (en) Novel coal bed permeability testing device and method
CN104989385B (en) The HTHP oil gas straight well perforating parameter optimization method calculated based on skin factor
CN107218024A (en) The method of adjustment of multilayer low permeability sandstone reservoir high water-cut stage rhombic inverted nini-spot well pattern
CN104912537A (en) Well network deployment method of giant thick fractured and buried hill reservoir
CN106469333A (en) A kind of hypotonic horizontal wells in heavy oil reservoir thermal recovery pressure distribution Forecasting Methodology
US10030507B2 (en) Gas well inflow detection method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant