CN107526066A - A kind of echo simulation method and device - Google Patents

A kind of echo simulation method and device Download PDF

Info

Publication number
CN107526066A
CN107526066A CN201710642415.2A CN201710642415A CN107526066A CN 107526066 A CN107526066 A CN 107526066A CN 201710642415 A CN201710642415 A CN 201710642415A CN 107526066 A CN107526066 A CN 107526066A
Authority
CN
China
Prior art keywords
echo
simulation
lunar
coordinate system
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710642415.2A
Other languages
Chinese (zh)
Other versions
CN107526066B (en
Inventor
陈杰
王鹏波
谷昕炜
曾虹程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201710642415.2A priority Critical patent/CN107526066B/en
Publication of CN107526066A publication Critical patent/CN107526066A/en
Application granted granted Critical
Publication of CN107526066B publication Critical patent/CN107526066B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本公开涉及一种回波仿真方法及装置,用以解决相关技术中无法进行月基雷达仿真的问题。该方法包括:根据月球星历数据计算月球轨道参数;根据月球轨道参数以及观测需求设置雷达的系统参数;根据月球星历数据确定回波仿真的中心时刻以及该时刻对应的波束照射位置;在回波仿真的中心时刻对应的波束照射位置的范围内设置点目标,该点目标为在回波仿真过程中被照射的目标;基于雷达的系统参数获取点目标的回波数据,该方案实现了月基雷达的回波仿真。

The present disclosure relates to an echo simulation method and device, which are used to solve the problem that moon-based radar simulation cannot be performed in related technologies. The method includes: calculating lunar orbit parameters according to lunar ephemeris data; setting radar system parameters according to lunar orbit parameters and observation requirements; determining the central time of echo simulation and the corresponding beam irradiation position at this time according to lunar ephemeris data; A point target is set within the range of the beam irradiation position corresponding to the center moment of the wave simulation, and the point target is the target irradiated during the echo simulation process; the echo data of the point target is obtained based on the radar system parameters. Echo simulation of base radar.

Description

一种回波仿真方法及装置Echo simulation method and device

技术领域technical field

本公开涉及雷达仿真技术领域,具体地,涉及一种回波仿真方法及装置。The present disclosure relates to the technical field of radar simulation, and in particular, to an echo simulation method and device.

背景技术Background technique

随着对自然科学领域研究的逐步深入,人类逐渐意识到了“固体潮”的存在,并发现了地球在长期的自然演变过程中所呈现出的大尺度动态变化直接影响着地球的气候环境。目前,SAR(Synthetic Aperture Radar,合成孔径雷达)系统由于种种原因在覆盖性方面无法满足地壳板块级别的测量尺度需求,且考虑到人造卫星的性能特点,不难发现通过提高传统平台的各项性能来提高雷达观测能力的思路并非问题最合理的解决途径,必须要有新形式的载体平台来突破人造卫星平台所面临的瓶颈。With the gradual deepening of research in the field of natural sciences, human beings have gradually realized the existence of "solid tides", and discovered that the large-scale dynamic changes in the long-term natural evolution of the earth directly affect the climate and environment of the earth. At present, the SAR (Synthetic Aperture Radar, Synthetic Aperture Radar) system cannot meet the measurement scale requirements at the crustal plate level due to various reasons, and considering the performance characteristics of artificial satellites, it is not difficult to find The idea of improving the radar observation capability is not the most reasonable way to solve the problem. There must be a new form of carrier platform to break through the bottleneck faced by the artificial satellite platform.

月球作为地球唯一一颗自然卫星,其特殊的“潮汐锁定”现象使以月球为载体平台,在月球表面建立月基对地观测雷达的设想有了实现的可能。月球超过37万千米的平均观测斜距使在月球表面仅仅2度的雷达方位向波束宽度即可覆盖全部地球。同时,月球的平均半径达到1737千米,在月球表面不同位置布设多个传感器使月基干涉雷达有了实现的潜力。而月球接近7.3×1022kg的巨大质量也是平台稳定性的有力保证。As the only natural satellite of the earth, the moon's special "tidal locking" phenomenon makes it possible to realize the idea of establishing a moon-based ground observation radar on the moon's surface using the moon as a carrier platform. The average observation slant distance of the moon exceeds 370,000 kilometers, so that the radar azimuth beam width of only 2 degrees on the lunar surface can cover the entire earth. At the same time, the average radius of the moon reaches 1737 kilometers, and the deployment of multiple sensors at different positions on the surface of the moon makes the moon-based interferometric radar have the potential to be realized. The huge mass of the moon, which is close to 7.3×10 22 kg, is also a strong guarantee for the stability of the platform.

近年来,相关领域对月基SAR应用的构想越发多种多样,而对月基SAR回波特性的分析却仍然停留在以星载SAR理论为基础的初级阶段。月基SAR的大斜距特性导致其在仿真算法上与传统星载SAR有很大的差别,很多近似条件不再适用,独特的几何关系预示着回波结果必将表现出完全不同的性质。星体的章动和天平动现象也会对实际回波产生很大影响,简单的二体模型不适用于月基雷达仿真。In recent years, the conception of moon-based SAR applications in related fields has become more and more diverse, but the analysis of the echo characteristics of moon-based SAR is still in the initial stage based on spaceborne SAR theory. The large slant distance characteristic of moon-based SAR makes its simulation algorithm very different from that of traditional spaceborne SAR. Many approximate conditions are no longer applicable, and the unique geometric relationship indicates that the echo results will show completely different properties. Nutation and libration of the star will also have a great impact on the actual echo, and the simple two-body model is not suitable for moon-based radar simulation.

发明内容Contents of the invention

本公开的目的是提供一种回波仿真方法及装置,用以解决相关技术中无法进行月基雷达仿真的问题。The purpose of the present disclosure is to provide an echo simulation method and device to solve the problem in the related art that moon-based radar simulation cannot be performed.

本公开提供了一种雷达回波数据获取方法,包括:根据月球星历数据计算月球轨道参数;根据所述月球轨道参数以及观测需求设置雷达的系统参数;根据所述月球星历数据确定所述回波仿真的中心时刻以及该时刻对应的波束照射位置;在所述波束照射位置的范围内设置点目标,所述点目标为在所述回波仿真过程中被照射的目标;基于所述系统参数获取所述点目标的回波数据。The present disclosure provides a radar echo data acquisition method, including: calculating lunar orbit parameters according to lunar ephemeris data; setting radar system parameters according to the lunar orbit parameters and observation requirements; determining the lunar orbit parameters according to the lunar ephemeris data The central moment of the echo simulation and the beam irradiation position corresponding to the moment; setting a point target within the range of the beam irradiation position, the point target being the target irradiated during the echo simulation process; based on the system The parameter gets the echo data of the point target.

可选地,所述根据所述月球星历数据确定所述回波仿真的中心时刻以及该时刻对应的波束照射位置,包括:根据天线相位中心在月球星体坐标系中的位置以及月球在仿真中心时刻的在转动地心坐标系中的位置确定波束的瞄准点在转动地心坐标系中的位置;根据波束的瞄准点在转动地心坐标系中的位置获取波束中心点的坐标,以及所述中心点坐标所对应的经度以及纬度;选取波束中心对应的位置,并将该位置对应的时刻确定为所述仿真中心时刻。Optionally, the determining the center moment of the echo simulation and the beam irradiation position corresponding to the moment according to the lunar ephemeris data includes: according to the position of the antenna phase center in the lunar astral coordinate system and the position of the moon in the simulation Determine the position of the aiming point of the beam in the rotating earth-centered coordinate system at the center moment in the rotating earth-centered coordinate system; obtain the coordinates of the center point of the beam according to the position of the aiming point of the beam in the rotating earth-centered coordinate system, and the The longitude and latitude corresponding to the center point coordinates; select the position corresponding to the beam center, and determine the time corresponding to the position as the simulation center time.

可选地,所述在所述波束照射位置的范围内设置点目标,包括:确定在所述回波仿真开始时刻天线相位中心在转动地球坐标系中的第一位置;确定在所述回波仿真开始时刻所述点目标在转动地球坐标系中的第二位置;根据所述第一位置以及所述第二位置的相对矢径判断所述点目标是否被波束照射到;获取被波束照射到的点目标的回波相位。Optionally, setting a point target within the range of the beam irradiation position includes: determining the first position of the antenna phase center in the rotating earth coordinate system at the start of the echo simulation; The second position of the point target in the rotating earth coordinate system at the beginning of the simulation; judge whether the point target is irradiated by the beam according to the relative vector of the first position and the second position; obtain the irradiated beam The echo phase of the point target.

可选地,所述月球轨道参数包括以下至少一项:轨道偏心率、近地点位置、升交点位置、升交点赤径、近心点角距以及轨道倾角。Optionally, the lunar orbit parameters include at least one of the following: orbital eccentricity, perigee position, ascending node position, ascending node equator, perigee angular distance, and orbital inclination.

可选地,所述雷达的系统参数包括以下至少一项:发射波调频率、脉冲持续时间、波束照射时间、天线视角、天线尺寸以及雷达位置。Optionally, the radar system parameters include at least one of the following: transmit tone frequency, pulse duration, beam irradiation time, antenna angle of view, antenna size, and radar position.

本公开还提供了一种雷达回波数据获取装置,包括:计算模块,用于根据月球星历数据计算月球轨道参数;第一设置模块,用于根据所述月球轨道参数以及观测需求设置雷达的系统参数;确定模块,用于根据所述月球星历数据确定所述回波仿真的中心时刻以及该时刻对应的波束照射位置;第二设置模块,用于在所述波束照射位置的范围内设置点目标,所述点目标为在所述回波仿真过程中被照射的目标;获取模块,用于基于所述系统参数获取所述点目标的回波数据。The present disclosure also provides a radar echo data acquisition device, including: a calculation module, used to calculate the lunar orbit parameters according to the lunar ephemeris data; a first setting module, used to set the radar parameters according to the lunar orbit parameters and observation requirements System parameters; a determination module, used to determine the central moment of the echo simulation and the beam irradiation position corresponding to the moment according to the lunar ephemeris data; a second setting module, used to set within the range of the beam irradiation position A point target, where the point target is a target irradiated during the echo simulation process; an acquisition module, configured to acquire echo data of the point target based on the system parameters.

可选地,所述确定模块,包括:第一确定单元,用于根据天线相位中心在月球星体坐标系中的位置以及月球在仿真中心时刻的在转动地心坐标系中的位置确定波束的瞄准点在转动地心坐标系中的位置;第一获取单元,用于根据波束的瞄准点在转动地心坐标系中的位置获取波束中心点的坐标,以及所述中心点坐标所对应的经度以及纬度;第二确定单元,用于选取波束中心对应的位置,并将该位置对应的时刻确定为所述仿真中心时刻。Optionally, the determining module includes: a first determining unit, configured to determine the position of the beam according to the position of the antenna phase center in the lunar astral coordinate system and the position of the moon in the rotating geocentric coordinate system at the time of the simulation center The position of the aiming point in the rotating earth-centered coordinate system; the first acquisition unit is used to obtain the coordinates of the center point of the beam according to the position of the aiming point of the beam in the rotating earth-centered coordinate system, and the longitude corresponding to the coordinates of the center point and latitude; a second determining unit, configured to select a position corresponding to the center of the beam, and determine the time corresponding to the position as the time of the simulation center.

可选地,所述第二设置模块,包括:第三确定单元,用于确定在所述回波仿真开始时刻天线相位中心在转动地球坐标系中的第一位置;第四确定单元,用于确定在所述回波仿真开始时刻所述点目标在转动地球坐标系中的第二位置;判断单元,用于根据所述第一位置以及所述第二位置的相对矢径判断所述点目标是否被波束照射到;第二获取单元,用于获取被波束照射到的点目标的回波相位。Optionally, the second setting module includes: a third determination unit, configured to determine the first position of the antenna phase center in the rotating earth coordinate system at the start of the echo simulation; a fourth determination unit, configured to Determining a second position of the point target in the rotating earth coordinate system at the start of the echo simulation; a judging unit configured to judge the point target according to the relative vector of the first position and the second position Whether it is irradiated by the beam; the second acquisition unit is used to acquire the echo phase of the point target irradiated by the beam.

可选地,所述月球轨道参数包括以下至少一项:轨道偏心率、近地点位置、升交点位置、升交点赤径、近心点角距以及轨道倾角。Optionally, the lunar orbit parameters include at least one of the following: orbital eccentricity, perigee position, ascending node position, ascending node equator, perigee angular distance, and orbital inclination.

可选地,所述雷达的系统参数包括以下至少一项:发射波调频率、脉冲持续时间、波束照射时间、天线视角、天线尺寸以及雷达位置。Optionally, the radar system parameters include at least one of the following: transmit tone frequency, pulse duration, beam irradiation time, antenna angle of view, antenna size, and radar position.

通过上述技术方案,根据月球星历数据计算月球轨道参数以及确定回波仿真的中心时刻以及该时刻对应的波束照射位置;根据月球轨道参数以及观测需求设置雷达的系统参数;在波束照射位置的范围内设置点目标,基于设置的系统参数,获取点目标的回波数据,实现了月基雷达的回波仿真,基于获得的回波数据,能够对月基雷达的回波特性进行分析。Through the above technical scheme, calculate the lunar orbit parameters and determine the central moment of the echo simulation and the corresponding beam irradiation position at this time according to the lunar ephemeris data; set the radar system parameters according to the lunar orbit parameters and observation requirements; within the range of the beam irradiation position The point target is set inside, and the echo data of the point target is obtained based on the set system parameters, and the echo simulation of the moon-based radar is realized. Based on the obtained echo data, the echo characteristics of the moon-based radar can be analyzed.

本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present disclosure will be described in detail in the detailed description that follows.

附图说明Description of drawings

附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present disclosure, and constitute a part of the description, together with the following specific embodiments, are used to explain the present disclosure, but do not constitute a limitation to the present disclosure. In the attached picture:

图1是根据一示例性实施例示出的回波仿真方法的流程图。Fig. 1 is a flow chart of an echo simulation method according to an exemplary embodiment.

图2是根据一示例性实施例示出的地球和月球相对位置的几何位置关系示意图。Fig. 2 is a schematic diagram showing the geometric relationship between the relative positions of the earth and the moon according to an exemplary embodiment.

图3是根据一示例性实施例示出的星历中月球位置的示意图。Fig. 3 is a schematic diagram showing the position of the moon in the ephemeris according to an exemplary embodiment.

图4是根据一示例性实施例示出的单点目标回波结果示意图。Fig. 4 is a schematic diagram showing echo results of a single point target according to an exemplary embodiment.

图5是根据一示例性实施例示出的单点目标回波仿真的成像示意图。Fig. 5 is a schematic diagram of imaging of a single-point target echo simulation according to an exemplary embodiment.

图6是根据一示例性实施例示出的九点点阵仿真成像示意图。Fig. 6 is a schematic diagram of simulated imaging of a nine-dot matrix according to an exemplary embodiment.

图7是根据一示例性实施例示出的回波仿真装置的结构框图。Fig. 7 is a structural block diagram of an echo simulation device according to an exemplary embodiment.

具体实施方式detailed description

以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。Specific embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to illustrate and explain the present disclosure, and are not intended to limit the present disclosure.

为解决上述问题,本公开提供了介绍了一种回波仿真方法,利用该方法模拟月基雷达的工作过程,并可以通过调整雷达系统参数来获取不同条件下的回波仿真数据,以验证系统在不同系统参数下的性能。In order to solve the above problems, this disclosure provides and introduces an echo simulation method, using this method to simulate the working process of the moon-based radar, and by adjusting the parameters of the radar system to obtain echo simulation data under different conditions to verify the system Performance under different system parameters.

图1是根据一示例性实施例示出的回波仿真方法的流程图,如图1所示,本公开提供的回波仿真方法包括如下处理:Fig. 1 is a flowchart of an echo simulation method according to an exemplary embodiment. As shown in Fig. 1, the echo simulation method provided by the present disclosure includes the following processing:

S101:根据月球星历数据计算月球轨道参数;S101: Calculate lunar orbit parameters according to lunar ephemeris data;

示例的,在本公开中,月球星历数据可以采用JPL星历参数,以及,雷达可以是SAR。Exemplarily, in the present disclosure, the lunar ephemeris data may adopt JPL ephemeris parameters, and the radar may be SAR.

由于月球章动的影响,月球绕地球的公转轨道存在周期性变化的现象,地月相对几何位置关系如图2所示。回波仿真首先需要根据所使用的月球星历数据确定照射时刻的轨道参数,对月球星历数据要求如下:Due to the influence of the moon's nutation, the moon's orbit around the earth changes periodically, and the relative geometric relationship between the earth and the moon is shown in Figure 2. Echo simulation first needs to determine the orbital parameters at the time of irradiation based on the lunar ephemeris data used. The requirements for the lunar ephemeris data are as follows:

月球星历数据要体现月球的章动和天平动信息;月球星历数据整体时间跨度须大于27.4天但不能长于30天,相邻数据时间间隔最大为1h,并将其插值到秒;月球星历数据须包含月球的位置和速度信息;星历数据的参考系应选为不转动地心参考系,即地球地心为原点,地心指向春分点为X轴正方向,地心指向地球北极为Z轴正方向,Y轴与X、Z轴垂直并构成右手参考系;根据月球星历数据,求出的月球轨道参数可以包括:当前月球公转周期内,月球轨道的偏心率、近地点位置、升交点赤径、近心点角距等参数。The lunar ephemeris data should reflect the nutation and balance information of the moon; the overall time span of the lunar ephemeris data must be greater than 27.4 days but not longer than 30 days, and the maximum time interval between adjacent data is 1h, and it is interpolated to seconds; The ephemeris data must contain the position and velocity information of the moon; the reference system of the ephemeris data should be selected as a non-rotating geocentric reference system, that is, the earth's center is the origin, the earth's center points to the vernal equinox as the positive direction of the X axis, and the earth's center points to the earth's north pole as In the positive direction of the Z axis, the Y axis is perpendicular to the X and Z axes and constitutes a right-hand reference system; according to the lunar ephemeris data, the lunar orbit parameters obtained can include: the eccentricity of the lunar orbit, perigee position, ascent Parameters such as the equator of the intersection point and the angular distance of the pericentric point.

上述月球星历数据可以通过如下方式获得:The above lunar ephemeris data can be obtained in the following ways:

其中,JPL星历数据除星体位置、速度之外,还包含很多其他信息,轨道偏心率e便是其中之一;JPL月球星历包括月球在不转动地心坐标系中的位置信息,地球是月球公转椭圆轨道的一个焦点,计算每时刻月球相对于地心的矢径r(n):Among them, the JPL ephemeris data contains a lot of other information besides the position and velocity of the star, and the orbital eccentricity e is one of them; the JPL lunar ephemeris includes the position information of the moon in the non-rotating geocentric coordinate system, and the earth is A focal point of the moon's elliptical orbit, calculate the moon's vector radius r(n) relative to the earth's center at each moment:

|r(n)|=rmin (1)|r(n)|=r min (1)

|r(n)|位置便是近地点位置。The |r(n)| position is the perigee position.

根据星历月球位置,沿自西向东的方向遍历月球Z轴正负,当满足如下条件,得到n。According to the position of the moon in the ephemeris, traverse the plus and minus of the moon's Z axis along the direction from west to east. When the following conditions are met, n is obtained.

其中,位置n便是升交点位置。Among them, position n is the ascending node position.

在得到升交点位置后,计算该点与X轴正方向的夹角,便得到升交点赤径。After obtaining the position of the ascending node, calculate the angle between the point and the positive direction of the X-axis to obtain the equator of the ascending node.

根据近地点位置和升交点位置,计算二者相对于地心矢径的夹角便得到月球轨道的近心点角距。According to the position of perigee and the position of ascending node, calculate the angle between the two relative to the center of the earth to obtain the angular distance of the pericentric point of the lunar orbit.

轨道倾角可以直接从星历数据中获得。Orbital inclination can be obtained directly from ephemeris data.

S102:根据月球轨道参数以及观测需求设置雷达的系统参数;S102: Set radar system parameters according to lunar orbit parameters and observation requirements;

根据需要的测绘带宽、分辨率、照射时长等观测要求设置雷达的系统参数,该系统参数可以包括:天线尺寸、发射波载频f0、调频率Kr、PRF(Pulse Recurrence Frequency,脉冲重复频率)、天线视角、雷达位置等。对这些参数的设置有如下要求:雷达波束需覆盖地球的同时不产生星下点回波;PRF足够高保证回波方位向不混叠;雷达布设于月球赤道,仿真中心时刻正对地心。其中,发射波调频率Kr以及脉冲持续时间Tr决定了发射波带宽,即距离向分辨率。累积时间Ta决定了方位向分辨率。天线视角θa以及天线尺寸决定了波束的指向和覆盖范围,同时,波束不能偏离地球。认为雷达在仿真中心时刻正对地球地心位置。而月球赤道与月球公转轨道之间有夹角,等效的月球载体偏航角yaw=0,俯仰角pitch=0,滚转角roll=6.67°。Set the system parameters of the radar according to the observation requirements such as the required surveying and mapping bandwidth, resolution, and irradiation time. The system parameters can include: antenna size, carrier frequency f 0 of the transmitting wave, modulation frequency K r , PRF (Pulse Recurrence Frequency, pulse repetition frequency ), antenna viewing angle, radar position, etc. The setting of these parameters has the following requirements: the radar beam must cover the earth without generating sub-satellite point echoes; the PRF is high enough to ensure that the echo azimuths do not alias; the radar is deployed on the lunar equator, and the simulation center is always facing the center of the earth. Among them, the transmit wave modulation frequency K r and the pulse duration T r determine the transmit wave bandwidth, that is, the range resolution. The accumulation time T a determines the azimuth resolution. The angle of view θ a of the antenna and the size of the antenna determine the direction and coverage of the beam, and at the same time, the beam cannot deviate from the earth. It is considered that the radar is facing the center of the earth at all times in the simulation center. However, there is an included angle between the lunar equator and the lunar orbit, and the equivalent lunar carrier yaw angle yaw=0, pitch angle pitch=0, and roll angle roll=6.67°.

S103:根据月球星历数据确定回波仿真的中心时刻以及该时刻对应的波束照射位置;S103: Determine the central moment of the echo simulation and the beam irradiation position corresponding to this moment according to the lunar ephemeris data;

该步骤S103可以包括如下处理过程:This step S103 may include the following processing procedures:

根据天线相位中心在月球星体坐标系中的位置以及月球在目标时刻的在不转动地心坐标系中的位置确定波束的瞄准点在转动地心坐标系中的位置;根据波束的瞄准点在转动地心坐标系中的位置获取波束中心点的坐标,以及中心点坐标所对应的经度以及纬度;选取波束中心对应的位置,并将该位置对应的时刻确定为仿真中心时刻。Determine the position of the aiming point of the beam in the rotating earth-centered coordinate system according to the position of the antenna phase center in the lunar astral coordinate system and the position of the moon in the non-rotating earth-centered coordinate system at the target moment; Rotate the position in the geocentric coordinate system to obtain the coordinates of the center point of the beam, and the longitude and latitude corresponding to the coordinates of the center point; select the position corresponding to the center of the beam, and determine the time corresponding to the position as the simulation center time.

示例的,可以通过以下方式来实现上述处理过程。As an example, the above processing procedure may be implemented in the following manner.

将月球星历数据插值至PRI(Pulse Repetition Interval,脉冲重复周期),取月球位于轨道近地点时为0时刻,同时认为0时刻时地球本初子午线恰好经过春分点,星历中的月球位置信息如图3所示。Interpolate the lunar ephemeris data to PRI (Pulse Repetition Interval, pulse repetition period), take the time when the moon is at the perigee of the orbit as 0 time, and at the same time think that the earth's prime meridian just passes through the vernal equinox at 0 time, the moon position information in the ephemeris is shown in the figure 3 shown.

取任一时刻t,计算该时刻的月球偏心角E和近心角θ;Take any moment t, and calculate the lunar eccentricity E and pericentric angle θ at that moment;

依次按照公式(11)(12)(13)计算该时刻月球的偏心角E和近心角θ;Calculate the eccentric angle E and pericentric angle θ of the moon at this moment according to the formulas (11) (12) (13) in turn;

M=nt (3)M=nt (3)

其中,M为月球平均近心角,n为月球平均公转角速度。Among them, M is the average pericentric angle of the moon, and n is the average orbital angular velocity of the moon.

假定天线相位中心(天线坐标系原点)相对于月球星体坐标系的位置为(xe,ye,ze);根据插值后的星历数据获取月球在不转动的地心坐标系中时刻t的位置(xos,yos,zos),即卫星平台坐标系原点在不动的地心坐标系中的位置;建立天线坐标系中任一点(xa,ya,za)在转动的地心坐标系中的坐标(xg,yg,zg)的表达式,即:Assume that the position of the antenna phase center (the origin of the antenna coordinate system) relative to the lunar star coordinate system is (x e , y e , z e ); according to the interpolated ephemeris data, the time when the moon is in the non-rotating geocentric coordinate system is obtained The position of t (x os , y os , z os ), that is, the position of the origin of the satellite platform coordinate system in the fixed geocentric coordinate system; any point (x a , y a , z a ) in the antenna coordinate system is established at The expression of the coordinates (x g , y g , z g ) in the rotating geocentric coordinate system, namely:

其中,Ago、Aov、Avr、Are、Aea为坐标系转换所用到的矩阵如下:Among them, A go , A ov , A vr , A re , A ea are the matrices used for coordinate system conversion as follows:

将坐标从不转动地心坐标系转换到转动地心坐标系,HG为格林威治时角。 Transform the coordinates from the non-rotating geocentric coordinate system to the rotating geocentric coordinate system, H G is the Greenwich mean time angle.

将坐标从轨道平面坐标系转换到不转动地心坐标系,Ω为升交点赤径,i为轨道倾角,ω为近心点角距。 Transform the coordinates from the orbit plane coordinate system to the non-rotating geocentric coordinate system, Ω is the equator of the ascending node, i is the orbit inclination, and ω is the angular distance of the pericentric point.

将坐标从卫星平台坐标系转换到轨道平面坐标系,|γ|≤90°。 Convert the coordinates from the satellite platform coordinate system to the orbital plane coordinate system, |γ|≤90°.

将坐标从卫星星体坐标系转换到卫星平台坐标系。Convert the coordinates from the satellite star coordinate system to the satellite platform coordinate system.

将坐标天线坐标系从转换到卫星星体坐标系,认为仿真中心时刻偏航角yaw=0,俯仰角pitch=0,滚转角roll=6.67°。 Converting the coordinate antenna coordinate system to the satellite star coordinate system, it is considered that the yaw angle yaw = 0, the pitch angle pitch = 0, and the roll angle roll = 6.67° at the time of the simulation center.

由于天线坐标系的Y轴与天线瞄准线重合,所以坐标系中瞄准点的坐标(0,y,0),代入表达式(1),就得到转动的地心坐标系中的天线瞄准点的坐标:Since the Y-axis of the antenna coordinate system coincides with the antenna aiming line, the coordinates (0, y, 0) of the aiming point in the coordinate system are substituted into the expression (1), and the antenna aiming point in the rotating earth-centered coordinate system is obtained coordinate:

将式(7)带入式(8)所示的地球模型,解得y(取小值)再代回式(7),求得瞄准点在转动地心坐标系中的坐标(xgo,ygo,zgo);Bring Equation (7) into the earth model shown in Equation (8), solve for y (take a small value) and substitute it back into Equation (7), and obtain the coordinates of the aiming point in the rotating geocentric coordinate system (x go , y go , z go );

则该时刻波束中心点的经度Λ,纬度φ分别如式(9)、(10)所示:Then the longitude Λ and latitude φ of the center point of the beam at this moment are shown in equations (9) and (10) respectively:

从t时刻起,按PRF步长遍历所有月球位置,获取对应的波束中心点坐标;取需要的波束中心位置经纬度,并将对应时刻t0作为仿真中心时刻。From time t, traverse all lunar positions according to the PRF step, and obtain the coordinates of the corresponding beam center point; take the desired latitude and longitude of the beam center position, and use the corresponding time t 0 as the simulation center time.

S104:在波束照射位置的范围内设置点目标,点目标为在回波仿真过程中的被照射目标;S104: Set a point target within the range of the beam irradiation position, where the point target is the irradiated target during the echo simulation process;

该步骤S104可以包括如下处理过程:This step S104 may include the following processing procedures:

确定在回波仿真开始时刻天线相位中心在转动地球坐标系中的第一位置;确定在回波仿真开始时刻点目标在转动地球坐标系中的第二位置;根据第一位置以及第二位置的相对矢径判断点目标是否被波束照射到;获取被波束照射到的点目标的回波相位,根据仿真需要,在仿真中心时刻波束中心点周围的不同位置布设点或点阵,例如,采用的目标布设形式可以为单点目标和分别垂直于方位向和距离向的九点点阵。Determine the first position of the antenna phase center in the rotating earth coordinate system at the beginning of the echo simulation; determine the second position of the point target in the rotating earth coordinate system at the beginning of the echo simulation; according to the first position and the second position Determine whether the point target is irradiated by the beam relative to the vector; obtain the echo phase of the point target irradiated by the beam, and according to the simulation needs, lay out points or lattices at different positions around the center of the beam at the time of the simulation center, for example, using The target layout form can be a single point target and a nine-point lattice perpendicular to the azimuth direction and the distance direction respectively.

S105:基于系统参数获取点目标的回波数据。S105: Acquire echo data of point targets based on system parameters.

设雷达照射时间长度为Ta,则需要从照射起始时刻沿PRI步长开始遍历,任意时刻tP的回波仿真过程如下:Assuming that the radar irradiation time length is T a , it is necessary to traverse along the PRI step from the starting moment of irradiation, and the echo simulation process at any time t P is as follows:

设tP时刻月球在不转动地心坐标系中的位置为(xps,yps,zps),求tP时刻,天线相位中心在转动地球坐标系中的位置(xap,yap,zap):Suppose the position of the moon in the non-rotating earth-centered coordinate system at time t P is (x ps , y ps , z ps ), find the position of the antenna phase center in the rotating earth coordinate system at time t P (x ap , y ap , z ap ):

其中,计算Are时所需要的偏航角yaw由于经度天平动的影响此时不为0。Wherein, the yaw angle yaw required for calculating A re is not 0 at this time due to the influence of longitude balance movement.

yaw=ρ12 (12)yaw=ρ 12 (12)

在式(12)中,ρ1为该时刻至仿真中心时刻月球公转角度,ρ2为该时刻至仿真中心时刻月球自转角度。In formula (12), ρ1 is the revolution angle of the moon from this moment to the simulation center moment, and ρ2 is the moon rotation angle from this moment to the simulation center moment.

设该时刻点目标在转动地心坐标系中的位置矢量为(xtar,ytar,ztar),可以计算出点目标与天线相位中心在同一个坐标系中的相对矢量为:Assuming that the position vector of the point target in the rotating geocentric coordinate system at this moment is (x tar , y tar , z tar ), the relative vector between the point target and the antenna phase center in the same coordinate system can be calculated as:

可以根据ΔR判断此时刻点目标是否处在波束3dB宽度之内;对于处在波束3dB覆盖范围内的点目标,其回波相位信息可以表示为:Whether the point target is within the 3dB width of the beam at this moment can be judged according to ΔR; for a point target within the 3dB coverage of the beam, its echo phase information can be expressed as:

在式(14)中,c为光速,t为电磁波往返经历的时间;记录该时刻回波数据,并进行下一步仿真。完成Ta内所有时刻仿真结果后,保存回波数据及关键参数。In formula (14), c is the speed of light, and t is the time for the electromagnetic wave to go back and forth; record the echo data at this moment, and carry out the next step of simulation. After completing the simulation results at all times in T a , save the echo data and key parameters.

对采用本公开提供的雷达回波数据获取方法获取到的回波数据进行点目标仿真验证,单点回波结果如图4所示。并对单点和九点回波结果进行成像验证。表1给出了仿真过程的部分雷达参数。The echo data obtained by the radar echo data acquisition method provided in the present disclosure is verified by point target simulation, and the single-point echo result is shown in FIG. 4 . And carry out imaging verification on the single-point and nine-point echo results. Table 1 shows some radar parameters of the simulation process.

图5是根据一示例性实施例示出的单点目标回波仿真的成像示意图,基于该成像示意图可以验证回波的正确性。其中,图5中所示的黑色星形部分为点目标,图中白色部分为不存在点目标的部分,需要说明的是,实际检测得到的成像图中,不存在点目标的部分为黑色,存在点目标部分则具有一定的亮度,图5中仅为用来突出显示点目标的一种示意图。图6(该图6中点目标的部分同不存在点目标的部分的表示方法同图5一致)是根据一示例性实施例示出的九点点阵仿真成像示意图,根据九点点阵的仿真成像结果可可看出不同位置的点目标均可以得到有效的能量压缩,验证了本公开提供的回波仿真方法具有较高的正确性和有效性。Fig. 5 is a schematic imaging diagram of a single-point target echo simulation according to an exemplary embodiment, based on which the correctness of the echo can be verified. Among them, the black star-shaped part shown in Figure 5 is a point target, and the white part in the figure is a part without a point target. It should be noted that in the imaging image obtained by actual detection, the part without a point target is black. The portion where the point target exists has a certain brightness, and FIG. 5 is only a schematic diagram for highlighting the point target. Fig. 6 (the representation method of the part of the point target in this Fig. 6 is consistent with that of Fig. 5) is a schematic diagram of a nine-point lattice simulation imaging according to an exemplary embodiment, according to the simulation imaging result of a nine-point lattice It can be seen that point targets at different positions can obtain effective energy compression, which verifies that the echo simulation method provided by the present disclosure has high correctness and effectiveness.

表1Table 1

本公开还提供了一种回波仿真装置,图7是根据一示例性实施例示出的回波仿真装置的结构框图,如图7所示,该装置70包括如下组成部分:The present disclosure also provides an echo simulation device. FIG. 7 is a structural block diagram of an echo simulation device according to an exemplary embodiment. As shown in FIG. 7 , the device 70 includes the following components:

计算模块71,用于根据月球星历数据计算月球轨道参数;Calculation module 71, is used for calculating lunar orbit parameter according to lunar ephemeris data;

其中,月球轨道参数包括以下至少一项:轨道偏心率、近地点位置、升交点位置、升交点赤径、近心点角距以及轨道倾角。Wherein, the lunar orbit parameters include at least one of the following: orbital eccentricity, perigee position, ascending node position, ascending node equator, pericentric angular distance, and orbital inclination.

第一设置模块72,用于根据月球轨道参数以及观测需求设置雷达的系统参数;The first setting module 72 is used to set the system parameters of the radar according to the lunar orbit parameters and observation requirements;

其中,雷达的系统参数可以包括以下至少一项参数:Wherein, the system parameters of the radar may include at least one of the following parameters:

发射波调频率、脉冲持续时间、波束照射时间、天线视角、天线尺寸以及雷达位置。Transmit tone frequency, pulse duration, beam exposure time, antenna viewing angle, antenna size, and radar position.

确定模块73,用于根据月球星历数据确定回波仿真的中心时刻以及该时刻对应的波束照射位置;Determining module 73, is used for determining the central moment of echo simulation and the corresponding beam irradiation position of this moment according to lunar ephemeris data;

第二设置模块74,用于在波束照射位置的范围内设置点目标,点目标为在回波仿真过程中的被照射的目标;The second setting module 74 is configured to set a point target within the range of the beam irradiation position, where the point target is the irradiated target during the echo simulation process;

获取模块75,用于基于系统参数获取点目标的回波数据。An acquisition module 75, configured to acquire echo data of point targets based on system parameters.

示例的,上述确定模块73可以包括:第一确定单元,用于根据天线相位中心在月球星体坐标系中的位置以及月球在仿真中心时刻的在转动地心坐标系中的位置确定波束的瞄准点在转动地心坐标系中的位置;第一获取单元,用于根据波束的瞄准点在转动地心坐标系中的位置获取波束中心点的坐标,以及中心点坐标所对应的经度以及纬度;第二确定单元,用于选取波束中心对应的位置,并将该位置对应的时刻确定为仿真中心时刻。Exemplarily, the above-mentioned determination module 73 may include: a first determination unit, configured to determine the aiming of the beam according to the position of the antenna phase center in the lunar astral coordinate system and the position of the moon in the rotating geocentric coordinate system at the time of the simulation center The position of the point in the rotating geocentric coordinate system; the first acquisition unit is used to obtain the coordinates of the center point of the beam according to the position of the aiming point of the beam in the rotating geocentric coordinate system, and the longitude and latitude corresponding to the coordinates of the center point; The second determination unit is configured to select a position corresponding to the center of the beam, and determine the time corresponding to the position as the simulation center time.

示例的,上述第二设置模块74可以包括:第三确定单元,用于确定在回波仿真开始时刻天线相位中心在转动地球坐标系中的第一位置;第四确定单元,用于确定在回波仿真开始时刻点目标在转动地球坐标系中的第二位置;判断单元,用于根据第一位置以及第二位置的相对矢径判断点目标是否被波束照射到;第二获取单元,用于获取被波束照射到的点目标的回波相位。Exemplarily, the above-mentioned second setting module 74 may include: a third determination unit, configured to determine the first position of the antenna phase center in the rotating earth coordinate system at the start of echo simulation; a fourth determination unit, configured to determine The second position of the point target in the rotating earth coordinate system at the start of the wave simulation; the judging unit is used to judge whether the point target is irradiated by the beam according to the relative vector of the first position and the second position; the second acquisition unit is used to Get the echo phase of the point target hit by the beam.

以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。The preferred embodiments of the present disclosure have been described in detail above in conjunction with the accompanying drawings. However, the present disclosure is not limited to the specific details of the above embodiments. Within the scope of the technical concept of the present disclosure, various simple modifications can be made to the technical solutions of the present disclosure. These simple modifications all belong to the protection scope of the present disclosure.

另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific implementation manners may be combined in any suitable manner if there is no contradiction. In order to avoid unnecessary repetition, various possible combinations are not further described in this disclosure.

此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。In addition, various implementations of the present disclosure can be combined arbitrarily, as long as they do not violate the idea of the present disclosure, they should also be regarded as the content disclosed in the present disclosure.

Claims (10)

1.一种回波仿真方法,其特征在于,包括:1. An echo simulation method, characterized in that, comprising: 根据月球星历数据计算月球轨道参数;Calculate lunar orbit parameters based on lunar ephemeris data; 根据所述月球轨道参数以及观测需求设置雷达的系统参数;Setting radar system parameters according to the lunar orbit parameters and observation requirements; 根据所述月球星历数据确定所述回波仿真的中心时刻以及该时刻对应的波束照射位置;determining the central moment of the echo simulation and the beam irradiation position corresponding to the moment according to the lunar ephemeris data; 在所述波束照射位置的范围内设置点目标,所述点目标为在所述回波仿真过程中被照射的目标;Setting a point target within the range of the beam irradiation position, the point target being the target to be irradiated during the echo simulation process; 基于所述系统参数获取所述点目标的回波数据。Acquiring echo data of the point target based on the system parameters. 2.根据权利要求1所述的方法,其特征在于,所述根据所述月球星历数据确定所述回波仿真的中心时刻以及该时刻对应的波束照射位置,包括:2. The method according to claim 1, wherein the determining the central moment of the echo simulation and the beam irradiation position corresponding to the moment according to the lunar ephemeris data comprises: 根据天线相位中心在月球星体坐标系中的位置以及月球在仿真中心时刻在转动地心坐标系中的位置确定波束的瞄准点在转动地心坐标系中的位置;Determine the position of the aiming point of the beam in the rotating earth-centered coordinate system according to the position of the antenna phase center in the lunar astral coordinate system and the position of the moon in the rotating earth-centered coordinate system at the time of the simulation center; 根据波束的瞄准点在转动地心坐标系中的位置获取波束中心点的坐标,以及所述中心点坐标所对应的经度以及纬度;Acquiring the coordinates of the center point of the beam according to the position of the aiming point of the beam in the rotating geocentric coordinate system, and the longitude and latitude corresponding to the coordinates of the center point; 选取所述波束中心对应的位置,并将该位置对应的时刻确定为所述仿真中心时刻。Select the position corresponding to the center of the beam, and determine the moment corresponding to the position as the moment of the simulation center. 3.根据权利要求1所述的方法,其特征在于,所述在所述波束照射位置的范围内设置点目标,包括:3. The method according to claim 1, wherein said setting a point target within the range of said beam irradiation position comprises: 确定在所述回波仿真开始时刻天线相位中心在转动地球坐标系中的第一位置;determining a first position of the antenna phase center in a rotating Earth coordinate system at the start of said echo simulation; 确定在所述回波仿真开始时刻所述点目标在转动地球坐标系中的第二位置;determining a second position of the point target in a rotating Earth coordinate system at the start of the echo simulation; 根据所述第一位置以及所述第二位置的相对矢径判断所述点目标是否被波束照射到;judging whether the point target is irradiated by the beam according to the relative vector radius of the first position and the second position; 获取被波束照射到的点目标的回波相位。Get the echo phase of the point target hit by the beam. 4.根据权利要求1所述的方法,其特征在于,所述月球轨道参数包括以下至少一项:4. The method according to claim 1, wherein the lunar orbit parameters include at least one of the following: 轨道偏心率、近地点位置、升交点位置、升交点赤径、近心点角距以及轨道倾角。Orbital eccentricity, perigee position, ascending node position, ascending node equator, perigee angular distance, and orbital inclination. 5.根据权利要求1至4任意一项所述的方法,其特征在于,所述雷达的系统参数包括以下至少一项:5. The method according to any one of claims 1 to 4, wherein the system parameters of the radar include at least one of the following: 发射波调频率、脉冲持续时间、波束照射时间、天线视角、天线尺寸以及雷达位置。Transmit tone frequency, pulse duration, beam exposure time, antenna viewing angle, antenna size, and radar position. 6.一种回波仿真装置,其特征在于,包括:6. An echo simulation device, characterized in that, comprising: 计算模块,用于根据月球星历数据计算月球轨道参数;Calculation module, for calculating lunar orbit parameter according to lunar ephemeris data; 第一设置模块,用于根据所述月球轨道参数以及观测需求设置雷达的系统参数;The first setting module is used to set the system parameters of the radar according to the lunar orbit parameters and observation requirements; 确定模块,用于根据所述月球星历数据确定所述回波仿真的中心时刻以及该时刻对应的波束照射位置;A determining module, configured to determine the central moment of the echo simulation and the beam irradiation position corresponding to the moment according to the lunar ephemeris data; 第二设置模块,用于在所述波束照射位置的范围内设置点目标,所述点目标为在所述回波仿真过程中被照射的目标;A second setting module, configured to set a point target within the range of the beam irradiation position, where the point target is a target to be irradiated during the echo simulation process; 获取模块,用于基于所述系统参数获取所述点目标的回波数据。An acquisition module, configured to acquire echo data of the point target based on the system parameters. 7.根据权利要求6所述的装置,其特征在于,所述确定模块,包括:7. The device according to claim 6, wherein the determining module comprises: 第一确定单元,用于根据天线相位中心在月球星体坐标系中的位置以及月球在仿真中心时刻的在转动地心坐标系中的位置确定波束的瞄准点在转动地心坐标系中的位置;The first determining unit is used to determine the position of the aiming point of the beam in the rotating earth-centered coordinate system according to the position of the antenna phase center in the lunar astral coordinate system and the position of the moon in the rotating earth-centered coordinate system at the time of the simulation center ; 第一获取单元,用于根据波束的瞄准点在转动地心坐标系中的位置获取波束中心点的坐标,以及所述中心点坐标所对应的经度以及纬度;The first acquisition unit is configured to acquire the coordinates of the center point of the beam according to the position of the aiming point of the beam in the rotating geocentric coordinate system, and the longitude and latitude corresponding to the coordinates of the center point; 第二确定单元,用于选取所述波束中心对应的位置,并将该位置对应的时刻确定为所述仿真中心时刻。The second determining unit is configured to select a position corresponding to the center of the beam, and determine the time corresponding to the position as the simulation center time. 8.根据权利要求6所述的装置,其特征在于,所述第二设置模块,包括:8. The device according to claim 6, wherein the second setting module comprises: 第三确定单元,用于确定在所述回波仿真开始时刻天线相位中心在转动地球坐标系中的第一位置;A third determining unit, configured to determine the first position of the antenna phase center in the rotating earth coordinate system at the start of the echo simulation; 第四确定单元,用于确定在所述回波仿真开始时刻所述点目标在转动地球坐标系中的第二位置;A fourth determining unit, configured to determine a second position of the point target in the rotating earth coordinate system at the start of the echo simulation; 判断单元,用于根据所述第一位置以及所述第二位置的相对矢径判断所述点目标是否被波束照射到;A judging unit, configured to judge whether the point target is irradiated by the beam according to the relative vector radius between the first position and the second position; 第二获取单元,用于获取被波束照射到的点目标的回波相位。The second acquisition unit is configured to acquire the echo phase of the point target irradiated by the beam. 9.根据权利要求6所述的装置,其特征在于,所述月球轨道参数包括以下至少一项:9. The device according to claim 6, wherein the lunar orbit parameters include at least one of the following: 轨道偏心率、近地点位置、升交点位置、升交点赤径、近心点角距以及轨道倾角。Orbital eccentricity, perigee position, ascending node position, ascending node equator, perigee angular distance, and orbital inclination. 10.根据权利要求6至9任意一项所述的装置,其特征在于,所述雷达的系统参数包括以下至少一项:10. The device according to any one of claims 6 to 9, wherein the system parameters of the radar include at least one of the following: 发射波调频率、脉冲持续时间、波束照射时间、天线视角、天线尺寸以及雷达位置。Transmit tone frequency, pulse duration, beam exposure time, antenna viewing angle, antenna size, and radar position.
CN201710642415.2A 2017-07-31 2017-07-31 A kind of echo simulation method and device Active CN107526066B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710642415.2A CN107526066B (en) 2017-07-31 2017-07-31 A kind of echo simulation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710642415.2A CN107526066B (en) 2017-07-31 2017-07-31 A kind of echo simulation method and device

Publications (2)

Publication Number Publication Date
CN107526066A true CN107526066A (en) 2017-12-29
CN107526066B CN107526066B (en) 2020-08-28

Family

ID=60680374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710642415.2A Active CN107526066B (en) 2017-07-31 2017-07-31 A kind of echo simulation method and device

Country Status (1)

Country Link
CN (1) CN107526066B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896038A (en) * 2018-05-15 2018-11-27 中国科学院遥感与数字地球研究所 Month base optical sensor imaging method
CN111025246A (en) * 2019-11-28 2020-04-17 北京遥测技术研究所 Simulation system and method for composite scene imaging of sea surface and ship by using stationary orbit SAR
CN114254485A (en) * 2021-11-25 2022-03-29 清华大学 Radar signal simulation method for micro-motion state of artificial satellite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090224964A1 (en) * 2007-05-08 2009-09-10 Raney Russell K Synthetic aperture radar hybrid-polarity method and architecture for obtaining the stokes parameters of a backscattered field
US20110078498A1 (en) * 2009-09-30 2011-03-31 United States Of America As Represented By The Administrator Of The National Aeronautics And Spac Radiation-hardened hybrid processor
CN102565799A (en) * 2012-01-31 2012-07-11 北京航空航天大学 Unified simulation realization method of multiple-platform multiple-mode SAR (Specific Absorption Rate) echo
CN102879768A (en) * 2012-09-14 2013-01-16 北京航空航天大学 Satellite-borne synthetic aperture radar (SAR) high-fidelity echo simulation method based on steady-state radar cross section (RCS)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090224964A1 (en) * 2007-05-08 2009-09-10 Raney Russell K Synthetic aperture radar hybrid-polarity method and architecture for obtaining the stokes parameters of a backscattered field
US20110078498A1 (en) * 2009-09-30 2011-03-31 United States Of America As Represented By The Administrator Of The National Aeronautics And Spac Radiation-hardened hybrid processor
CN102565799A (en) * 2012-01-31 2012-07-11 北京航空航天大学 Unified simulation realization method of multiple-platform multiple-mode SAR (Specific Absorption Rate) echo
CN102879768A (en) * 2012-09-14 2013-01-16 北京航空航天大学 Satellite-borne synthetic aperture radar (SAR) high-fidelity echo simulation method based on steady-state radar cross section (RCS)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
丁翼星等: ""基于JPL星历的月基SAR多普勒参数估算方法"", 《北京航空航天大学学报》 *
丁翼星等: ""月基对地观测合成孔径雷达系统性能初探"", 《2011第二十四届全国空间探测学术交流会论文》 *
帅平等: "《X射线脉冲星导航系统原理与方法》", 31 July 2009, 中国宇航出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896038A (en) * 2018-05-15 2018-11-27 中国科学院遥感与数字地球研究所 Month base optical sensor imaging method
CN108896038B (en) * 2018-05-15 2022-03-25 中国科学院遥感与数字地球研究所 Lunar-based optical sensor imaging method
CN111025246A (en) * 2019-11-28 2020-04-17 北京遥测技术研究所 Simulation system and method for composite scene imaging of sea surface and ship by using stationary orbit SAR
CN111025246B (en) * 2019-11-28 2021-09-07 北京遥测技术研究所 Simulation system and method for composite scene imaging of sea surface and ship by using stationary orbit SAR
CN114254485A (en) * 2021-11-25 2022-03-29 清华大学 Radar signal simulation method for micro-motion state of artificial satellite
CN114254485B (en) * 2021-11-25 2024-04-19 清华大学 Radar signal simulation method for microscale state of artificial satellite

Also Published As

Publication number Publication date
CN107526066B (en) 2020-08-28

Similar Documents

Publication Publication Date Title
Konopliv et al. The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data
CN102565797B (en) Geometric correction method for spotlight-mode satellite SAR (synthetic aperture radar) image
Willner et al. Phobos control point network, rotation, and shape
CN107765226B (en) SAR satellite radar echo simulation method, system and medium
CN102879768B (en) Satellite-borne synthetic aperture radar (SAR) high-fidelity echo simulation method based on steady-state radar cross section (RCS)
CN101551450B (en) A construction method of a spaceborne polarimetric SAR Faraday rotation effect correction platform
Magri et al. Radar and photometric observations and shape modeling of contact binary near-Earth Asteroid (8567) 1996 HW1
Tang et al. Estimation and correction of geolocation errors in FengYun-3C microwave radiation imager data
CN101915920A (en) A High Resolution Imaging Method for Synthetic Aperture Radar Satellites in Geosynchronous Orbit
CN103675760B (en) A kind of spaceborne geostationary orbit synthetic-aperture radar attitude guidance method
CN107526066B (en) A kind of echo simulation method and device
Lam et al. A robust mission tour for NASA’s planned Europa Clipper mission
CN103076607B (en) Method for realizing sliding spotlight mode based on SAR (Synthetic Aperture Radar) satellite attitude control
CN109800380A (en) The tight imaging geometry model building method that satellite-borne microwave remote sensing instrument detects over the ground
KR102258202B1 (en) Apparatus for generating pseudo-sea surface model for image decoding apparatus based on airborn
CN104597446B (en) Space-borne synthetic aperture radar ground range resolution representation and parameter design method
CN111856423A (en) Satellite-borne SAR echo simulation processing method, device and equipment
Peral et al. KaRIn, the Ka-band radar interferometer of the SWOT mission: design and in-flight performance
Rowlands et al. A simulation study of multi-beam altimetry for lunar reconnaissance orbiter and other planetary missions
CN108896038A (en) Month base optical sensor imaging method
CN108489483A (en) A kind of boat-carrying Stellar orientation instrument list star suboptimum correction algorithm
Brozović et al. Radar observations of spacecraft in lunar orbit
Dyson et al. The TIGER Radar-An Extension of SuperDARN to sub-auroral latitudes
Golubaev Main parameters of meteoroid motion during the fall of the Chelyabinsk meteorite shower on February 15, 2013
Wu et al. Ground resolution analysis based on gradient method in geosynchronous SAR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant