CN107525881A - 一种水域生态健康状态检测方法 - Google Patents

一种水域生态健康状态检测方法 Download PDF

Info

Publication number
CN107525881A
CN107525881A CN201710659177.6A CN201710659177A CN107525881A CN 107525881 A CN107525881 A CN 107525881A CN 201710659177 A CN201710659177 A CN 201710659177A CN 107525881 A CN107525881 A CN 107525881A
Authority
CN
China
Prior art keywords
mrow
water
msub
index
ecology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710659177.6A
Other languages
English (en)
Other versions
CN107525881B (zh
Inventor
刘璇
冯晨
代棋帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201710659177.6A priority Critical patent/CN107525881B/zh
Publication of CN107525881A publication Critical patent/CN107525881A/zh
Application granted granted Critical
Publication of CN107525881B publication Critical patent/CN107525881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/002Determining nitrogen by transformation into ammonia, e.g. KJELDAHL method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Cultivation Of Plants (AREA)

Abstract

本发明提供了一种水域生态健康状态检测方法,首先对考察水域分区,分别采集土壤和水样,记录群落信息;利用土壤和水样获得环境预测值,利用群落信息得到生物多样性指数,结合上述参数计算水域生态健康状态指数,最后根据该指数将考察水域进行划分。本发明提供的一种水域生态健康状态检测方法将水域中水生植物、浮游动物生物群落作为参考之一,同时对水域的水和土壤的环境指标结合分析,运用聚类分析和主成分分析的方法对水域生态健康状态进行分析预测,能够较为客观地体现水与生态健康状态。

Description

一种水域生态健康状态检测方法
技术领域
本发明涉及一种水域生态健康状态检测方法,属于环境污染监测和评价技术领域。
背景技术
根据生物类群可分为鱼类生物完整性指数(fish IBI,F-IBI)、底栖生物完整性指数(benthic IBI,B-IBI,主要选用的是大型底栖无脊椎动物(macroinvertebrate[1]〕、浮游生物完整性指数(plankton IBI,P-IBI)、固着藻类生物完整性指数〔alga IBI,A-IBI,研究热点为硅藻(diatom)〕和水生植物生物完整性指数(aquatic plants IBI,AP-IBI),甚至有学者提出微生物完整性指数(microbe IBI,M-IBI)。
根据类群数量可分为单类群生物完整性指数和多类群生物完整性指数,目前的研究和应用主要集中于前者。从上述分类可见,s-IBI评价的实质是从某类特定生物集群的角度去衡量水生态的健康状况,虽然这比以某种单一生物为载体的评价方法更全面,但它也并不能完全刻画生态系统的完整性,加上不同类群IBI的评价结果往往表现出不一致性,所以现有的生物完整性指数实际上并不能作为水域生态预测的一个标准。
发明内容
为了解决现有技术的不足,本发明提供了一种水域生态健康状态检测方法,将水域中水生植物、浮游动物生物群落作为参考之一,同时对水域的水和土壤的环境指标结合分析,运用聚类分析和主成分分析的方法对水域生态健康状态进行分析预测,能够较为客观地体现水与生态健康状态。
本发明为解决其技术问题所采用的技术方案是:提供了一种水域生态健康状态检测方法,包括以下步骤:
(1)利用棋盘法对考察水域分为N个区,每个区选择n个位点,每个位点的面积为3m×3m,采集位点内土壤和水样,并记录各位点的群落信息;
(2)对各位点采集到的土壤和水样进行测定,得到位点的各项环境质量指标;
设第k个区第j个位点第i项指标为对于步骤(2)测得的各项指标qji,1≤i≤m,1≤k≤N,根据指标qji在表1中的类别Cji,为指标qji的权值赋值:
wji=6-Cji
表1指标分类表
通过以下公式计算该区的环境预测值Dk
其中n为步骤(1)选择的位点数量;
(3)根据群落信息获得每个位点中水样中的物种数和每个物种的个体数占群落总数的比例,利用Shannon-Wiener公式计算设第k个区第j个位点的生物多样性指数Hj
其中,s是第j个位点的物种数,pji表示第i个物种的个体数占群落个体总数的比例;
则该区的生物多样性指数Hk′位n个位点的平均值:
(4)根据各区域的环境预测值和生物多样性指数计算水域生态健康状态指数Ek
Ek=Dk×Hk
(5)根据水域生态健康状态指数Ek的值将考察水域进行划分,该值越小,表明水域生态健康状态越差,该值越大,表明水域生态状态越好。
本发明基于其技术方案所具有的有益效果在于:
本发明水域生态健康状态检测方法将水域中水生植物、浮游动物生物群落作为参考之一,同时对水域的水和土壤的环境指标结合分析,运用聚类分析和主成分分析的方法对水域生态健康状态进行分析预测,能够较为客观地体现水与生态健康状态。
具体实施方式
下面结合实施例对本发明作进一步说明。
本发明提供了一种水域生态健康状态检测方法,包括以下步骤:
(1)利用棋盘法对考察水域分为N个区,每个区选择n个位点,每个位点的面积为3m×3m,采集位点内土壤和水样,土壤样品使用塑料自封袋保存,水样使用塑料小方瓶加酸保存,并记录各位点的群落信息;根据实际情况,可选择浮游动物和水生植物观察其群落特征。土壤中全氮采用凯氏定氮仪测定,全磷、全钾及重金属采用ICP仪测定;水样总氮测定采用紫外分光光度法,总磷、钾及重金属采用ICP仪测定。
(2)对各位点采集到的土壤和水样进行测定,得到位点的各项环境质量指标;
设第k个区第j个位点第i项指标为对于步骤(2)测得的各项指标qji,1≤i≤m,1≤k≤N,根据指标表1中的类别Cji,为指标qji的权值赋值:
wji=6-Cji
表1指标分类表(mg/L)
表中,若指标带有比较富豪,则值域表示范围,例如化学需氧量小于等于15,则其类别为1,化学需氧量的值为17,则其类别为2;再如无量纲的PH值,若其值为6,则其类别为2。
通过以下公式计算该区的环境预测值Dk
其中n为步骤(1)选择的位点数量;
(3)根据群落信息获得每个位点中水样中的物种数和每个物种的个体数占群落总数的比例,利用Shannon-Wiener公式计算设第k个区第j个位点的生物多样性指数Hj
其中,s是第j个位点的物种数,pji表示第i个物种的个体数占群落个体总数的比例;
则该区的生物多样性指数Hk′位n个位点的平均值:
(4)根据各区域的环境预测值和生物多样性指数计算水域生态健康状态指数Ek
Ek=Dk×Hk
(5)根据水域生态健康状态指数Ek的值将考察水域进行划分,该值越小,表明水域生态健康状态越差,该值越大,表明水域生态状态越好。
上述水域生态健康状态指数Ek还能够与水体的理化指标进行相关性分析,期以明确水体退化原因,为后期治理提供依据。
步骤(1)所述分区数量N为49~100。
步骤(1)所述每个区的位点数n至少为3。
本发明水域生态健康状态检测方法将水域中水生植物、浮游动物生物群落作为参考之一,同时对水域的水和土壤的环境指标结合分析,运用聚类分析和主成分分析的方法对水域生态健康状态进行分析预测,能够较为客观地体现水与生态健康状态。

Claims (3)

1.一种水域生态健康状态检测方法,其特征在于包括以下步骤:
(1)利用棋盘法对考察水域分为N个区,每个区选择n个位点,每个位点的面积为3m×3m,采集位点内土壤和水样,并记录各位点的群落信息;
(2)对各位点采集到的土壤和水样进行测定,得到位点的各项环境质量指标;
设第k个区第j个位点第i项指标为对于步骤(2)测得的各项指标qji,1≤i≤m,1≤k≤N,根据指标qji在表1中的类别Cji,为指标qji的权值赋值:
wji=6-Cji
表1指标分类表
通过以下公式计算该区的环境预测值Dk
<mrow> <msub> <mi>D</mi> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
其中n为步骤(1)选择的位点数量;
(3)根据群落信息获得每个位点中水样中的物种数和每个物种的个体数占群落总数的比例,利用Shannon-Wiener公式计算设第k个区第j个位点的生物多样性指数Hj
<mrow> <msub> <mi>H</mi> <mi>j</mi> </msub> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>s</mi> </munderover> <msub> <mi>p</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>log</mi> <mn>2</mn> </msub> <msub> <mi>p</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> </mrow>
其中,s是第j个位点的物种数,pji表示第i个物种的个体数占群落个体总数的比例;
则该区的生物多样性指数Hk′位n个位点的平均值:
<mrow> <msup> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>H</mi> <mi>j</mi> </msub> </mrow> <mi>n</mi> </mfrac> </mrow>
(4)根据各区域的环境预测值和生物多样性指数计算水域生态健康状态指数Ek
Ek=Dk×Hk
(5)根据水域生态健康状态指数Ek的值将考察水域进行划分,该值越小,表明水域生态健康状态越差,该值越大,表明水域生态状态越好。
2.根据权利要求1所述的水域生态健康状态检测方法,其特征在于:步骤(1)所述分区数量N为49~100。
3.根据权利要求1所述的水域生态健康状态检测方法,其特征在于:步骤(1)所述每个区的位点数n至少为3。
CN201710659177.6A 2017-08-04 2017-08-04 一种水域生态健康状态检测方法 Active CN107525881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710659177.6A CN107525881B (zh) 2017-08-04 2017-08-04 一种水域生态健康状态检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710659177.6A CN107525881B (zh) 2017-08-04 2017-08-04 一种水域生态健康状态检测方法

Publications (2)

Publication Number Publication Date
CN107525881A true CN107525881A (zh) 2017-12-29
CN107525881B CN107525881B (zh) 2018-08-10

Family

ID=60680572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710659177.6A Active CN107525881B (zh) 2017-08-04 2017-08-04 一种水域生态健康状态检测方法

Country Status (1)

Country Link
CN (1) CN107525881B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111241484A (zh) * 2020-01-13 2020-06-05 广西大学 一种评估珊瑚礁生物多样性资产的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034214A (zh) * 2010-12-20 2011-04-27 上海勘测设计研究院 一种富营养化湖泊的健康评价方法
CN102496070A (zh) * 2011-12-07 2012-06-13 中国海洋大学 一种河口生态风险评价模型的构建方法
CN102831297A (zh) * 2012-07-27 2012-12-19 中国环境科学研究院 一种湖泊污染成因诊断的集成方法
CN104103016A (zh) * 2014-05-13 2014-10-15 杭州师范大学 一种基于遥感技术的湿地生态系统健康综合评价方法
CN104962620A (zh) * 2015-06-10 2015-10-07 宁波大学 一种基于微生物群落的生态健康评价方法
CN105956406A (zh) * 2016-05-13 2016-09-21 浙江省舟山海洋生态环境监测站 近岸海域生态系统健康评价方法
CN106202960A (zh) * 2016-07-21 2016-12-07 沈阳环境科学研究院 一种基于湖泊水生态系统的健康评价方法
CN106845750A (zh) * 2016-11-04 2017-06-13 南大(常熟)研究院有限公司 一种淮河流域水生态健康状况评价方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034214A (zh) * 2010-12-20 2011-04-27 上海勘测设计研究院 一种富营养化湖泊的健康评价方法
CN102496070A (zh) * 2011-12-07 2012-06-13 中国海洋大学 一种河口生态风险评价模型的构建方法
CN102831297A (zh) * 2012-07-27 2012-12-19 中国环境科学研究院 一种湖泊污染成因诊断的集成方法
CN104103016A (zh) * 2014-05-13 2014-10-15 杭州师范大学 一种基于遥感技术的湿地生态系统健康综合评价方法
CN104962620A (zh) * 2015-06-10 2015-10-07 宁波大学 一种基于微生物群落的生态健康评价方法
CN105956406A (zh) * 2016-05-13 2016-09-21 浙江省舟山海洋生态环境监测站 近岸海域生态系统健康评价方法
CN106202960A (zh) * 2016-07-21 2016-12-07 沈阳环境科学研究院 一种基于湖泊水生态系统的健康评价方法
CN106845750A (zh) * 2016-11-04 2017-06-13 南大(常熟)研究院有限公司 一种淮河流域水生态健康状况评价方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
舒持恺 等: "基于组合赋权的湖泊健康评价物元分析模型", 《水资源与水工程学报》 *
赵漫: "深圳鹅公湾渔业水域生态系统健康状况评价", 《南方农业学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111241484A (zh) * 2020-01-13 2020-06-05 广西大学 一种评估珊瑚礁生物多样性资产的方法

Also Published As

Publication number Publication date
CN107525881B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
Jiang et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu)
Lemley et al. Towards the classification of eutrophic condition in estuaries
Miltner A method and rationale for deriving nutrient criteria for small rivers and streams in Ohio
Jekatierynczuk-Rudczyk et al. The trophic status of Suwałki Landscape Park lakes based on selected parameters (NE Poland)
Schneider et al. Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland
Lee et al. The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake
Ban et al. Application of composite water quality identification index on the water quality evaluation in spatial and temporal variations: a case study in Honghu Lake, China
Orfanidis et al. Size distribution approaches for monitoring and conservation of coastal Cymodocea habitats
Nikolaidis et al. Impact of intensive agricultural practices on drinking water quality in the EVROS Region (NE GREECE) by GIS analysis
Dahm et al. Nutrient dynamics of the Delta: effects on primary producers
Jin et al. The scale-dependence of spatial distribution of reservoir plankton communities in subtropical and tropical China
Esposito et al. Spatial and temporal variability of bacterial communities in high alpine water spring sediments
Gunawardhana et al. Impacts of agricultural practices on water quality in Uma Oya catchment area in Sri Lanka
Weaver et al. Phosphorus status and saturation in soils that drain into the Peel Inlet and Harvey Estuary of Western Australia
CN107525881B (zh) 一种水域生态健康状态检测方法
Tortajada et al. Variability of fresh-and salt-water marshes characteristics on the west coast of France: A spatio-temporal assessment
Okoth et al. Spatial and seasonal variations in phytoplankton community structure in alkaline–saline Lake Nakuru, Kenya
Ruprecht et al. Assessing the validity and sensitivity of microbial processes within a hydrodynamic model
Daza Secco et al. Do testate amoebae communities recover in concordance with vegetation after restoration of drained peatlands?
Smith et al. Intraseasonal variation of phycocyanin concentrations and environmental covariates in two agricultural irrigation ponds in Maryland, USA
Moosavi et al. Spatial variability of plant-available micronutrients in the surface and subsurface layers of a calcareous soil.
Bramley et al. Precision Agriculture for improved environmental outcomes: Some Australian perspectives
Sadegh et al. Seasonal Occurrence of Cyanobacteria and First Detection of Microcystin-LR in Water Column of Foum-Gleita Reservoir, Mauritania
Xu et al. An approach to analyzing spatial patterns in annual dynamics of planktonic ciliate communities and their environmental drivers in marine ecosystems
Mwadzombo et al. Ecological risk assessment on nutrient over-enrichment in water quality: A case study of the Kenyan Coral Reef ecosystems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant