CN107515175A - Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer - Google Patents

Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer Download PDF

Info

Publication number
CN107515175A
CN107515175A CN201710791923.7A CN201710791923A CN107515175A CN 107515175 A CN107515175 A CN 107515175A CN 201710791923 A CN201710791923 A CN 201710791923A CN 107515175 A CN107515175 A CN 107515175A
Authority
CN
China
Prior art keywords
msub
mrow
rsqb
lsqb
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710791923.7A
Other languages
Chinese (zh)
Inventor
林海军
赖小强
黄国良
汪鲁才
杨进宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201710791923.7A priority Critical patent/CN107515175A/en
Publication of CN107515175A publication Critical patent/CN107515175A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane

Abstract

The invention discloses a kind of rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer.The rotary viscometer error compensating method includes:The processing of error compensation model structure, comprises the following steps:N number of viscosity measurement that uncompensated rotary viscometer measurement N kind standard flows obtain is arranged as input sample data according to order from small to large, and it is greater than the natural number equal to 9 using the respective standard viscosity number of N kind standard flows as output sample data, N;The nonlinear error compensation model based on segmentation Newton interpolation based on input sample data and output sample data structure;Compensation deals, comprise the following steps:The viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, error compensation is carried out based on nonlinear error compensation model and calculated to obtain the viscosity number after error compensation.The nonlinearity erron of technical solution of the present invention is less than 3%, repeatability error and is less than 0.2%.

Description

Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer
Technical field
The present invention relates to viscosity measurement technical field, in particular to a kind of rotary viscometer error compensating method, misses Difference compensating device and rotary viscometer.
Background technology
Viscosity is one of important parameter for characterizing fluid properties, is the important indicator for reflecting fluid physics feature.
Rotary viscometer is the key instrument for measuring high viscosity fluid, is suitable for the survey of Newton and non-Newton fluid viscosity Amount, is widely used in the industries such as oil, medicine, chemical fibre.This measuring method principle is simple, easy to use, but by apparatus structure Error (plastic deformation of hairspring and viscosity property, the decentraction of rotor and motor, the mismachining tolerance etc. of rotor) etc. influences, rotation Serious nonlinearity erron be present, it is necessary to carry out error compensation, to improve accuracy of measurement in viscosity apparatus.
Existing digital viscometer instrument, bearing-free in-line viscometer have carried out structure improvement to rotary viscometer, but not had It is related to Error processing and compensation.
In addition, prior art also has a kind of rotary viscometer based on built-in Linux, give hardware circuit and be System Software for Design, but also without reference to error processing method.
Rotary viscometer is complicated, nonlinearity erron factor is more, is not easy to build error compensation model.
The content of the invention
In order to overcome rotary viscometer the problem of serious nonlinearity erron to be present, present inventor devises one kind Based on the rotary viscometer nonlinear error compensation model of segmentation Newton interpolation, to improve the measurement accuracy of viscosity apparatus.
The first aspect of the present invention provides a kind of rotary viscometer error compensating method, including at error compensation model structure Reason and compensation deals,
The error compensation model structure processing comprises the following steps:
N number of viscosity measurement that uncompensated rotary viscometer measurement N kind standard flows are obtained is according to suitable from small to large Sequence arrangement be used as input sample data, and using the respective standard viscosity number of the N kinds standard flow as exporting sample data, N is greater than the natural number equal to 9;
Based on the input sample data and the non-linear mistake of the output sample data structure based on segmentation Newton interpolation Poor compensation model;
The compensation deals comprise the following steps:
The viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, based on the nonlinearity erron Compensation model carries out error compensation and calculated to obtain the viscosity number after error compensation.
Using the respective standard viscosity number of the N kinds standard flow as output sample data refer to export sample data with it is defeated Enter sample data sequentially to arrange correspondingly.
In above-mentioned rotary viscometer error compensating method, the nonlinear error compensation model is as follows:
Wherein,
In formula (1),For lower range section error compensation model,For high range section error compensation model;Formula (2) In, x0,x1,…,xMThe viscosity of the standard flow measured for M+1 input sample data, i.e., uncompensated rotary viscometer Value;f(x0) for first output sample data, i.e., the normal viscosity value of first standard flow;f[x0,x1,…,xM] it is input The M jump business of sample data, i.e.,
a0=f (x0) (5)
And
f(xM) it is the M+1 output sample data;
Other coefficient a2,…,aM-1Using formula (2), (4)-(6), obtained by iteration;
In formula (3), xM,xM+1,…,xN-1Also it is M+1 input sample, f (xM) it is the M+1 output sample data;Sample Total number N=2M+1;f[xM,xM+1,…,xN-1] be input sample data M jump business, i.e.,
b0=f (xM) (8)
And
Other coefficient b2,…,bM-1Using formula (3), (7)-(9), obtained by iteration.
It is worth noting that, formula (2) is M+1 with the sample in formula (3), last sample and formula in formula (2) (3) first sample in is identical, therefore total sample number mesh is still N=2M+1.In addition, first input sample data x0With One output sample data f (x0) initial value 0 can be set to.The viscosity that i.e. first standard sample can assume that is 0 stream Body, now, normal viscosity value and measurement viscosity number are all 0.
In above-mentioned rotary viscometer error compensating method, the viscosity measurement of the standard flow and described tested The viscosity measurement of fluid is calculated using below equation and obtained:
η=k θ (10)
Wherein, k be the rotary viscometer constant, θ be measurement when rotary viscometer first level light shielding part and Subtended angle ratio between second level shadow portion, and
Wherein, Δ T is that the first level light shielding part and the second level shadow portion pass through the rotary viscometer The time interval of photoelectric sensor, TmaxFor subtended angle maximum when time interval.
The second aspect of the present invention provides a kind of rotary viscometer, including control unit, the control unit are used for error compensation Model construction processing and compensation deals,
The error compensation model structure processing comprises the following steps:
N number of viscosity measurement that uncompensated rotary viscometer measurement N kind standard flows are obtained is according to suitable from small to large Sequence arrangement be used as input sample data, and using the respective standard viscosity number of the N kinds standard flow as exporting sample data, N is greater than the natural number equal to 9;
Based on the input sample data and the non-linear mistake of the output sample data structure based on segmentation Newton interpolation Poor compensation model;
The compensation deals comprise the following steps:
The viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, based on the nonlinearity erron Compensation model carries out error compensation and calculated to obtain the viscosity number after error compensation.
In above-mentioned rotary viscometer error compensating method, the nonlinear error compensation model is as follows:
Wherein,
In formula (1),For lower range section error compensation model,For high range section error compensation model;Formula (2) In, x0,x1,…,xMThe viscosity of the standard flow measured for M+1 input sample data, i.e., uncompensated rotary viscometer Value;f(x0) for first output sample data, i.e., the normal viscosity value of first standard flow;f[x0,x1,…,xM] it is input The M jump business of sample data, i.e.,
a0=f (x0) (5)
And
f(xM) it is the M+1 output sample data;
Other coefficient a2,…,aM-1Using formula (2), (4)-(6), obtained by iteration;
In formula (3), xM,xM+1,…,xN-1Also it is M+1 input sample, f (xM) it is the M+1 output sample data;Sample Total number N=2M+1;f[xM,xM+1,…,xN-1] be input sample data M jump business, i.e.,
b0=f (xM) (8)
And
Other coefficient b2,…,bM-1Using formula (3), (7)-(9), obtained by iteration.
In the rotary viscometer, including:First level light shielding part, the second level shadow portion and photoelectric sensor, institute State control unit and determine that the first level light shielding part and the second level shadow portion pass through the photoelectric transfer when actually measuring The time interval of sensor;
The control unit calculates the viscosity measurement for obtaining the standard flow and the measured stream using below equation The viscosity number of body,
η=k θ (10)
Wherein, θ is the subtended angle ratio between the first level light shielding part and the second level shadow portion, k in measurement For the constant of the rotary viscometer;
Wherein, Δ T is the time interval, TmaxFor subtended angle maximum when time interval.
The third aspect of the present invention provides a kind of rotary viscometer error-compensating apparatus, including:
Sample data acquisition module, N number of viscosity measurement that uncompensated rotary viscometer measurement N kind standard flows are obtained Value is used as input sample data according to order arrangement from small to large, and by the respective standard viscosity number of the N kinds standard flow As output sample data, N is greater than the natural number equal to 9;
Model construction module, inserted based on the input sample data and the output sample data structure based on segmentation newton The nonlinear error compensation model of value;
Error compensation module, the viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, is based on The nonlinear error compensation model carries out error compensation and calculated to obtain the viscosity number after error compensation.
In above-mentioned rotary viscometer error-compensating apparatus, the nonlinear error compensation model is as follows:
Wherein,
In formula (1),For lower range section error compensation model,For high range section error compensation model;Formula (2) In, x0,x1,…,xMThe viscosity of the standard flow measured for M+1 input sample data, i.e., uncompensated rotary viscometer Value;f(x0) for first output sample data, i.e., the normal viscosity value of first standard flow;f[x0,x1,…,xM] it is input The M jump business of sample data, i.e.,
a0=f (x0) (5)
And
f(xM) it is the M+1 output sample data;
Other coefficient a2,…,aM-1Using formula (2), (4)-(6), obtained by iteration;
In formula (3), xM,xM+1,…,xN-1Also it is M+1 input sample data, f (xM) it is the M+1 output sample data; Total sample number mesh N=2M+1;f[xM,xM+1,…,xN-1] be input sample data M jump business, i.e.,
b0=f (xM) (8)
And
Other coefficient b2,…,bM-1Using formula (3), (7)-(9), obtained by iteration.
The third aspect of the present invention provides a kind of computer equipment, including memory and processor, and the memory is used In storage computer program, the processor runs the computer program so that the computer performs above-mentioned rotary viscosity Instrument error compensating method.
The fourth aspect of the present invention provides a kind of computer-readable recording medium, and it is stored with above-mentioned computer program.
Compared with the prior art the present invention has the advantage that:Pass through contrast experiment and nonlinearity erron, repeatability error On-the-spot test shows, is less than 3%, repeatability by mistake using the nonlinearity erron of the viscosity apparatus of segmentation Newton interpolation error compensation model Difference is less than 0.2%, better than the technical indicator of the B level rotary viscosimeter instrument of national Specification.
Brief description of the drawings
In order to illustrate more clearly of technical scheme, letter will be made to the required accompanying drawing used in embodiment below Singly introduce, it will be appreciated that the following drawings illustrate only certain embodiments of the present invention, therefore be not construed as to the present invention The restriction of protection domain.
Fig. 1 is the schematic diagram of the rotary viscometer used in one embodiment of the present of invention.
Fig. 2 is the partial schematic diagram of the rotary viscometer used in one embodiment of the present of invention.
Fig. 3 is the indicative flowchart of the viscosity number that detected fluid is obtained after the completion of modeling of the present invention.
Fig. 4 is the schematic diagram of the rotary viscometer error-compensating apparatus of one embodiment of the present of invention.
Embodiment
Below in conjunction with accompanying drawing in the embodiment of the present invention, the technical scheme in the embodiment of the present invention is carried out clear, complete Ground describes, it is clear that described embodiment is only part of the embodiment of the present invention, rather than whole embodiments.
Generally, the component for the embodiment of the present invention being described and illustrated herein in the accompanying drawings can be come with a variety of configurations Arrangement and design.Therefore, the detailed description of the embodiments of the invention to providing in the accompanying drawings is not intended to limit requirement below The scope of the present invention of protection, but it is merely representative of the selected embodiment of the present invention.Based on embodiments of the invention, this area skill The every other embodiment that art personnel are obtained on the premise of creative work is not made, belong to the model that the present invention protects Enclose.
The present invention proposes a kind of rotary viscometer nonlinear error compensation method based on segmentation Newton interpolation, viscous to improve Spend the measurement accuracy of instrument.
The purpose of the present invention is achieved by following technical proposals:The error compensating method includes two parts:Collection Sample data structure compensation model, utilize compensation model progress online compensation.The compensation method step is as follows:
1) collecting sample data.Using the viscosity number of N kind standard flows as output, and arranged according to order from small to large, profit The N number of corresponding viscosity measurement data obtained with the viscometer standard flow before compensation are input;Or glued using standard Spend the test liquid of instrument measurement N kind different viscosities to arrange as output, and according to order from small to large, utilize the viscosity before compensation Instrument measures these test liquids and obtains N number of corresponding viscosity measurement data as input.These inputs, output data constitute sample Notebook data.The viscosity number of 5 kinds of standard flows is at least measured, preferably measures the viscosity number of 9 kinds of standard flows.The more standard of collection Fluid data, error compensation are more accurate.
2) error compensation model is built.Utilize viscosity apparatus nonlinearity erron of these data structure based on segmentation Newton interpolation Compensation model, i.e.,
In formula,
In formula (1),For lower range section error compensation model,For high range section error compensation model;Formula (2) In, x0,x1,…,xMFor M+1 input sample data, f (x0) it is first output sample data;f[x0,x1,…,xM] it is M ranks Difference coefficient, i.e.,
a0=f (x0) (5)
And
Other coefficient a2,…,aM-1Using formula (2), (4)-(6), obtained by iteration;
Similarly, in formula (3), xM,xM+1,…,xN-1Also it is M+1 input sample data, f (xM) it is the M+1 output sample Data;Total sample number mesh N=2M+1;f[xM,xM+1,…,xN-1] be M jump business, i.e.,
b0=f (xM) (8)
And
It is worth noting that, formula (2) is M+1 with the sample in formula (3), last sample and formula in formula (2) (3) first sample in is identical, therefore total sample number mesh is still N=2M+1;Other coefficient b2,…,bM-1Using formula (3), (7)-(9), are obtained by iteration.
2M+1 sample data is substituted into formula (2)-(9) can obtain coefficient a0,a1,…,aM,b0,b1,…,bM, that is, complete Error compensation model structure, and these coefficients can be preserved in memory, prepared for on-line measurement.
3) on-line measurement.Using the viscosity apparatus viscosity measurement before compensation as input, the coefficient a of preservation is called0, a1..., aM, b0, b1..., bM, using formula (1)-(3), calculate the viscosity measurement after obtaining error compensation.
Compared with the prior art the present invention has the advantage that:Pass through contrast experiment and nonlinearity erron, repeatability error On-the-spot test shows, is less than 3%, repeatability by mistake using the nonlinearity erron of the viscosity apparatus of segmentation Newton interpolation error compensation model Difference is less than 0.2%, better than the technical indicator of the B level rotary viscometers of national Specification.
The present invention proposes rotary viscometer error compensating method.It is explained in detail with reference to Fig. 1 and Fig. 2, but simultaneously It is not interpreted as limiting the scope of the present invention.
Embodiment 1
In the present embodiment, the structure of rotary viscometer as illustrated in fig. 1 and 2, mainly include motor 1, photoelectric sensor 2 and 3, The level shadow portion 5 of first level light shielding part 4 and second, hairspring 6, rotor 7, lower protection disk 10, upper protection board 11, original position gear Bar 12, upper axle 13 and lower axle 14.Upper axle 13 is connected through upper protection board 11 with motor 1, and lower axle 14 is through lower protection disk 10 with turning Son 7 is connected, and upper axle 13 and lower axle 14 are connected by hairspring 6.First level light shielding part 4, lower axle 14 are provided with upper axle 13 The second level shadow portion 5 is provided with, before the test begins, the first and second level shadow portions 4 and 5 are all located at original position pin At 12.It is only structural representation to pay attention to Fig. 1 and 2, and practical structures may have differences with diagram.
It is described further below in conjunction with the accompanying drawings:
(1) when rotary viscometer works, control unit (not shown) motor 1 (such as can be stepper motor) is accurate Really rotate smoothly, and rotated by the rotor driven 7 of hairspring 6.When rotor 7 is not disposed in detected fluid 8 and (dallied), rotor 7 It will be overlapped because being not affected by resistance with the synchronous rotary of motor 1, the level shadow portion 5 of first level light shielding part 4 and second, level shadow portion Between there is no a subtended angle, i.e. subtended angle is than θ=0, as shown in Figure 2;When rotor 7 is placed in the detected fluid 8 in container 9 (i.e. normal work Make) when, rotor 7 by detected fluid resistance because will be late by motor 1, and the level shadow portion 5 of first level light shielding part 4 and second is not Overlap, produce subtended angle (i.e. subtended angle is than θ ≠ 0).When the tension force of hairspring 6 balances with fluid resistance, rotor 7 lags behind motor 1 Subtended angle is constant, and now microcontroller is detected by photoelectric sensor 2 and 3 and obtains subtended angle ratio θ, and according to the constant of rotary viscometer K, the viscosities il for obtaining detected fluid is calculated, i.e.,
η=k θ (10)
In formula (10), subtended angle is than θ
In formula (11), Δ T is that the priority of 4 and second level shadow portion of first level light shielding part 5 is produced by photoelectric sensor Raw time interval, the time interval can be the count values of counter/timer, can be stored in the 16bit of such as control unit In counter/timer, TmaxFor subtended angle maximum when time interval, TmaxCorresponding counting when can be subtended angle maximum The count value of device/timer, for example, TmaxDesirable 64000.
(2) measurement data before being compensated using viscosity apparatus is input xi, standard flow normal viscosity value be output f (xi), point The sample data of 9 groups of different viscosities values is not obtained, as shown in table 1.Pay attention to first measurement data and corresponding standard in table 1 below Viscosity number is initial value 0, is a special case, is considered as the tentative standard fluid that viscosity number is 0.It is of course also possible to be not 0, And use the sample data of a standard flow.
The sample data of table 1
Number 1 2 3 4 5 6 7 8 9
xi 0 55 83 339 462 945 3482 6572 18177
f(xi) 0 57 87 325 468 959 3493 6634 18638
(3) using formula (4), (5), each jump business is tried to achieve respectively, as shown in table 2, table 3.
The lower range segment difference business's table of table 2
The high range segment difference business's table of table 3
(4) according to difference coefficient table, final nonlinear error compensation compensation model is obtained, i.e.,
In formula (12), lower range section compensation modelWith high range section compensation modelSeparation xM= 462。
Although separation example given here is 462, those skilled in the art can select accordingly as needed Separation, i.e., selection among (being the 5th here) master sample.Generally, it is about instrument that can select viscosity number 1/2 standard sample of the total range of device is as meso sample.Certainly, selected preferably based on the overall nonlinear characteristic of instrument Select, if the lower range section nonlinearity erron of instrument is big, separation is optional a little bit smaller (i.e. closer to low side);If high range section Nonlinearity erron is big, then separation is optional greatly a bit.
(5) on-line measurement is carried out using formula (12).Brave and fierce Mr.'s toilet cleaner, vertical white liquid detergent, golden dragonfish are eaten respectively It is tested with 8 kinds of detected fluids such as oil, titer, table 4 is partial test data.Wherein, every kind of sample has been carried out three times Measurement, and obtain mean error.As shown in Table 4, sample viscosity mean error is respectively less than 3%, meets national standard " JG B levels requirement as defined in 1002-2005 rotation viscometers ".
Rotary viscometer viscosity measurement data (unit after the compensation of table 4:mPa·s)
Using the titer that viscosity number is 1205mPas in the case of 15 DEG C, to being mended based on segmentation Newton interpolation error The rotary viscometer for repaying model carries out reperformance test.
Table 5 is 10 measurement data.The repeatability error of rotary viscometer can be obtained about by table 5 and following formula (13) For 0.116%, much smaller than the requirement for being less than 0.5% as defined in national standard " JJG 1002-2005 rotation viscometers ".
The repeatability error data of table 5
Mean errorFor
Hereinbefore, it is fully described and processing and compensation deals is built by error compensation model to obtain detected fluid Error compensation after viscosity number complete procedure.Obviously, in the present invention, it is being directed to rotary viscometer structure using standard flow After building error compensation model, afterwards for that in the viscosity measurement of a variety of samples, without repeating to model, but can weigh Again error compensation is carried out using the error compensation model.
Fig. 3 shows the indicative flowchart for the viscosity number that detected fluid is obtained after the completion of modeling.
In step S210, the uncompensated viscosity number of rotary viscometer acquisition detected fluid is utilized.For example, first, obtain The priority of 4 and second level shadow portion of first level light shielding part 5 of Fig. 1 rotary viscometer passes through caused by photoelectric sensor 2 and 3 Time interval;Then, subtended angle ratio is calculated using formula as escribed above (11);Finally, calculated using formula (10) and do not compensated Viscosity number, that is, obtain error compensation model input x.
In step S220, error compensation model is called to calculate the viscosity number after compensation.For example, in above-described embodiment 1, adjust The viscosity number after obtaining error compensation is calculated with formula (12).
Step S220 execution can be completed in Fig. 1 rotary viscometer, such as can pass through the control of rotary viscometer Portion (such as CPU) processed performs.
Step S220 can also be performed by computer equipment independently of rotary viscometer etc., in the case, the calculating Machine equipment obtains uncompensated viscosity value data from rotary viscometer, utilizes the error compensation mould of storage on the computer device Type is calculated.
Similarly, the structure of error compensation model can both be built by the control unit of rotary viscometer, can also be by above-mentioned Built independently of the computer equipment of rotary viscometer.
The present invention also provides a kind of rotary viscometer error-compensating apparatus.The rotary viscometer error compensation shown in Fig. 4 Device 200 includes:
Sample data acquisition module 210, N number of viscosity that uncompensated rotary viscometer measurement N kind standard flows are obtained Measured value is used as input sample data according to order arrangement from small to large, and the respective standard of the N kinds standard flow is glued Angle value is greater than the natural number equal to 9 as output sample data, N;
Model construction module 220, based on the input sample data and the output sample data structure based on segmentation ox The nonlinear error compensation model for interpolation of pausing;
Error compensation module 230, the viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, base Error compensation is carried out in the nonlinear error compensation model to calculate to obtain the viscosity number after error compensation.
In addition, present invention also offers a kind of computer equipment, the computer equipment can be desktop computer, portable Notebook etc..The computer equipment includes memory and processor, and memory can be used for storing computer program, and processor passes through The computer program is run, so that computer equipment performs the above method or above-mentioned rotary viscometer error-compensating apparatus In modules function.
Memory can include high-speed random access memory, can also include nonvolatile memory, for example, at least one Individual disk memory, flush memory device or other volatile solid-state parts.
The present embodiment additionally provides a kind of computer-readable storage medium, for storing the calculating used in above computer equipment Machine program.
In several embodiments provided herein, it should be understood that disclosed apparatus and method, can also pass through Other modes are realized.Device embodiment described above is only schematical, for example, flow chart and structure in accompanying drawing Figure shows the system frame in the cards of the device of multiple embodiments according to the present invention, method and computer program product Structure, function and operation.
In addition, each functional module or unit in each embodiment of the present invention can integrate and to form an independence Part or modules individualism, can also two or more modules be integrated to form an independent part.
If the function is realized in the form of software function module and is used as independent production marketing or in use, can be with It is stored in a computer read/write memory medium.Based on such understanding, technical scheme is substantially in other words The part to be contributed to prior art or the part of the technical scheme can be embodied in the form of software product, the meter Calculation machine software product is stored in a storage medium, including some instructions are make it that a computer equipment (can be intelligence Can mobile phone, personal computer, server or network equipment etc.) perform each embodiment methods described of the present invention whole or Part steps.And foregoing storage medium includes:USB flash disk, mobile hard disk, read-only storage (ROM, Read-Only Memory), Random access memory (RAM, Random Access Memory), magnetic disc or CD etc. are various can be with store program codes Medium.
The foregoing is only a specific embodiment of the invention, but protection scope of the present invention is not limited thereto, any Those familiar with the art the invention discloses technical scope in, change or replacement can be readily occurred in, should all be contained Cover within protection scope of the present invention.

Claims (10)

1. a kind of rotary viscometer error compensating method, it is characterised in that build processing and compensation including error compensation model Processing,
The error compensation model structure processing comprises the following steps:
N number of viscosity measurement that uncompensated rotary viscometer measurement N kind standard flows obtain is arranged according to order from small to large Row are used as input sample data, and are using the respective standard viscosity number of the N kinds standard flow as output sample data, N Natural number more than or equal to 9;
Mended based on the input sample data and the nonlinearity erron of the output sample data structure based on segmentation Newton interpolation Repay model;
The compensation deals comprise the following steps:
The viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, based on the nonlinear error compensation Model carries out error compensation and calculated to obtain the viscosity number after error compensation.
2. rotary viscometer error compensating method according to claim 1, it is characterised in that the nonlinear error compensation Model is as follows:
Wherein,
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mi>b</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
In formula (1),For lower range section error compensation model,For high range section error compensation model;In formula (2), x0,x1,…,xMThe viscosity number of the standard flow measured for M+1 input sample data, i.e., uncompensated rotary viscometer; f(x0) for first output sample data, i.e., the normal viscosity value of first standard flow;f[x0,x1,…,xM] it is input sample The M jump business of notebook data, i.e.,
<mrow> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
a0=f (x0) (5)
And
<mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
f(xM) it is the M+1 output sample data;
Other coefficient a2,…,aM-1Using formula (2), (4)-(6), obtained by iteration;
In formula (3), xM,xM+1,…,xN-1Also it is M+1 input sample data, f (xM) it is the M+1 output sample data;Sample Total number N=2M+1;f[xM,xM+1,…,xN-1] be input sample data M jump business, i.e.,
<mrow> <msub> <mi>b</mi> <mi>M</mi> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
b0=f (xM) (8)
And
<mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Other coefficient b2,…,bM-1Using formula (3), (7)-(9), obtained by iteration.
3. rotary viscometer error compensating method according to claim 1, it is characterised in that the viscosity of the standard flow Measured value and the viscosity measurement of the detected fluid are calculated using below equation to be obtained:
η=k θ (10)
Wherein, k is the constant of the rotary viscometer, and θ is the first level light shielding part and second of the rotary viscometer in measurement Subtended angle ratio between level shadow portion, and
<mrow> <mi>&amp;theta;</mi> <mo>=</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>T</mi> </mrow> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein, the photoelectricity that Δ T is the first level light shielding part and the second level shadow portion passes through the rotary viscometer The time interval of sensor, TmaxFor subtended angle maximum when time interval.
4. a kind of rotary viscometer, it is characterised in that including control unit, the control unit is for the processing of error compensation model structure And compensation deals,
The error compensation model structure processing comprises the following steps:
N number of viscosity measurement that uncompensated rotary viscometer measurement N kind standard flows obtain is arranged according to order from small to large Row are used as input sample data, and are using the respective standard viscosity number of the N kinds standard flow as output sample data, N Natural number more than or equal to 9;
Mended based on the input sample data and the nonlinearity erron of the output sample data structure based on segmentation Newton interpolation Repay model;
The compensation deals comprise the following steps:
The viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, based on the nonlinear error compensation Model carries out error compensation and calculated to obtain the viscosity number after error compensation.
5. rotary viscometer according to claim 4, it is characterised in that the nonlinear error compensation model is as follows:
Wherein,
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mi>b</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
In formula (1),For lower range section error compensation model,For high range section error compensation model;In formula (2), x0,x1,…,xMThe viscosity number of the standard flow measured for M+1 input sample data, i.e., uncompensated rotary viscometer; f(x0) for first output sample, i.e., the normal viscosity value of first standard flow;f[x0,x1,…,xM] it is input sample number According to M jump business, i.e.,
<mrow> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
a0=f (x0) (5)
And
<mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
f(xM) it is the M+1 output sample data;
Other coefficient a2,…,aM-1Using formula (2), (4)-(6), obtained by iteration;
In formula (3), xM,xM+1,…,xN-1Also it is M+1 input sample, f (xM) it is the M+1 output sample data;Total sample number Mesh N=2M+1;f[xM,xM+1,…,xN-1] be input sample data M jump business, i.e.,
<mrow> <msub> <mi>b</mi> <mi>M</mi> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
b0=f (xM) (8)
And
<mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Other coefficient b2,…,bM-1Using formula (3), (7)-(9), obtained by iteration.
6. rotary viscometer according to claim 4, it is characterised in that the rotary viscometer includes:First level hides Light portion, the second level shadow portion and photoelectric sensor, the control unit determine the first level light shielding part when actually measuring The time interval for passing through the photoelectric sensor with the second level shadow portion;
The control unit calculates the viscosity measurement for obtaining the standard flow and the detected fluid using below equation Viscosity number,
η=k θ (10)
Wherein, θ is the subtended angle ratio between the first level light shielding part and the second level shadow portion in measurement, and k is institute State the constant of rotary viscometer;
<mrow> <mi>&amp;theta;</mi> <mo>=</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>T</mi> </mrow> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Δ T is the time interval, TmaxFor subtended angle maximum when time interval.
A kind of 7. rotary viscometer error-compensating apparatus, it is characterised in that including:
Sample data acquisition module, by the uncompensated rotary viscometer obtained N number of viscosity measurement of measurement N kind standard flows by Be used as input sample data according to order arrangement from small to large, and using the respective standard viscosity number of the N kinds standard flow as Sample data is exported, N is greater than the natural number equal to 9;
Model construction module, based on the input sample data and the output sample data structure based on segmentation Newton interpolation Nonlinear error compensation model;
Error compensation module, the viscosity measurement for the detected fluid measured for uncompensated rotary viscometer, based on described Nonlinear error compensation model carries out error compensation and calculated to obtain the viscosity number after error compensation.
8. rotary viscometer error-compensating apparatus according to claim 7, it is characterised in that the nonlinear error compensation Model is as follows:
Wherein,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>...</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>H</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msub> <mi>b</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
In formula (1),For lower range section error compensation model,For high range section error compensation model;In formula (2), x0,x1,…,xMThe viscosity number of the standard flow measured for M+1 input sample data, i.e., uncompensated rotary viscometer; f(x0) for first output sample data, i.e., the normal viscosity value of first standard flow;f[x0,x1,…,xM] it is input sample The M jump business of notebook data, i.e.,
<mrow> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
a0=f (x0) (5)
And
<mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
f(xM) it is the M+1 output sample data;
Other coefficient a2,…,aM-1Using formula (2), (4)-(6), obtained by iteration;
In formula (3), xM,xM+1,…,xN-1Also it is M+1 input sample, f (xM) it is the M+1 output sample data;Total sample number Mesh N=2M+1;f[xM,xM+1,…,xN-1] be input sample data M jump business, i.e.,
<mrow> <msub> <mi>b</mi> <mi>M</mi> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
b0=f (xM) (8)
And
<mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Other coefficient b2,…,bM-1Using formula (3), (7)-(9), obtained by iteration.
9. a kind of computer equipment, it is characterised in that including memory and processor, the memory is used to store computer Program, the processor runs the computer program so that the computer is performed according to any one of claims 1 to 3 institute The rotary viscometer error compensating method stated.
10. a kind of computer-readable recording medium, it is characterised in that it is stored with the computer program described in claim 9.
CN201710791923.7A 2017-09-05 2017-09-05 Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer Pending CN107515175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710791923.7A CN107515175A (en) 2017-09-05 2017-09-05 Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710791923.7A CN107515175A (en) 2017-09-05 2017-09-05 Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer

Publications (1)

Publication Number Publication Date
CN107515175A true CN107515175A (en) 2017-12-26

Family

ID=60725138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710791923.7A Pending CN107515175A (en) 2017-09-05 2017-09-05 Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer

Country Status (1)

Country Link
CN (1) CN107515175A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8415065D0 (en) * 1983-06-29 1984-07-18 Rheometrics Inc Compensated rheometer
SU1276957A1 (en) * 1984-12-05 1986-12-15 Пензенский Политехнический Институт Rotary electric viscosimeter
CN101692033A (en) * 2009-09-29 2010-04-07 昆明理工大学 Outward-turning type coaxial cylinder viscometer of hollow cylinder type optical fiber Bragg grating
CN101887001A (en) * 2009-05-15 2010-11-17 澳思登科学仪器(上海)有限公司 Method for correcting rotary digital display viscometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8415065D0 (en) * 1983-06-29 1984-07-18 Rheometrics Inc Compensated rheometer
SU1276957A1 (en) * 1984-12-05 1986-12-15 Пензенский Политехнический Институт Rotary electric viscosimeter
CN101887001A (en) * 2009-05-15 2010-11-17 澳思登科学仪器(上海)有限公司 Method for correcting rotary digital display viscometer
CN101692033A (en) * 2009-09-29 2010-04-07 昆明理工大学 Outward-turning type coaxial cylinder viscometer of hollow cylinder type optical fiber Bragg grating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赖小强等: "智能旋转式粘度仪设计", 《中国学位论文全文数据库》 *

Similar Documents

Publication Publication Date Title
Cheung et al. Testing moderation in business and psychological studies with latent moderated structural equations
Barua et al. Artificial neural network–based drought forecasting using a nonlinear aggregated drought index
CN108520460A (en) Business datum calculates processing method, device, computer equipment and storage medium
CN106095867A (en) A kind of book recommendation method based on industry analysis and device
Pan et al. Measuring structural quality of object-oriented softwares via bug propagation analysis on weighted software networks
Blake et al. Using the topology of large-scale structure in the WiggleZ Dark Energy Survey as a cosmological standard ruler
CN104504583B (en) The evaluation method of grader
CN114492211B (en) Residual oil distribution prediction method based on autoregressive network model
CN103838905B (en) The emulation mode of the transistor model of high/low temperature mismatch properties can be described
CN107589391A (en) A kind of methods, devices and systems for detecting electric power meter global error
CN106021037A (en) Chip register automation simulation verification method based on technological manual extraction
CN110019660A (en) A kind of Similar Text detection method and device
CN107590351A (en) A kind of centrifugal pump lift specificity analysis and the method for prediction
CN105975486A (en) Information recommendation method and apparatus
CN113722790A (en) BIM technology-based model engineering quantity statistical method
CN102879061B (en) Water gauge error correction method based on fitted equation
CN103793032B (en) Method and apparatus for determining electrification reset
CN110516920A (en) Gyroscope credit rating appraisal procedure based on index fusion
CN105424074A (en) Sensor calibration system, control method and control device thereof
CN107067276A (en) Determine the method and device of object influences power
CN103542905A (en) Water meter flow identifying method
CN107515175A (en) Rotary viscometer error compensating method, error-compensating apparatus and rotary viscometer
CN107133328A (en) Pipeline buried depth accuracy checking method and device
CN106951654A (en) Complicated coupling structural dynamic characteristics parameter recognition methods based on bounded-but-unknown uncertainty
CN114490412A (en) Three-dimensional CAD software performance measurement method and device based on self-subtraction reverse cloud generator

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171226

WD01 Invention patent application deemed withdrawn after publication