CN107515030A - A kind of each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter determines method - Google Patents

A kind of each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter determines method Download PDF

Info

Publication number
CN107515030A
CN107515030A CN201710760430.7A CN201710760430A CN107515030A CN 107515030 A CN107515030 A CN 107515030A CN 201710760430 A CN201710760430 A CN 201710760430A CN 107515030 A CN107515030 A CN 107515030A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
sound channel
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710760430.7A
Other languages
Chinese (zh)
Other versions
CN107515030B (en
Inventor
刘桂雄
陈国宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710760430.7A priority Critical patent/CN107515030B/en
Publication of CN107515030A publication Critical patent/CN107515030A/en
Application granted granted Critical
Publication of CN107515030B publication Critical patent/CN107515030B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The invention discloses a kind of each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter to determine method, including:Establish the projection model of the wherein single sound channel of multichannel ultrasonic flowmeter;Based on single sound channel projection model, sound channel overlay area Velocity Formula is derived;According to Reynolds number size, tube wall degree of roughness, each sound channel flow velocity weight coefficient of calculating multichannel ultrasonic flowmeter.The suitable different type of the present invention, different size, different shape size multichannel ultrasonic flowmeter, each sound channel flow velocity weight coefficient for solving multichannel ultrasonic flowmeter determines problem, contribute to the cost of reduction multichannel flowmeter, promote multichannel ultrasonic flowmeter application.

Description

A kind of each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter determines method
Technical field
The present invention relates to flowmeter performance lift technique field, more particularly to a kind of each sound channel of multichannel ultrasonic flowmeter Flow velocity weight coefficient determines method.
Background technology
Metering is industrial eyes.Flow measurement is one of part of measuring science technology, and it is passed through with national Ji, national defense construction, scientific research have close relationship.This work is carried out, to ensureing product quality, improving production efficiency, rush Enter science and technology development all have the function that it is important, it is particularly more and more high in energy crisis, industrial production automation degree Current era, status of the flowmeter in national economy and effect it is more obvious.
As pipe diameter increases, measurement range becomes wide, the information of flow that single sound channel can obtain is relatively limited, passes through Increase number of channels is to improve flow measurement accuracy important method, wherein staggered form to lift sound channel stream field level of coverage Multichannel number can be more, and change is flexible, larger sound channel design space be present, complexity is high, can offset radial flow speed and cause Error, better performances, in being, the important equipment of large diameter pipe flow measurement.But the sound channel weight coefficient of existing multichannel also lacks Weary more unified determination method, process are complicated.
The content of the invention
In order to solve the above technical problems, it is an object of the invention to provide a kind of each sound channel flow velocity of multichannel ultrasonic flowmeter Weight coefficient determines method, and each sound channel flow velocity weight coefficient that this method solve multichannel ultrasonic flowmeter determines problem, has Help reduce the application cost of multichannel flowmeter.
The purpose of the present invention is realized by following technical scheme:
A kind of each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter determines method, including:
A establishes the projection model of the wherein single sound channel of multichannel ultrasonic flowmeter;
B is based on single sound channel projection model, derives sound channel overlay area Velocity Formula;
According to Reynolds number size, tube wall degree of roughness, each sound channel flow velocity weighting for calculating multichannel ultrasonic flowmeter is C Number.
Compared with prior art, one or more embodiments of the invention can have the following advantages that:
The suitable different type of the present invention, different size, different shape size multichannel ultrasonic flowmeter, solve multichannel Each sound channel flow velocity weight coefficient of ultrasonic flowmeter determines problem, helps to reduce the cost of multichannel flowmeter, promotes more sound Road ultrasonic flowmeter application.
Brief description of the drawings
Fig. 1 is that each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter determines method flow;
Fig. 2 is the projection model figure of the wherein single sound channel of multichannel ultrasonic flowmeter.
Embodiment
To make the object, technical solutions and advantages of the present invention clearer, below in conjunction with embodiment and accompanying drawing to this hair It is bright to be described in further detail.
As shown in figure 1, method flow is determined for each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter, including:
Step 10 establishes the projection model of the wherein single sound channel of multichannel ultrasonic flowmeter;
Step 20 is based on single sound channel projection model, derives sound channel overlay area Velocity Formula;
According to Reynolds number size, tube wall degree of roughness, each sound channel flow velocity for calculating multichannel ultrasonic flowmeter adds step 30 Weight coefficient.
The projection model of the wherein single sound channel of above-mentioned multichannel ultrasonic flowmeter, be using any sound channel as example, rather than Particular channel.
Single sound channel i in the step 10 in multichannel is by Np_iDuan Shengdao sections are formed, wherein sound channel section Pi,jPi,j+1With Origin O distances are di,j, 1≤j≤Np_i;To wherein one section of sound channel section Pi,jPi,j+1P ' is projected as in cross-section of pipelinei,jP′i,j+1, P′i,jP′i,j+1Length is li,j, corresponding central angle is 2 αi,j, internal diameter of the pipeline Dp, sound channel width is Dsig
Flow velocity is v (r), P ' on r distribution function on cross section in above-mentioned steps 20i,jP′i,j+1Regional fluid is averaged Flow velocity isThen by P 'i,jP′i,j+1FlowInfinitesimal δ l at r are pointed to, if infinitesimal region flow velocity is δ v, then pass through infinitesimal flow δ Q ≈ δ v δ lDsig;AgainBoth sides Integrate simultaneously:
AgainTherefore
To by Np_iThe single sound channel i that Duan Shengdao sections are formed, its overlay area Velocity Formula are
In formula, Np_iThe sound channel hop count included for single sound channel i, v (r) are distribution letter of the flow velocity on cross section on r Number, αi,jFor Np_iDuan Shengdao projection Ps 'i,jP′i,j+1The half of corresponding central angle, di,jFor sound channel section projection P 'i,jP′i,j+1 With origin O distances, li,jFor sound channel section projection P 'i,jP′i,j+1Length.
When reynolds number Re≤2300, the single sound channel i of multichannel flow velocity weight coefficient is:
As reynolds number Re > 2300, hlf=34.2Dp/Re0.875< 0.0391Dp, and hlfExponentially subtract with Re increases It is small, thus whole cross section can be calculated ω with transition zone, turbulent-flow core heart districti
If inner-walls of duct is smooth, the single sound channel i of multichannel flow velocity weight coefficient is:
If inner-walls of duct is coarse, the single sound channel i of multichannel flow velocity weight coefficient is:
In formula, DpFor internal diameter of the pipeline, Np_iFor sound channel i sound channel hop count, di,jFor sound channel section Pi,jPi,j+1With origin O away from From,Pipeline section mean flow rate, e are natural constant, μfluidFor fluid kinematic viscosity coefficient, ρfluidFor fluid density, f= 0.79·Re-0.25For Fanning friction factor, kδFor the pipeline equivalent coefficient of roughness.
Although disclosed herein embodiment as above, described content only to facilitate understand the present invention and adopt Embodiment, it is not limited to the present invention.Any those skilled in the art to which this invention pertains, this is not being departed from On the premise of the disclosed spirit and scope of invention, any modification and change can be made in the implementing form and in details, But the scope of patent protection of the present invention, still should be subject to the scope of the claims as defined in the appended claims.

Claims (4)

1. a kind of each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter determines method, it is characterised in that methods described bag Include:
A establishes the projection model of the wherein single sound channel of multichannel ultrasonic flowmeter;
B is based on single sound channel projection model, derives sound channel overlay area Velocity Formula;
C is according to Reynolds number size, tube wall degree of roughness, each sound channel flow velocity weight coefficient of calculating multichannel ultrasonic flowmeter.
2. each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter as claimed in claim 1 determines method, its feature exists In the single sound channel i in the step A in multichannel is by Np_iDuan Shengdao sections are formed, wherein sound channel section Pi,jPi,j+1With origin O away from From for di,j, 1≤j≤Np_i;To wherein one section of sound channel section Pi,jPi,j+1P ' is projected as in cross-section of pipelinei,jP′i,j+1, P 'i, jP′i,j+1Length is li,j, corresponding central angle is 2 αi,j, internal diameter of the pipeline Dp, sound channel width is Dsig
3. each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter as claimed in claim 1 determines method, it is characterised in that institute It is v (r), P ' on r distribution function on cross section to state flow velocity in step Bi,jP′i,j+1Regional fluid mean flow rate isThen pass through P′i,jP′i,j+1FlowInfinitesimal δ l at r are pointed to, if infinitesimal region flow velocity is δ v, pass through infinitesimal flow δ Q ≈δv·δl·Dsig;Again Both sides integrate simultaneously:
<mrow> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </msubsup> <mi>2</mi> <mo>&amp;CenterDot;</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>D</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>/</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>&amp;alpha;</mi> </mrow>
AgainTherefore
<mrow> <msub> <mover> <mi>v</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </msubsup> <mn>2</mn> <mo>&amp;CenterDot;</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>D</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>/</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>&amp;alpha;</mi> </mrow> <mrow> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mi>d</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> </mrow> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </msubsup> <mn>2</mn> <mo>&amp;CenterDot;</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>/</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>&amp;alpha;</mi> </mrow> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mfrac> </mrow>
To by Np_iThe single sound channel i that Duan Shengdao sections are formed, its overlay area Velocity Formula are
<mrow> <msub> <mover> <mi>v</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </msubsup> <mn>2</mn> <mo>&amp;CenterDot;</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>/</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>&amp;alpha;</mi> <mo>/</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>j</mi> <mo>&amp;le;</mo> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
In formula, Np_iThe sound channel hop count included for single sound channel i, v (r) are distribution function of the flow velocity on cross section on r, αi,j For Np_iDuan Shengdao projection Ps 'i,jP′i,j+1The half of corresponding central angle, di,jFor sound channel section projection P 'i,jP′i,j+1With origin O Distance, li,jFor sound channel section projection P 'i,jP′i,j+1Length.
4. each sound channel flow velocity weight coefficient of the multichannel ultrasonic flowmeter as described in claim 1 or 3 determines method, its feature It is,
When reynolds number Re≤2300, the single sound channel i of multichannel flow velocity weight coefficient is
<mrow> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <mrow> <mo>(</mo> <mn>2</mn> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mn>4</mn> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> <mo>+</mo> <mo>(</mo> <mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mn>4</mn> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mrow> <mn>3</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <mn>8</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mn>4</mn> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
As reynolds number Re > 2300, hlf=34.2Dp/Re0.875< 0.0391Dp, and hlfExponentially reduce with Re increases, because And whole cross section can be calculated ω with transition zone, turbulent-flow core heart districti
If inner-walls of duct is smooth, the single sound channel i of multichannel flow velocity weight coefficient is
<mrow> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mfrac> <mi>f</mi> <mn>2</mn> </mfrac> </msqrt> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <mn>11</mn> <mo>+</mo> <mn>11.5</mn> <mi>lg</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <mover> <mi>v</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>&amp;rho;</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>u</mi> <mi>i</mi> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>e&amp;mu;</mi> <mrow> <mi>f</mi> <mi>l</mi> <mi>u</mi> <mi>i</mi> <mi>d</mi> </mrow> </msub> </mrow> </mfrac> <msqrt> <mfrac> <mi>f</mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> <mo>+</mo> <mn>11.5</mn> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi>lg</mi> <mo>(</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mo>-</mo> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mrow> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
If inner-walls of duct is coarse, the single sound channel i of multichannel flow velocity weight coefficient is
<mrow> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mfrac> <mi>f</mi> <mn>2</mn> </mfrac> </msqrt> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>p</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> </munderover> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <mn>16.96</mn> <mo>+</mo> <mn>11.5</mn> <mi>lg</mi> <mrow> <mo>(</mo> <mfrac> <mn>2</mn> <mrow> <msub> <mi>ek</mi> <mi>&amp;delta;</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> <mo>+</mo> <mn>11.5</mn> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi>lg</mi> <mo>(</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> <mo>-</mo> <msqrt> <mrow> <msubsup> <mi>D</mi> <mi>p</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mrow> <mrow> <mn>2</mn> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
In formula, DpFor internal diameter of the pipeline, Np_iFor sound channel i sound channel hop count, di,jFor sound channel section Pi,jPi,j+1With origin O distance, Pipeline section mean flow rate, e are natural constant, μfluidFor fluid kinematic viscosity coefficient, ρfluidFor fluid density, f=0.79 Re-0.25For Fanning friction factor, kδFor the pipeline equivalent coefficient of roughness.
CN201710760430.7A 2017-08-30 2017-08-30 A kind of each sound channel flow velocity weighting coefficient of multichannel ultrasonic flowmeter determines method Active CN107515030B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710760430.7A CN107515030B (en) 2017-08-30 2017-08-30 A kind of each sound channel flow velocity weighting coefficient of multichannel ultrasonic flowmeter determines method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710760430.7A CN107515030B (en) 2017-08-30 2017-08-30 A kind of each sound channel flow velocity weighting coefficient of multichannel ultrasonic flowmeter determines method

Publications (2)

Publication Number Publication Date
CN107515030A true CN107515030A (en) 2017-12-26
CN107515030B CN107515030B (en) 2019-08-23

Family

ID=60724565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710760430.7A Active CN107515030B (en) 2017-08-30 2017-08-30 A kind of each sound channel flow velocity weighting coefficient of multichannel ultrasonic flowmeter determines method

Country Status (1)

Country Link
CN (1) CN107515030B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074873A (en) * 2013-02-07 2013-05-01 天津大学 Channel arrangement method of multichannel ultrasonic flow meter in nonideal flow field
JP2015078962A (en) * 2013-10-18 2015-04-23 独立行政法人 宇宙航空研究開発機構 Flow measuring method and flow measuring apparatus
CN106017582A (en) * 2016-05-06 2016-10-12 中南大学 A pitot tube flow measuring method based on the tube diameter dichotomy principle
CN106895890A (en) * 2017-04-25 2017-06-27 浙江大学 A kind of multichannel ultrasonic gas flowmeter sound channel weight coefficient computational methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074873A (en) * 2013-02-07 2013-05-01 天津大学 Channel arrangement method of multichannel ultrasonic flow meter in nonideal flow field
JP2015078962A (en) * 2013-10-18 2015-04-23 独立行政法人 宇宙航空研究開発機構 Flow measuring method and flow measuring apparatus
CN106017582A (en) * 2016-05-06 2016-10-12 中南大学 A pitot tube flow measuring method based on the tube diameter dichotomy principle
CN106895890A (en) * 2017-04-25 2017-06-27 浙江大学 A kind of multichannel ultrasonic gas flowmeter sound channel weight coefficient computational methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIU Y, DU G, LIU Z等: "The profile-linear average velocity for the transition in pipes based on the method of LES", 《JOURNAL OF HYDRODYNAMICS》 *
刘永辉: "圆管过渡区流速特性的研究", 《中国博士学位论文全文数据库工程科技2辑》 *
周迈: "《高等数学上》", 30 September 2016, 南开大学出版社 *
李良,周雄: "《工程流体力学》", 31 August 2016, 冶金工业出版社 *

Also Published As

Publication number Publication date
CN107515030B (en) 2019-08-23

Similar Documents

Publication Publication Date Title
Hawthorne Secondary circulation in fluid flow
Kim et al. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations
CN102087130B (en) Computational fluid dynamics (CFD) technology-based method for optimizing acoustic path of multi-path ultrasonic flowmeter assembled in elbow pipe
CN102750426B (en) Flow conditioner rectifying effect judging method based on CFD (Computational Fluid Dynamics) technology
CN101266718A (en) Traffic optimization control method based on intersection group
CN103074873B (en) Channel arrangement method of multichannel ultrasonic flow meter in nonideal flow field
CN102607484B (en) Variable-interval self-adaptive measuring point-searching aircraft panel normal vector determination method
CN105894809B (en) A kind of segmented urban road traffic state method of estimation
Kundu et al. An analytical model for velocity distribution and dip-phenomenon in uniform open channel flows
CN106980758B (en) Rapid calculation method for flow field velocity of injection-production well pattern
CN106682287A (en) Design method of inner and outer duct molded line of turbofan engine
CN103674469A (en) Experimental method for coupling pipe network operating characteristics of mine fans and device thereof
CN104727811A (en) Productivity prediction method of fishbone horizontal well segmented coupling
CN109163159A (en) Diversion component and preparation method thereof for variable cross-section elbow
CN108625337A (en) A kind of method of sandy riverbed section regulated water stage below determining tidal current limit
CN102902849A (en) Simplified design method for highway easement curves
CN107515030A (en) A kind of each sound channel flow velocity weight coefficient of multichannel ultrasonic flowmeter determines method
CN109931995A (en) A method of obtaining gas ultrasonic flowmeter internal acoustic field
CN110158551A (en) A kind of optimum design method of flood discharging tunnel multi-pass stomata air supply system
CN105444828B (en) The design method of the rectifier of ultrasonic flowmeter
CN104198000A (en) Oil-gas-water three-phase flow array type electromagnetic correlation flow measurement method
CN108052692A (en) The computational methods of rubbish migration rule in pneumatic transport pipeline
Tamura et al. Aerodynamic control of wind-induced vibrations and flow around super-tall buildings
CN207675248U (en) Multistage shrinks combined rectifier
CN103353319A (en) Moisture flow measuring method based on straight through type gas ultrasonic flowmeter

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant