CN107506862B - Online real-time grinding particle size prediction system and method based on Internet of things - Google Patents
Online real-time grinding particle size prediction system and method based on Internet of things Download PDFInfo
- Publication number
- CN107506862B CN107506862B CN201710747634.7A CN201710747634A CN107506862B CN 107506862 B CN107506862 B CN 107506862B CN 201710747634 A CN201710747634 A CN 201710747634A CN 107506862 B CN107506862 B CN 107506862B
- Authority
- CN
- China
- Prior art keywords
- grinding
- real
- particle size
- neural network
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Marketing (AREA)
- Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Development Economics (AREA)
- Quality & Reliability (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Agronomy & Crop Science (AREA)
- Animal Husbandry (AREA)
- Marine Sciences & Fisheries (AREA)
- Mining & Mineral Resources (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Disintegrating Or Milling (AREA)
Abstract
本发明涉及一种基于物联网的磨矿粒度在线实时预测系统及方法,系统包括数据采集单元、无线数据传输单元、数据管理单元、MES数据读取单元、磨矿粒度预测单元以及BP神经网络模型评定单元;磨矿粒度预测单元用于将磨矿参数的历史值作为BP神经网络的输入对BP神经网络模型进行训练,将磨矿参数的实时值输入到训练完的BP神经网络模型进行磨矿粒度的预测。本发明的预测方法,通过物联网实时采集到磨矿参数,优化了生产流程;通过BP神经网络模型对磨矿粒度在线实时预测,在不许建立机理模型的前提下,提高磨矿粒度预测的实时性和精度。
The invention relates to an online real-time prediction system and method of grinding particle size based on the Internet of Things. The system includes a data acquisition unit, a wireless data transmission unit, a data management unit, an MES data reading unit, a grinding particle size prediction unit and a BP neural network model The evaluation unit; the grinding particle size prediction unit is used to use the historical value of the grinding parameter as the input of the BP neural network to train the BP neural network model, and input the real-time value of the grinding parameter to the trained BP neural network model for grinding Granular predictions. The prediction method of the present invention collects the grinding parameters in real time through the Internet of Things, and optimizes the production process; the online real-time prediction of the grinding particle size is performed through the BP neural network model, and the real-time prediction of the grinding particle size is improved without the establishment of a mechanism model. sex and precision.
Description
技术领域technical field
本发明涉及物联网及磨矿技术领域,尤其涉及一种基于物联网的磨矿粒度在线实时预测方法及系统。The present invention relates to the field of Internet of Things and grinding technology, in particular to an online real-time prediction method and system for grinding particle size based on Internet of Things.
背景技术Background technique
磨矿分级作业是选矿生产过程中至关重要的环节,磨矿的目的是将大颗粒矿石破碎到一定程度,使有用矿物和脉石矿物分离,呈单体解离状态,以利于有用矿物的选别。磨矿粒度不但是磨矿作业最重要的生产指标,也是影响后续选别作业的精矿品位和金属回收率的关键因素。准确实时的获取粒度信息,是进行磨矿过程控制,提高磨矿效率和产品质量的关键。因此实现粒度的检测具有重要的实际意义。Grinding and grading operation is a crucial link in the process of beneficiation. The purpose of grinding is to crush large-grained ore to a certain extent, so that useful minerals and gangue minerals are separated into a single dissociated state, so as to facilitate the separation of useful minerals. Sorting. Grinding particle size is not only the most important production index of grinding operation, but also a key factor affecting the concentrate grade and metal recovery rate of subsequent sorting operations. Accurate and real-time acquisition of particle size information is the key to controlling the grinding process and improving grinding efficiency and product quality. Therefore, it is of great practical significance to realize the detection of particle size.
在实际工业生产过程中,选矿厂对磨矿粒度采用人工离线化验来得到磨矿粒度数据,但不能满足控制的实时性要求。因此实现粒度的在线检测具有重要意义。目前,实现粒度的在线检测专利方法主要包括“201310349946.4(一种磨矿粒度在线预测系统及方法)”通过预测磨矿粒度机理模型的求解,对磨矿粒度进行在线实时预测。预测磨矿粒度的机理模型复杂,影响因素较多,且各因素影响大小存在实时性的变化,因此难于准确建立磨矿粒度预测的机理模型。In the actual industrial production process, the ore dressing plant uses manual off-line testing to obtain the grinding particle size data, but it cannot meet the real-time requirements of control. Therefore, it is of great significance to realize the online detection of particle size. At present, the patented method for on-line detection of particle size mainly includes "201310349946.4 (an online prediction system and method for ore grinding particle size)" to conduct online real-time prediction of ore grinding particle size by solving the mechanism model for predicting ore grinding particle size. The mechanism model for predicting grinding particle size is complex, with many influencing factors, and the influence of each factor changes in real time, so it is difficult to accurately establish a mechanism model for grinding particle size prediction.
发明内容Contents of the invention
本发明实施例提供一种基于物联网的磨矿粒度在线实时预测系统及方法,在不建立机理模型的前提下,可提高磨矿粒度预测的实时性和精度The embodiment of the present invention provides an online real-time prediction system and method of grinding particle size based on the Internet of Things, which can improve the real-time performance and accuracy of grinding particle size prediction without establishing a mechanism model
本发明提供一种基于物联网的磨矿粒度在线实时预测系统,包括:The present invention provides an online real-time prediction system for grinding particle size based on the Internet of Things, including:
数据采集单元,用于模拟生成磨矿参数的实时值和磨矿粒度的实时值,并对磨矿参数的实时值进行数据处理以获得标准电压数据;The data acquisition unit is used to simulate and generate the real-time values of the grinding parameters and the real-time values of the grinding particle size, and perform data processing on the real-time values of the grinding parameters to obtain standard voltage data;
无线数据传输单元,用于将标准电压数据发送给数据管理单元;The wireless data transmission unit is used to send the standard voltage data to the data management unit;
数据管理单元,用于接收标准电压数据,并将标准电压数据还原成磨矿参数的实时值后进行存储;The data management unit is used to receive the standard voltage data, restore the standard voltage data to the real-time value of the grinding parameter and store it;
MES数据读取单元,用于读取数据管理单元存储的磨矿参数的实时值,并存储有磨矿参数的历史值;The MES data reading unit is used to read the real-time value of the grinding parameter stored in the data management unit, and store the historical value of the grinding parameter;
磨矿粒度预测单元,用于将磨矿参数的历史值作为BP神经网络的输入对BP神经网络模型进行训练,将磨矿参数的实时值输入到训练完的BP神经网络模型进行磨矿粒度的预测;The grinding particle size prediction unit is used to train the BP neural network model with the historical value of the grinding parameter as the input of the BP neural network, and input the real-time value of the grinding parameter into the trained BP neural network model for grinding particle size prediction. predict;
BP神经网络模型评定单元,用于将预测的磨矿粒度的实时值与模拟产生的磨矿粒度的实时值进行对比以评定BP神经网络模型。The BP neural network model evaluation unit is used to compare the real-time value of the predicted grinding particle size with the real-time value of the simulated grinding particle size to evaluate the BP neural network model.
在本发明的基于物联网的磨矿粒度在线实时预测系统中,数据采集单元包括:In the online real-time prediction system of grinding particle size based on the Internet of Things of the present invention, the data acquisition unit includes:
实时数据生成模块,用于建立磨矿虚拟对象模型以模拟工业现场数据采集情况,每间隔5S产生一组磨矿参数的实时值;The real-time data generation module is used to establish a grinding virtual object model to simulate the industrial site data collection situation, and generate a set of real-time values of grinding parameters at intervals of 5S;
数据处理模块,用于将生成的磨矿参数的实时值进行标准化处理,将其转换为[0,5V]的标准电压数据。The data processing module is used to standardize the real-time values of the generated grinding parameters and convert them into standard voltage data of [0,5V].
在本发明的基于物联网的磨矿粒度在线实时预测系统中,数据管理单元包括:In the online real-time prediction system of grinding particle size based on the Internet of Things of the present invention, the data management unit includes:
数据显示模块,用于将接收的标准电压数据转换成的标准电压信号标签加以显示;The data display module is used to convert the received standard voltage data into a standard voltage signal label to display;
数据转换模块,用于将接收的标准电压数量还原成磨矿参数的实时值;The data conversion module is used to restore the received standard voltage quantity to the real-time value of the grinding parameter;
数据存储模块,用于存储磨矿参数的实时值。The data storage module is used to store the real-time values of the grinding parameters.
在本发明的基于物联网的磨矿粒度在线实时预测系统中,磨矿粒度预测单元包括:In the online real-time prediction system of grinding particle size based on the Internet of Things of the present invention, the grinding particle size prediction unit includes:
初始化模块,用于建立包括输入层、隐含层以及输出层的基于BP神经网络的初始模型;Initialization module, for setting up the initial model based on BP neural network including input layer, hidden layer and output layer;
参数设置模块,用于对初始模型进行参数设置;The parameter setting module is used for setting the parameters of the initial model;
学习模块,将磨矿参数的历史值作为BP神经网络的初始模型的训练集对BP神经网络的初始模型进行训练,得到训练后的BP神经网络模型;The learning module uses the historical value of the grinding parameter as the training set of the initial model of the BP neural network to train the initial model of the BP neural network to obtain the trained BP neural network model;
磨矿粒度预测模块,将磨矿参数的实时值作为训练后的BP神经网络模型的测试集,输出即为磨矿粒度预测值。The grinding particle size prediction module uses the real-time value of the grinding parameters as the test set of the trained BP neural network model, and the output is the predicted value of the grinding particle size.
本发明还提供一种基于物联网的磨矿粒度在线实时预测方法,包括如下步骤:The present invention also provides a method for online real-time prediction of grinding particle size based on the Internet of Things, comprising the following steps:
步骤1:模拟生成磨矿参数的实时值和磨矿粒度的实时值,并对磨矿参数的实时值进行数据处理以获得标准电压数据;Step 1: Simulate and generate real-time values of grinding parameters and grinding particle size, and perform data processing on the real-time values of grinding parameters to obtain standard voltage data;
步骤2:将标准电压数据发送给数据管理单元;Step 2: Send the standard voltage data to the data management unit;
步骤3:接收标准电压数据,并将标准电压数据还原成磨矿参数的实时值后进行存储;Step 3: Receive the standard voltage data, restore the standard voltage data to the real-time value of the grinding parameters and store it;
步骤4:读取数据管理单元存储的磨矿参数的实时值,并存储有磨矿参数的历史值;Step 4: read the real-time value of the grinding parameter stored in the data management unit, and store the historical value of the grinding parameter;
步骤5:将磨矿参数的历史值作为BP神经网络的输入对BP神经网络模型进行训练,将磨矿参数的实时值输入到训练完的BP神经网络模型进行磨矿粒度的预测;Step 5: use the historical value of the grinding parameter as the input of the BP neural network to train the BP neural network model, and input the real-time value of the grinding parameter into the trained BP neural network model to predict the grinding particle size;
步骤6:将预测的磨矿粒度的实时值与模拟产生的磨矿粒度的实时值进行对比以评定BP神经网络模型。Step 6: Compare the real-time value of the predicted grinding particle size with the real-time value of the simulated grinding particle size to evaluate the BP neural network model.
在本发明的基于物联网的磨矿粒度在线实时预测方法中,所述步骤1包括:In the online real-time prediction method of grinding particle size based on the Internet of Things of the present invention, said step 1 includes:
步骤1.1:建立磨矿虚拟对象模型以模拟工业现场数据采集情况,每间隔5S产生一组磨矿参数的实时值;Step 1.1: Establish a grinding virtual object model to simulate industrial field data collection, and generate a set of real-time values of grinding parameters at intervals of 5 seconds;
步骤1.2:数据处理模块,将生成的磨矿参数的实时值进行标准化处理,将其转换为[0,5V]的标准电压数据。Step 1.2: The data processing module standardizes the real-time values of the generated grinding parameters and converts them into standard voltage data of [0,5V].
在本发明的基于物联网的磨矿粒度在线实时预测方法中,所述步骤3包括:In the online real-time prediction method of grinding particle size based on the Internet of Things of the present invention, said step 3 includes:
步骤3.1:将接收的标准电压数据转换成的标准电压信号标签加以显示;Step 3.1: Convert the received standard voltage data into a standard voltage signal label and display it;
步骤3.2:将接收的标准电压数量还原成磨矿参数的实时值;Step 3.2: Restore the received standard voltage quantity to the real-time value of the grinding parameter;
步骤3.3:存储磨矿参数的实时值。Step 3.3: Store real-time values of grinding parameters.
在本发明的基于物联网的磨矿粒度在线实时预测方法中,所述步骤5包括:In the online real-time prediction method of grinding particle size based on the Internet of Things of the present invention, said
步骤5.1:建立包括输入层、隐含层以及输出层的基于BP神经网络的初始模型;Step 5.1: Establish an initial model based on BP neural network including input layer, hidden layer and output layer;
步骤5.2:对初始模型进行参数设置;Step 5.2: Set parameters for the initial model;
步骤5.3:将磨矿参数的历史值作为BP神经网络的初始模型的训练集对BP神经网络的初始模型进行训练,不断调整各层的权值和阈值,得到训练后的BP神经网络模型;Step 5.3: use the historical value of the grinding parameter as the training set of the initial model of the BP neural network to train the initial model of the BP neural network, constantly adjust the weights and thresholds of each layer, and obtain the trained BP neural network model;
步骤5.4:将磨矿参数的实时值作为训练后的BP神经网络模型的测试集,输出即为磨矿粒度预测值。Step 5.4: The real-time value of the grinding parameters is used as the test set of the trained BP neural network model, and the output is the predicted value of the grinding particle size.
在本发明的基于物联网的磨矿粒度在线实时预测方法中,所述步骤5.1包括:In the online real-time prediction method of grinding particle size based on the Internet of Things of the present invention, said step 5.1 includes:
步骤5.1.1:设置输入层的节点数为4个,节点对应4个磨矿参数,包括:球磨机给矿量、球磨机入口给水量、泵池补加水量以及旋流器给矿浓度;Step 5.1.1: Set the number of nodes in the input layer to 4, and the nodes correspond to 4 grinding parameters, including: ball mill feed volume, ball mill inlet water feed volume, pump pool supplementary water volume, and cyclone feed concentration;
步骤5.1.2:设置隐含层层数为2层,隐含层神经元个数分别为30个和20个。Step 5.1.2: Set the number of hidden layers to 2, and the number of hidden layer neurons to 30 and 20 respectively.
在本发明的基于物联网的磨矿粒度在线实时预测方法中,所述步骤5.2包括:In the online real-time prediction method of grinding particle size based on the Internet of Things of the present invention, said step 5.2 includes:
步骤5.2.1:设置隐含层权值wij、隐含层阈值θi、输出层权值wki以及输出层阈值ak;Step 5.2.1: Set hidden layer weight w ij , hidden layer threshold θ i , output layer weight w ki and output layer threshold a k ;
步骤5.2.2:设置期望目标误差最小值为1e-5,学习速率为0.05;Step 5.2.2: Set the minimum expected target error to 1e-5, and the learning rate to 0.05;
步骤5.2.3:BP神经网络的隐含层和输出层的激励函数选取S型的对数函数,即其中,n为4个s维的输入列向量。Step 5.2.3: The activation function of the hidden layer and the output layer of the BP neural network is selected as an S-type logarithmic function, namely Among them, n is 4 s-dimensional input column vectors.
本发明提出的一种基于物联网的磨矿粒度在线实时预测系统及方法。通过物联网实时采集到磨矿参数,优化了生产流程;通过BP神经网络模型对磨矿粒度在线实时预测,在不许建立机理模型的前提下,提高磨矿粒度预测的实时性和精度。The present invention proposes an online real-time prediction system and method for grinding particle size based on the Internet of Things. The grinding parameters are collected in real time through the Internet of Things, and the production process is optimized; the online real-time prediction of the grinding particle size is carried out through the BP neural network model, and the real-time and accuracy of the grinding particle size prediction are improved without the establishment of a mechanism model.
附图说明Description of drawings
图1是本发明的一种基于物联网的磨矿粒度在线实时预测系统的结构框图;Fig. 1 is a kind of block diagram of the online real-time prediction system of grinding granularity based on Internet of Things of the present invention;
图2是本发明的一种基于物联网的磨矿粒度在线实时预测方法的流程图。Fig. 2 is a flow chart of an online real-time prediction method for grinding particle size based on the Internet of Things of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的一种基于物联网的磨矿粒度在线实时预测系统及方法进行详细说明。An online real-time prediction system and method for grinding particle size based on the Internet of Things of the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明基于物联网和BP神经网络对磨矿粒度进行在线实时预测。BP神经网络能学习和存储大量的输入——输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。数学理论已证明它具有实现任何复杂非线性映射的功能,这使得它特别适合于求解内部机制复杂的问题。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。The invention performs online real-time prediction on the grinding particle size based on the Internet of Things and BP neural network. The BP neural network can learn and store a large number of input-output pattern mapping relationships without revealing the mathematical equations describing the mapping relationship in advance. Mathematical theory has proved that it has the function of realizing any complex nonlinear mapping, which makes it particularly suitable for solving problems with complex internal mechanisms. Its learning rule is to use the steepest descent method to continuously adjust the weights and thresholds of the network through backpropagation to minimize the sum of squared errors of the network.
如图1所示本发明的一种基于物联网的磨矿粒度在线实时预测系统包括:数据采集单元1、无线数据传输单元2、数据管理单元3、MES数据读取单元4、磨矿粒度预测单元5以及BP神经网络模型评定单元6。As shown in Figure 1, an online real-time prediction system for grinding particle size based on the Internet of Things of the present invention includes: data acquisition unit 1, wireless data transmission unit 2, data management unit 3, MES
数据采集单元1用于模拟生成磨矿参数的实时值和磨矿粒度的实时值,并对磨矿参数的实时值进行数据处理以获得标准电压数据。无线数据传输单元2用于将标准电压数据发送给数据管理单元。数据管理单元3用于接收标准电压数据,并将标准电压数据还原成磨矿参数的实时值后进行存储。MES数据读取单元4用于读取数据管理单元存储的磨矿参数的实时值,并存储有磨矿参数的历史值。磨矿粒度预测单元5用于将磨矿参数的历史值作为BP神经网络的输入对BP神经网络模型进行训练,将磨矿参数的实时值输入到训练完的BP神经网络模型进行磨矿粒度的预测。BP神经网络模型评定单元6用于将预测的磨矿粒度的实时值与模拟产生的磨矿粒度的实时值进行对比以评定BP神经网络模型。The data acquisition unit 1 is used for simulating and generating real-time values of grinding parameters and grinding particle size, and performing data processing on the real-time values of grinding parameters to obtain standard voltage data. The wireless data transmission unit 2 is used to send the standard voltage data to the data management unit. The data management unit 3 is used to receive the standard voltage data, restore the standard voltage data to the real-time value of the grinding parameter and then store it. The MES
数据采集单元1包括:实时数据生成模块11和数据处理模块12。实时数据生成模块11用于建立磨矿虚拟对象模型以模拟工业现场数据采集情况,每间隔5S产生一组磨矿参数的实时值。磨矿参数包括:球磨机给矿量、球磨机入口给水量、泵池补加水量以及旋流器给矿浓度。磨矿参数存储于oracle本地数据库。数据处理模块12用于将获取的磨矿参数的实时值进行标准化处理,将其转换为[0,5V]的标准电压数据。The data acquisition unit 1 includes: a real-time data generation module 11 and a
数据管理单元3包括:数据显示模块31、数据转换模块32以及数据存储模块33。数据显示模块31用于将接收的标准电压数据转换成的标准电压信号标签加以显示,以证实无线传输的数据接收成功。数据转换模块32用于将接收的标准电压数量还原成磨矿参数的实时值。数据存储模块33用于存储磨矿参数的实时值。具体实施时,数据管理单元3为工控PC机。The data management unit 3 includes: a data display module 31 , a data conversion module 32 and a data storage module 33 . The data display module 31 is used to display the standard voltage signal label converted from the received standard voltage data, so as to confirm the successful reception of the wirelessly transmitted data. The data conversion module 32 is used to restore the received standard voltage quantity to the real-time value of the grinding parameter. The data storage module 33 is used for storing real-time values of grinding parameters. During specific implementation, the data management unit 3 is an industrial PC.
磨矿粒度预测单元5包括:初始化模块51、参数设置模块52、学习模块53以及磨矿粒度预测模块54。初始化模块51用于建立包括输入层、隐含层以及输出层的基于BP神经网络的初始模型。参数设置模块52用于对初始模型进行参数设置。学习模块53将磨矿参数的历史值作为BP神经网络的初始模型的训练集对BP神经网络的初始模型进行训练,得到训练后的BP神经网络模型。磨矿粒度预测模块54将磨矿参数的实时值作为训练后的BP神经网络模型的测试集,输出即为磨矿粒度预测值。The grinding particle
如图2所示为本发明的一种基于物联网的磨矿粒度在线实时预测方法,包括如下步骤:As shown in Figure 2, it is a kind of online real-time prediction method of grinding granularity based on the Internet of Things of the present invention, comprising the steps:
步骤1:模拟生成磨矿参数的实时值和磨矿粒度的实时值,并对磨矿参数的实时值进行数据处理以获得标准电压数据;Step 1: Simulate and generate real-time values of grinding parameters and grinding particle size, and perform data processing on the real-time values of grinding parameters to obtain standard voltage data;
步骤2:将标准电压数据发送给数据管理单元;Step 2: Send the standard voltage data to the data management unit;
步骤3:接收标准电压数据,并将标准电压数据还原成磨矿参数的实时值后进行存储;Step 3: Receive the standard voltage data, restore the standard voltage data to the real-time value of the grinding parameters and store it;
步骤4:读取数据管理单元存储的磨矿参数的实时值,并存储有磨矿参数的历史值;Step 4: read the real-time value of the grinding parameter stored in the data management unit, and store the historical value of the grinding parameter;
步骤5:将磨矿参数的历史值作为BP神经网络的输入对BP神经网络模型进行训练,将磨矿参数的实时值输入到训练完的BP神经网络模型进行磨矿粒度的预测;Step 5: use the historical value of the grinding parameter as the input of the BP neural network to train the BP neural network model, and input the real-time value of the grinding parameter into the trained BP neural network model to predict the grinding particle size;
步骤6:将预测的磨矿粒度的实时值与模拟产生的磨矿粒度的实时值进行对比以评定BP神经网络模型。Step 6: Compare the real-time value of the predicted grinding particle size with the real-time value of the simulated grinding particle size to evaluate the BP neural network model.
步骤1包括:Step 1 includes:
步骤1.1:建立磨矿虚拟对象模型以模拟工业现场数据采集情况,每间隔5S产生一组磨矿参数的实时值。Step 1.1: Establish a grinding virtual object model to simulate industrial field data collection, and generate a set of real-time values of grinding parameters at intervals of 5 seconds.
具体实施时,采用matlab建立磨矿虚拟对象模型。磨矿参数包括:球磨机给矿量、球磨机入口给水量、泵池补加水量以及旋流器给矿浓度。磨矿参数存储于oracle本地数据库。During the specific implementation, the virtual object model of grinding is established by using matlab. Grinding parameters include: ball mill feeding amount, ball mill inlet water feeding amount, pump pool replenishment water amount and cyclone feeding concentration. Grinding parameters are stored in the oracle local database.
步骤1.2:数据处理模块,将生成的磨矿参数的实时值进行标准化处理,将其转换为[0,5V]的标准电压数据,并将标准电压数据上传到无线节点。Step 1.2: The data processing module standardizes the real-time values of the generated grinding parameters, converts them into standard voltage data of [0,5V], and uploads the standard voltage data to the wireless node.
步骤2:将标准电压数据发送给数据管理单元,具体为:Step 2: Send the standard voltage data to the data management unit, specifically:
步骤2.1:无线节点通过数据的无线发送将标准电压数据上传至智能无线网关;Step 2.1: The wireless node uploads the standard voltage data to the smart wireless gateway through wireless transmission of data;
步骤2.2:智能无线网关接收到标准电压数据后通过局域网将实时数据同步至工控PC机。Step 2.2: After receiving the standard voltage data, the intelligent wireless gateway synchronizes the real-time data to the industrial PC through the LAN.
步骤3包括:Step 3 includes:
步骤3.1:工控PC机将接收的标准电压数据转换成的标准电压信号标签加以显示,以证实无线传输的数据接收成功;Step 3.1: The industrial control PC converts the received standard voltage data into a standard voltage signal label and displays it to confirm that the wirelessly transmitted data is successfully received;
步骤3.2:将接收的[0,5V]的标准电压数据还原成磨矿参数的实时值;Step 3.2: Restore the received standard voltage data of [0,5V] to the real-time value of the grinding parameters;
步骤3.3:将磨矿参数的实时值存储到工控PC机的oracle数据库。Step 3.3: Store the real-time values of the grinding parameters in the oracle database of the industrial PC.
步骤4:读取工控PC机存储的磨矿参数的实时值,并存储有磨矿参数的历史值,具体为:采用MES(制造执行系统)读取工控PC机上的磨矿参数的实时值,包括:Step 4: read the real-time value of the grinding parameter stored in the industrial control PC, and store the historical value of the grinding parameter, specifically: use MES (manufacturing execution system) to read the real-time value of the grinding parameter on the industrial control PC, include:
步骤4.1:通过局域网网段设置将MES系统所在PC机与工控PC机相连接;Step 4.1: Connect the PC where the MES system is located with the industrial control PC through the LAN segment setting;
步骤4.2:在MES系统所在PC机上配置ODBC(数据源管理器),使得MES系统可以读取到工控PC机的oracle数据库的数据,包括:磨矿参数的实时值和磨矿参数的历史值。Step 4.2: Configure ODBC (data source manager) on the PC where the MES system is located, so that the MES system can read the data of the oracle database of the industrial PC, including: real-time values of grinding parameters and historical values of grinding parameters.
步骤5包括:
步骤5.1:建立包括输入层、隐含层以及输出层的基于BP神经网络的初始模型,步骤5.1进一步包括:Step 5.1: set up the initial model based on BP neural network including input layer, hidden layer and output layer, step 5.1 further includes:
步骤5.1.1:设置输入层的节点数为4个,节点对应4个磨矿参数,包括:球磨机给矿量、球磨机入口给水量、泵池补加水量以及旋流器给矿浓度;Step 5.1.1: Set the number of nodes in the input layer to 4, and the nodes correspond to 4 grinding parameters, including: ball mill feed volume, ball mill inlet water feed volume, pump pool supplementary water volume, and cyclone feed concentration;
步骤5.1.2:设置隐含层层数为2层,隐含层神经元个数分别为30个和20个。Step 5.1.2: Set the number of hidden layers to 2, and the number of hidden layer neurons to 30 and 20 respectively.
步骤5.2:对初始模型进行参数设置,进一步包括:Step 5.2: Perform parameter setting on the initial model, further including:
步骤5.2.1:设置隐含层权值wij、隐含层阈值θi、输出层权值wki以及输出层阈值ak;其中j代表第j个输入样本,i代表第i个中间隐含层节点,k代表第k个输出层节点;Step 5.2.1: Set hidden layer weight w ij , hidden layer threshold θ i , output layer weight w ki , and output layer threshold a k ; where j represents the jth input sample, i represents the ith intermediate hidden contains layer nodes, k represents the kth output layer node;
步骤5.2.2:设置期望目标误差最小值ε为1e-5,学习速率为0.05;Step 5.2.2: Set the minimum expected target error ε to 1e-5, and the learning rate to 0.05;
步骤5.2.3:BP神经网络的隐含层和输出层的激励函数选取S型的对数函数,即其中,n为4个s维的输入列向量;Step 5.2.3: The activation function of the hidden layer and the output layer of the BP neural network is selected as an S-type logarithmic function, namely Among them, n is 4 s-dimensional input column vectors;
步骤5.3:将磨矿参数的历史值作为BP神经网络的初始模型的训练集对BP神经网络的初始模型进行训练,不断调整各层的权值和阈值,得到训练后的BP神经网络模型;进一步包括:Step 5.3: use the historical value of the grinding parameter as the training set of the initial model of the BP neural network to train the initial model of the BP neural network, constantly adjust the weights and thresholds of each layer, and obtain the trained BP neural network model; further include:
步骤5.3.1:获取磨矿参数的历史值作为BP神经网络的初始模型的训练集,包括:球磨机给矿量、球磨机入口给水量、泵池补加水量以及旋流器给矿浓度的历史值;Step 5.3.1: Obtain the historical values of the grinding parameters as the training set of the initial model of the BP neural network, including: ball mill feed volume, ball mill inlet feed water volume, pump pool supplementary water volume, and cyclone feed concentration historical values ;
步骤5.3.2:将训练集的训练数据做归一化处理;Step 5.3.2: Normalize the training data of the training set;
步骤5.3.3:通过公式计算隐含层第i个节点的输入,通过公式计算隐含层第i个节点的输出;M为输入样本维度;Step 5.3.3: By formula Calculate the input of the i-th node in the hidden layer, through the formula Calculate the output of the i-th node in the hidden layer; M is the input sample dimension;
步骤5.3.4:通过公式获取输出层第k个节点的输入,通过公式ψ(netk)计算输出层第k个节点的输出;q代表作用在第k个输出层节点上的输入维度(即为隐含层维度);Step 5.3.4: By formula Obtain the input of the kth node of the output layer, and calculate the output of the kth node of the output layer by the formula ψ(netk); q represents the input dimension (that is, the hidden layer dimension) acting on the kth output layer node;
步骤5.3.5:由公式计算P个训练样本的输出层误差;L为输出层样本维度;Step 5.3.5: By the formula Calculate the output layer error of P training samples; L is the sample dimension of the output layer;
步骤5.3.6:参照步骤5.3.5的方式计算隐层误差;Step 5.3.6: Calculate the hidden layer error by referring to the method in step 5.3.5;
步骤5.3.7:根据误差梯度下降法依次修正输出层权值wki、输出层阈值ak、隐含层权值wij以及隐含层阈值θi;Step 5.3.7: Correct the output layer weight w ki , the output layer threshold a k , the hidden layer weight w ij and the hidden layer threshold θ i sequentially according to the error gradient descent method;
步骤5.3.8:再次执行步骤5.3.5,计算输出层误差,若误差小于ε则BP神经网络的训练过程结束;否则继续执行步骤5.3.2。Step 5.3.8: Execute step 5.3.5 again to calculate the error of the output layer. If the error is less than ε, the training process of the BP neural network ends; otherwise, continue to execute step 5.3.2.
具体实施时选取30组数据构成训练集,训练集训练数据如下表:During the specific implementation, 30 sets of data are selected to form the training set. The training data of the training set are as follows:
表1磨矿参数的历史值。Table 1 Historical values of grinding parameters.
步骤5.4:将磨矿参数的实时值作为训练后的BP神经网络模型的测试集,输出即为磨矿粒度预测值。步骤5.4具体为:Step 5.4: The real-time value of the grinding parameters is used as the test set of the trained BP neural network model, and the output is the predicted value of the grinding particle size. Step 5.4 is specifically:
步骤5.4.1:将取自工控PC机的磨矿参数的实时值作为测试集,包括球磨机给矿量的实时值、球磨机入口给水量的实时值、泵池补加水量的的实时值以及旋流器给矿浓度的实时值;Step 5.4.1: Take the real-time value of the grinding parameters taken from the industrial PC as the test set, including the real-time value of the ore feed to the ball mill, the real-time value of the water feed to the ball mill inlet, the real-time value of the supplementary water in the pump pool, and the real-time value of the rotation The real-time value of the ore concentration of the streamer;
步骤5.4.2:将测试集数据做归一化处理;Step 5.4.2: Normalize the test set data;
步骤5.4.3:将归一化处理后的测试集输入步骤5.3训练完的BP神经网络模型中,得到磨矿粒度预测数据。Step 5.4.3: Input the normalized test set into the BP neural network model trained in step 5.3 to obtain the grinding particle size prediction data.
表2模拟生成的磨矿参数和磨矿粒度的实时值及磨矿粒度预测值Table 2 The real-time value of grinding parameters and grinding particle size and the predicted value of grinding particle size generated by simulation
表2将采用BP神经网络预测的磨矿粒度预测值与实时值进行对比,对比结果表明预测效果基本符合生产实际要求。且从预测效果看,此预测方法数据量越大预测效果与稳定。Table 2 compares the predicted value of grinding particle size predicted by BP neural network with the real-time value. The comparison results show that the prediction effect basically meets the actual production requirements. And from the perspective of prediction effect, the larger the amount of data in this prediction method, the greater the prediction effect and stability.
以上所述仅为本发明的较佳实施例,并不用以限制本发明的思想,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the idea of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention should be included in the present invention. within the scope of protection.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747634.7A CN107506862B (en) | 2017-08-28 | 2017-08-28 | Online real-time grinding particle size prediction system and method based on Internet of things |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747634.7A CN107506862B (en) | 2017-08-28 | 2017-08-28 | Online real-time grinding particle size prediction system and method based on Internet of things |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107506862A CN107506862A (en) | 2017-12-22 |
CN107506862B true CN107506862B (en) | 2023-07-04 |
Family
ID=60693640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710747634.7A Active CN107506862B (en) | 2017-08-28 | 2017-08-28 | Online real-time grinding particle size prediction system and method based on Internet of things |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107506862B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108993751B (en) * | 2018-09-25 | 2021-01-15 | 首钢集团有限公司 | Method for optimizing ore grinding granularity |
CN110180683B (en) * | 2019-06-21 | 2021-01-26 | 安徽国兰智能科技有限公司 | Flotation system based on big data analysis |
CN113296561B (en) * | 2020-08-20 | 2022-06-14 | 中冶长天国际工程有限责任公司 | Control system and control method for pelletizer |
CN112317110A (en) * | 2020-09-27 | 2021-02-05 | 鞍钢集团矿业有限公司 | Ore grinding granularity prediction system and method based on deep learning |
CN114095803B (en) * | 2022-01-19 | 2022-05-31 | 高视科技(苏州)有限公司 | Data acquisition optimization method and product of Internet of things information management system |
CN114112819B (en) * | 2022-01-25 | 2022-05-10 | 北矿智云科技(北京)有限公司 | Method and device for measuring ore grinding granularity |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412489A (en) * | 2013-08-12 | 2013-11-27 | 东北大学 | Ore grinding granularity online prediction system and method |
-
2017
- 2017-08-28 CN CN201710747634.7A patent/CN107506862B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412489A (en) * | 2013-08-12 | 2013-11-27 | 东北大学 | Ore grinding granularity online prediction system and method |
Non-Patent Citations (1)
Title |
---|
模糊神经网络在磨矿控制系统中的研究应用;李明旭;《中国优秀硕士学位论文全文数据库》;20160331;第4-22、42-54页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107506862A (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107506862B (en) | Online real-time grinding particle size prediction system and method based on Internet of things | |
CN104239489B (en) | A Method of Using Similarity Search and Improving BP Neural Network to Predict Water Level | |
CN103745273B (en) | Semiconductor fabrication process multi-performance prediction method | |
CN104850901B (en) | A kind of flexible measurement method and system based on multi-model prediction gas density | |
CN104182914B (en) | A kind of wind power output time series modeling method based on wave characteristic | |
CN102707256A (en) | Fault diagnosis method based on BP-Ada Boost nerve network for electric energy meter | |
CN105425583B (en) | The control method of penicillin production process based on coorinated training LWPLS | |
CN102183802B (en) | Short-term climate forecast method based on Kalman filtering and evolution modeling | |
CN105320987B (en) | A kind of satellite telemetering data intelligent interpretation method based on BP neural network | |
CN104536881A (en) | Public testing error report priority sorting method based on natural language analysis | |
CN109508753A (en) | A kind of on-line prediction method of Mineral Floating Process index | |
CN112948932A (en) | Surrounding rock grade prediction method based on TSP forecast data and XGboost algorithm | |
CN111191823B (en) | Deep learning-based production logistics prediction method | |
CN113554213A (en) | Natural gas demand prediction method, system, storage medium and equipment | |
CN103674778B (en) | The industrial melt index soft measurement instrument of RBF particle group optimizing and method | |
CN108830417A (en) | A kind of residential energy consumption prediction technique and system based on ARMA and regression analysis | |
CN117493987A (en) | Carbon emission prediction methods and systems for the power industry | |
CN110472321B (en) | PSO-GPR (particle swarm optimization-GPR) based method for predicting processing energy consumption of all-metal semi-hard shell solid rocket cabin section | |
Gu et al. | Employment Quality Evaluation Model Based on Hybrid Intelligent Algorithm. | |
CN118094230B (en) | A method for constructing groundwater level monitoring and early warning model based on big data | |
CN105205560A (en) | Photovoltaic power supply power prediction method based on positive and negative error variable weights | |
CN115545267A (en) | A Flotation Recovery Prediction Method Based on Significance P Value and XGBoost | |
CN103678953A (en) | Biological fermentation yield on-line forecasting method based on Bayes combination neural network | |
Han et al. | Feed concentration forecasting using closed-loop input error and deep learning | |
CN106529725A (en) | Gas outburst prediction method based on firefly algorithm and SOM network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |