CN107479370A - A kind of four rotor wing unmanned aerial vehicle finite time self-adaptation control methods based on non-singular terminal sliding formwork - Google Patents

A kind of four rotor wing unmanned aerial vehicle finite time self-adaptation control methods based on non-singular terminal sliding formwork Download PDF

Info

Publication number
CN107479370A
CN107479370A CN201710532250.3A CN201710532250A CN107479370A CN 107479370 A CN107479370 A CN 107479370A CN 201710532250 A CN201710532250 A CN 201710532250A CN 107479370 A CN107479370 A CN 107479370A
Authority
CN
China
Prior art keywords
mrow
msub
mover
mtd
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710532250.3A
Other languages
Chinese (zh)
Other versions
CN107479370B (en
Inventor
陈强
叶艳
胡如海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710532250.3A priority Critical patent/CN107479370B/en
Publication of CN107479370A publication Critical patent/CN107479370A/en
Application granted granted Critical
Publication of CN107479370B publication Critical patent/CN107479370B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

A kind of four rotor wing unmanned aerial vehicle finite time self-adaptation control methods based on non-singular terminal sliding formwork, for the four rotor wing unmanned aerial vehicle systems with inertia uncertain factor and external disturbance.According to the dynamic system of four rotor wing unmanned aerial vehicles, using non-singular terminal sliding-mode control, in conjunction with Self Adaptive Control, a kind of four rotor wing unmanned aerial vehicle self-adaptation control methods based on non-singular terminal sliding formwork are designed.The design of non-singular terminal sliding formwork is to ensure the finite time convergence control characteristic of system, and avoids singularity problem existing for TSM control, effectively weakens buffeting problem.In addition, Self Adaptive Control is the inertia uncertainty and external disturbance for processing system.The invention provides one kind can eliminate sliding-mode surface singularity problem, and can effectively suppress with compensation system existing for inertia is uncertain and the control method of external disturbance, ensure the finite time convergence control characteristic of system.

Description

A kind of four rotor wing unmanned aerial vehicle finite times based on non-singular terminal sliding formwork are self-adaptive controlled Method processed
Technical field
The present invention relates to a kind of four rotor wing unmanned aerial vehicle finite time self-adaptation control methods based on non-singular terminal sliding formwork, Particular with inertia uncertain factor and four rotor wing unmanned aerial vehicle system control methods of external disturbance.
Background technology
The one kind of four rotor wing unmanned aerial vehicles as rotor craft, energy is controlled by the flight for controlling four rotor rotating speeds to realize Enough be conveniently accomplished take off with landing etc. action, be widely used in aeroplane photography, geologic prospect, rescue and relief work, environmental assessment Deng field.Due to four rotor wing unmanned aerial vehicle small volumes and in light weight, be in-flight vulnerable to external disturbance, how to realize to four rotors without Man-machine High Performance Motion Control has become a hot issue.For the control problem of four rotor wing unmanned aerial vehicles, exist a lot Control method, such as PID control, Active Disturbance Rejection Control, sliding formwork control etc..
Wherein sliding formwork control has been widely used for nonlinear system, and its advantage includes fast response time, easy to implement, right Uncertain robustness with external disturbance of system etc..Traditional sliding formwork control is contrasted, TSM control can realize finite time Convergence, but there is singular point in system, and its discontinuous switching characteristic in itself will cause the buffeting of system, to system in reality Application in the situation of border has very big obstruction.To solve this problem, non-singular terminal sliding formwork control is suggested, and this method is in reality The singularity problem of system is efficiently solved in the situation of border, and ensure that system finite time convergence control characteristic and stronger robust Property.
To with the probabilistic four rotor wing unmanned aerial vehicles dynamic system of inertia, external disturbance and Parameter uncertainties be present Property.The problems such as aerodynamic interference that external disturbance is brought, gyroscopic couple interference, Parameter Perturbation, can influence the flight control of four rotor wing unmanned aerial vehicles The sensitivity of system and stability.Therefore, adaptive method can be applied to estimate interference and systematic parameter on the basis of sliding formwork control, Design estimation rule causes system to have more preferable steady-state behaviour.
The content of the invention
In order to overcome external disturbance and inertia uncertain problem and terminal sliding mode existing for four rotor wing unmanned aerial vehicle systems The deficiency of the singularity problem of control, the invention provides a kind of four rotor wing unmanned aerial vehicle non-singular terminals with Self Adaptive Control Sliding-mode control, system singularity problem is eliminated, effectively inhibit chattering phenomenon, while carry out to being disturbed existing for system Suppress and compensate, ensure the finite time convergence control characteristic of system.
In order to solve the above-mentioned technical problem the technical scheme proposed is as follows:
A kind of four rotor wing unmanned aerial vehicle finite time self-adaptation control methods based on non-singular terminal sliding formwork, including following step Suddenly:
Step 1, the kinetic model of four rotor wing unmanned aerial vehicles is established, initializes system mode, sampling time and systematic parameter, Process is as follows:
1.1 hypothesis unmanned planes are that rigidity is full symmetric, and its center overlaps with body axis system origin, to four rotors without Man-machine system carries out force analysis, establishes coordinate system, one is the inertial coodinate system based on the earth, by reference axis XE、YE、ZEReally Fixed, another is the body axis system based on four rotor wing unmanned aerial vehicles, by reference axis XB、YB、ZBIt is determined that from body axis system to used The transfer matrix M of property coordinate system is:
Wherein, ψ, θ, φ are referred to as yaw angle, the angle of pitch, the roll angle of unmanned plane, represent that inertial coodinate system is each around its The anglec of rotation of reference axis;
1.2 according to newton Euler's formula analytic dynamics model, has under translation state:
Wherein x, y, z represents position of four rotor wing unmanned aerial vehicles under inertial coodinate system respectively, and m is the quality of unmanned plane, UF Lift caused by four rotors is represented, mg is the gravity suffered by unmanned plane, and g is acceleration of gravity, UFActed on the expression of mg sums Bonding force F on unmanned plane;
Formula (1) is substituted into formula (2) to obtain:
1.3 under body axis system, according to Euler's formula, has under rotary state:
Wherein τx、τy、τzEach axle power square of body axis system, I are represented respectivelyxx、Iyy、IzzEach axle of body axis system is represented respectively Rotary inertia, ωx、ωy、ωzEach axle attitude angular velocity on body axis system is represented respectively, Machine is represented respectively Each axle posture angular acceleration on body coordinate system;
Obtained by formula (4):
Four rotor wing unmanned aerial vehicles are to realize flight control by adjusting the rotating speed of rotor, its control moment and rotor lift with The rotating speed of rotor has direct relation, as shown in formula (6):
Wherein L represents the barycenter of four rotor wing unmanned aerial vehicles to the distance of each rotor axis, kFRepresent lift coefficient, kMRepresent to turn round Moment coefficient, ω1、ω2、ω3、ω4The rotating speed of each rotor is represented respectively;
1.4, which consider under actual environments that outer bound pair system produces, disturbs, and establishes the kinetic model of four rotor wing unmanned aerial vehicles, four rotors without Man-machine to be typically in low-speed operations or floating state, attitude angle change is smaller, it is believed that As shown in formula (7):
Wherein
dx、dy、dz、dφ、dθ、dψThe external disturbance of representative model;
Formula (7) belongs to second order MIMO nonlinear systems, for ease of the design of controller, formula (7) be expressed as Lower form:
Wherein state variable X=(x, y, x, φ, θ, ψ)T,It is right Angle matrix B (X)=diag { 1,1,1, b1,b2,b3, input U=(Ux,Uy,Uzxyz)T, external disturbance D (t)=(dx, dy,dz,dφ,dθ,dψ)T, and meet following condition:
||D(t)||≤ρ (9)
Wherein | | D (t) | |For D (t) Infinite Norm, ρ is a constant more than zero;
Step 2, calculating control system tracking error, designs non-singular terminal sliding-mode surface, and process is as follows:
2.1, which define system tracking error, is:
E=X-Xd (10)
Wherein XdFor desired signal, X can be ledd=(xd,yd,zdddd)T, xd、yd、zd、φd、θd、ψdRespectively pair The position answered and the desired value of attitude angle;
The first differential and second-order differential of formula (10) represent as follows:
2.2, which define non-singular terminal sliding-mode surface, is:
Wherein S=(s1,s2,s3,s4,s5,s6)T, β-1=diag { β1 -1, β2 -1, β3 -1, β4 -1, β5 -1, β6 -1It is positive definite square Battle array,si、βi、eiRespectively represent corresponding to x, y, z, ψ, θ, φ sliding variable, constant value coefficient, error first derivative, i=1,2,3,4,5,6, sign () are sign function, and p, q are Positive odd number, and 1<p/q<2;
Step 3, the dynamic system based on four rotor wing unmanned aerial vehicles, according to non-singular terminal sliding formwork, controller, process are designed It is as follows:
3.1 are based on formula (8), and non-singular terminal sliding mode controller is designed to:
U=Ueq+Ure (14)
Wherein, constant η>0,
3.2 design liapunov functions
Derivation is carried out to formula (13) to obtain
Wherein
Formula (14)~(16) are substituted into formula (18) and obtained
Derivation is carried out to formula (17) to obtain
Obtained by formula (20)
Formula (9) is substituted into formula (21) to obtain
Wherein η>0, β is positive definite matrix, and p, q are positive odd number,It is then obviousTherefore, it is determined thatSystem is stable;
Step 4, optimal controller, do not known using interference and inertia present in self-adaptation control method processing system Property, process is as follows:
4.1 are assumed on external disturbance D (t) boundary again:
Wherein, c, k1、k2It is unknown border, is not easy to obtain due to probabilistic labyrinth in actual control system Take;
4.2 are revised as control law based on formula (14)~(16):
U1=Ueq1+Ure1 (24)
Wherein, It is γ estimation;It is c, k respectively1、k2, ρ estimation;
Design estimates that the more new law of parameter is respectively:
Wherein, p0> 0, p1> 0, p2> 0, ε0> 0, ε1> 0, ε2> 0 is design parameter;
4.3 design liapunov functions
Wherein
Derivation is carried out to formula (32), then substitutes into formula (18) and obtains
(24)~(26) are substituted into formula (33) to obtain
Formula (28) is substituted into formula (34) to obtain
Obtained by formula (35)
Formula (27), (29)~(31) are substituted into formula (36) and obtained;
Formula (23) is substituted into
To meetThenThen haveWherein δ=ε0c21k1 22k2 2, Expression takes The wherein minterm of element;VsaReduction drive the track of closed-loop system to beTherefore the track of closed-loop system is most It is defined as eventually
The present invention is based on non-singular terminal sliding formwork and Self Adaptive Control, designs the non-singular terminal of four rotor wing unmanned aerial vehicle systems Sliding Mode Adaptive Control method, the finite time convergence control characteristic of system is realized, eliminate the nonsingular of TSM control and ask Topic, while the buffeting for weakening system influences, and improves the robustness of system.
The present invention technical concept be:For the dynamic system of four rotor wing unmanned aerial vehicles, non-singular terminal sliding formwork control is utilized Method processed, in conjunction with Self Adaptive Control, it is adaptive to design a kind of four rotor wing unmanned aerial vehicle finite times based on non-singular terminal sliding formwork Answer control method.The design of non-singular terminal sliding formwork is to ensure the finite time convergence control characteristic of system, and avoids end Singularity problem existing for holding sliding formwork control, effectively weakens buffeting problem.In addition, Self Adaptive Control is for processing system Inertia uncertainty and external disturbance.The invention provides one kind can eliminate sliding-mode surface singularity problem, and can effectively press down The control method of inertia uncertainty and external disturbance existing for system and compensation system, ensure that the finite time convergence control of system is special Property.
Advantage of the present invention is:Solve singularity problem, weaken and buffet, inertia is uncertain existing for suppression and compensation system And external disturbance, realize finite time convergence control.
Brief description of the drawings
Fig. 1 is the position tracking effect diagram of the present invention.
Fig. 2 is the attitude angle tracking effect schematic diagram of the present invention.
The positioner that Fig. 3 is the present invention inputs schematic diagram.
The posture angle controller that Fig. 4 is the present invention inputs schematic diagram.
The Position disturbance boundary parameter that Fig. 5 is the present invention estimates schematic diagram.
The Position disturbance that Fig. 6 is the present invention estimates border schematic diagram with it.
The attitude angle that Fig. 7 is the present invention disturbs border parameter Estimation schematic diagram.
The attitude angle interference that Fig. 8 is the present invention estimates that schematic diagram is estimated on border with it.
Fig. 9 is the system inertia uncertainty estimation schematic diagram of the present invention.
Figure 10 is the control flow schematic diagram of the present invention.
Embodiment
The present invention will be further described below in conjunction with the accompanying drawings.
Reference picture 1- Figure 10, a kind of four rotor wing unmanned aerial vehicle finite time Self Adaptive Control sides based on non-singular terminal sliding formwork Method, comprise the following steps:
Step 1, the kinetic model of four rotor wing unmanned aerial vehicles is established, initializes system mode, sampling time and systematic parameter, Process is as follows:
1.1 hypothesis unmanned planes are that rigidity is full symmetric, and its center overlaps with body axis system origin, to four rotors without Man-machine system carries out force analysis, establishes coordinate system, one is the inertial coodinate system based on the earth, by reference axis XE、YE、ZEReally Fixed, another is the body axis system based on four rotor wing unmanned aerial vehicles, by reference axis XB、YB、ZBIt is determined that from body axis system to used The transfer matrix M of property coordinate system is:
Wherein, ψ, θ, φ are referred to as yaw angle, the angle of pitch, the roll angle of unmanned plane, represent that inertial coodinate system is each around its The anglec of rotation of reference axis;
1.2 according to newton Euler's formula analytic dynamics model, has under translation state:
Wherein x, y, z represents position of four rotor wing unmanned aerial vehicles under inertial coodinate system respectively, and m is the quality of unmanned plane, UF Lift caused by four rotors is represented, mg is the gravity suffered by unmanned plane, and g is acceleration of gravity, UFActed on the expression of mg sums Bonding force F on unmanned plane;
Formula (1) is substituted into formula (2) to obtain:
1.3 under body axis system, according to Euler's formula, has under rotary state:
Wherein τx、τy、τzEach axle power square of body axis system, I are represented respectivelyxx、Iyy、IzzEach axle of body axis system is represented respectively Rotary inertia, ωx、ωy、ωzEach axle attitude angular velocity on body axis system is represented respectively, Machine is represented respectively Each axle posture angular acceleration on body coordinate system;
Obtained by formula (4):
Four rotor wing unmanned aerial vehicles are to realize flight control by adjusting the rotating speed of rotor, its control moment and rotor lift with The rotating speed of rotor has direct relation, as shown in formula (6):
Wherein L represents the barycenter of four rotor wing unmanned aerial vehicles to the distance of each rotor axis, kFRepresent lift coefficient, kMRepresent to turn round Moment coefficient, ω1、ω2、ω3、ω4The rotating speed of each rotor is represented respectively;
1.4 consider that outer bound pair system produces interference under actual environment, establish the kinetic model of four rotor wing unmanned aerial vehicles, four rotations Wing unmanned plane is typically in low-speed operations or floating state, and attitude angle change is smaller, it is believed that Such as following formula (7):
Wherein
dx、dy、dz、dφ、dθ、dψThe external disturbance of representative model;
Formula (7) belongs to second order MIMO nonlinear systems, for ease of the design of controller, formula (7) be expressed as Lower form:
Wherein state variable X=(x, y, x, φ, θ, ψ)T,It is right Angle matrix B (X)=diag { 1,1,1, b1,b2,b3, input U=(Ux,Uy,Uzxyz)T, external disturbance D (t)=(dx, dy,dz,dφ,dθ,dψ)T, and meet following condition:
||D(t)||≤ρ (9)
Wherein | | D (t) | |For D (t) Infinite Norm, ρ is a constant more than zero;
Step 2, calculating control system tracking error, designs non-singular terminal sliding-mode surface, and process is as follows:
2.1, which define system tracking error, is:
E=X-Xd (10)
Wherein XdFor desired signal, X can be ledd=(xd,yd,zdddd)T, xd、yd、zd、φd、θd、ψdRespectively pair The position answered and the desired value of attitude angle;
The first differential and second-order differential of formula (10) represent as follows:
2.2, which define non-singular terminal sliding-mode surface, is:
Wherein S=(s1,s2,s3,s4,s5,s6)T, β-1=diag { β1 -1, β2 -1, β3 -1, β4 -1, β5 -1, β6 -1It is positive definite square Battle array,si、βi、eiRespectively represent corresponding to x, y, z, ψ, θ, φ sliding variable, constant value coefficient, error first derivative, i=1,2,3,4,5,6, sign () are sign function, and p, q are Positive odd number, and 1<p/q<2;
Step 3, the dynamic system based on four rotor wing unmanned aerial vehicles, according to non-singular terminal sliding formwork, controller, process are designed It is as follows:
3.1 are based on formula (8), and non-singular terminal sliding mode controller is designed to:
U=Ueq+Ure (14)
Wherein, constant η>0,
3.2 design liapunov functions
Derivation is carried out to formula (13) to obtain
Wherein
Formula (14)~(16) are substituted into formula (18) and obtained
Derivation is carried out to formula (17) to obtain
Obtained by formula (20)
Formula (9) is substituted into formula (21) to obtain
Wherein η>0, β is positive definite matrix, and p, q are positive odd number,It is then obviousTherefore, it is determined thatSystem is stable;
Step 4, optimal controller, do not known using interference and inertia present in self-adaptation control method processing system Property, process is as follows:
4.1 are assumed on external disturbance D (t) boundary again:
Wherein, c, k1、k2It is unknown border, is not easy to obtain due to probabilistic labyrinth in actual control system Take;
4.2 are revised as control law based on formula (14)~(16):
U1=Ueq1+Ure1 (24)
Wherein, It is γ estimation;It is c, k respectively1、k2, ρ estimation;
Design estimates that the more new law of parameter is respectively:
Wherein, p0> 0, p1> 0, p2> 0, ε0> 0, ε1> 0, ε2> 0 is design parameter;
4.3 design liapunov functions
Wherein
Derivation is carried out to formula (32), then substitutes into formula (18) and obtains
(24)~(26) are substituted into formula (33) to obtain
Formula (28) is substituted into formula (34) to obtain
Obtained by formula (35)
Formula (27), (29)~(31) are substituted into formula (36) and obtained;
Formula (23) is substituted into
To meetThenThen haveWherein δ=ε0c21k1 22k2 2, Expression takes The wherein minterm of element;VsaReduction drive the track of closed-loop system to beTherefore the track of closed-loop system is most It is defined as eventually
Can be by Ux、Uy、UzRegard the input of positioner as, by τx、τy、τzRegard the input of posture angle controller as, according to Formula (24)~(27) provide the design of controller.
Position desired value xd、yd、zdAnd attitude angle desired value ψdDirectly given by reference locus, attitude angle desired value φx、 θdDecoupled by position and attitude relation, it is as follows:
Wherein arcsin () is arcsin function, and arctan () is arctan function.
The feasibility of extracting method in order to verify, The present invention gives emulation knot of the control method on MATLAB platforms Fruit:
Parameter is given below:M=0.625kg, g=10 in formula (3);I in formula (5)xx=2.3 × 10-3kg·m2, Iyy= 2.4×10-3kg·m2, Izz=2.6 × 10-3kg·m2;K in formula (6)F=2.103 × 10-6N/(rad·s-2), kM=2.091 ×10-8N/(rad·s-2), L=0.1275m;X in formula (10)d=1, yd=1, zd=1, ψd=0.5;β in formula (13)i=1 (i =1,2,3,4,5,6), p=5, q=3;C=1, k in formula (23)1=0.1, k2=0.1;η=0.1 in formula (26);Formula (29)~ (31) p in0=0.1, p0=0.1, p0=0.1, ε0=0.5, ε1=0.5, ε2=0.5;Interference signal is given as intensity as 0.01 White Gaussian noise.
Because four rotor wing unmanned aerial vehicle systems have six-freedom degree, so we track the dynamic of three positions and three attitude angles Step response.In order to further weaken the chattering phenomenon of system, we are replaced with saturation function sat () in formula (24)~(26) Sign function sign ():
Wherein take μ=0.1.
From Fig. 1 and 2 as can be seen that system has good arrival performance, and equilbrium position is reached in finite time.From Fig. 3 and 4 is it can clearly be seen that system substantially weakens chattering phenomenon.From Fig. 5~9 as can be seen that the estimation rule of system finally becomes In stabilization, estimation parameter finally converges to constant.
In summary, non-singular terminal sliding formwork finite time self-adaptation control method obviously can efficiently solve nonsingular ask Topic and the influence for weakening buffeting, ensure system in finite time convergence control, and there is good robustness.
Described above is the excellent effect of optimization that one embodiment that the present invention provides is shown, it is clear that the present invention is not only Above-described embodiment is limited to, without departing from essence spirit of the present invention and the premise without departing from scope involved by substantive content of the present invention Under it can be made it is a variety of deformation be carried out.

Claims (1)

  1. A kind of 1. four rotor wing unmanned aerial vehicle finite time self-adaptation control methods based on non-singular terminal sliding formwork, it is characterised in that: Comprise the following steps:
    Step 1, the kinetic model of four rotor wing unmanned aerial vehicles, initialization system mode, sampling time and systematic parameter, process are established It is as follows:
    1.1 hypothesis unmanned planes are that rigidity is full symmetric, and its center overlaps with body axis system origin, to four rotor wing unmanned aerial vehicles System carries out force analysis, establishes coordinate system, one is the inertial coodinate system based on the earth, by reference axis XE、YE、ZEIt is determined that separately One is the body axis system based on four rotor wing unmanned aerial vehicles, by reference axis XB、YB、ZBIt is determined that from body axis system to inertial coordinate The transfer matrix M of system is:
    <mrow> <mi>M</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>cos</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, ψ, θ, φ are referred to as yaw angle, the angle of pitch, the roll angle of unmanned plane, represent inertial coodinate system around its each coordinate The anglec of rotation of axle;
    1.2 according to newton Euler's formula analytic dynamics model, has under translation state:
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>m</mi> <mi>g</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>M</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mi>F</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>m</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    Wherein x, y, z represents position of four rotor wing unmanned aerial vehicles under inertial coodinate system respectively, and m is the quality of unmanned plane, UFRepresent four Lift caused by individual rotor, mg are the gravity suffered by unmanned plane, and g is acceleration of gravity, UFRepresent to act on nobody with mg sums Bonding force F on machine;
    Formula (1) is substituted into formula (2) to obtain:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;psi;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;psi;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mfrac> <msub> <mi>U</mi> <mi>F</mi> </msub> <mi>m</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;psi;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;psi;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mfrac> <msub> <mi>U</mi> <mi>F</mi> </msub> <mi>m</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mi>g</mi> <mo>+</mo> <mrow> <mo>(</mo> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mfrac> <msub> <mi>U</mi> <mi>F</mi> </msub> <mi>m</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    1.3 under body axis system, according to Euler's formula, has under rotary state:
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;times;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    Wherein τx、τy、τzEach axle power square of body axis system, I are represented respectivelyxx、Iyy、IzzRepresent that each axle of body axis system rotates respectively Inertia, ωx、ωy、ωzEach axle attitude angular velocity on body axis system is represented respectively, Represent that body is sat respectively Mark each axle posture angular acceleration fastened;
    Obtained by formula (4):
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    Four rotor wing unmanned aerial vehicles are to realize flight control, its control moment and rotor lift and rotor by adjusting the rotating speed of rotor Rotating speed have direct relation, as shown in formula (6):
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>U</mi> <mi>F</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mi>F</mi> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mi>F</mi> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mi>F</mi> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mi>F</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>F</mi> </msub> <mi>L</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>k</mi> <mi>F</mi> </msub> <mi>L</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>k</mi> <mi>F</mi> </msub> <mi>L</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>F</mi> </msub> <mi>L</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mi>M</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>k</mi> <mi>M</mi> </msub> </mrow> </mtd> <mtd> <msub> <mi>k</mi> <mi>M</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>k</mi> <mi>M</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>&amp;omega;</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&amp;omega;</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&amp;omega;</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&amp;omega;</mi> <mn>4</mn> <mn>2</mn> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
    Wherein L represents the barycenter of four rotor wing unmanned aerial vehicles to the distance of each rotor axis, kFRepresent lift coefficient, kMRepresent moment of torsion system Number, ω1、ω2、ω3、ω4The rotating speed of each rotor is represented respectively;
    1.4 consider that outer bound pair system produces interference under actual environment, establishes the kinetic model of four rotor wing unmanned aerial vehicles, four rotor wing unmanned aerial vehicles Low-speed operations or floating state are typically in, attitude angle change is smaller, it is believed that Such as following formula (7):
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>U</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>U</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>U</mi> <mi>z</mi> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>&amp;phi;</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>&amp;theta;</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> <mo>+</mo> <msub> <mi>d</mi> <mi>&amp;psi;</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
    Wherein
    <mrow> <msub> <mi>U</mi> <mi>y</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;phi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mfrac> <msub> <mi>U</mi> <mi>F</mi> </msub> <mi>m</mi> </mfrac> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>U</mi> <mi>z</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>g</mi> <mo>+</mo> <mrow> <mo>(</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mfrac> <msub> <mi>U</mi> <mi>F</mi> </msub> <mi>m</mi> </mfrac> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> <mo>,</mo> </mrow>
    <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>,</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> <mo>,</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> <mo>,</mo> </mrow>
    dx、dy、dz、dφ、dθ、dψThe external disturbance of representative model;
    Formula (7) belongs to second order MIMO nonlinear systems, and for ease of the design of controller, formula (7) is expressed as shape Formula:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>B</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mi>U</mi> <mo>+</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>Y</mi> <mo>=</mo> <mi>X</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
    Wherein state variable X=(x, y, x, φ, θ, ψ)T, Diagonal matrix B (X)=diag { 1,1,1, b1,b2,b3, input U=(Ux,Uy,Uzxyz)T, external disturbance D (t)=(dx, dy,dz,dφ,dθ,dψ)T, and meet following condition:
    ||D(t)||≤ρ (9)
    Wherein | | D (t) | |For D (t) Infinite Norm, ρ is a constant more than zero;
    Step 2, calculating control system tracking error, designs non-singular terminal sliding-mode surface, and process is as follows:
    2.1, which define system tracking error, is:
    E=X-Xd (10)
    Wherein XdFor desired signal, X can be ledd=(xd,yd,zdddd)T, xd、yd、zd、φd、θd、ψdIt is respectively corresponding Position and the desired value of attitude angle;
    The first differential and second-order differential of formula (10) represent as follows:
    <mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
    2.2, which define non-singular terminal sliding-mode surface, is:
    <mrow> <mi>S</mi> <mo>=</mo> <mi>e</mi> <mo>+</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>sig</mi> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
    Wherein S=(s1,s2,s3,s4,s5,s6)T, β-1=diag { β1 -1, β2 -1, β3 -1, β4 -1, β5 -1, β6 -1It is positive definite matrix,si、βi、eiRespectively represent corresponding to x, y, z, ψ, θ, φ sliding variable, constant value coefficient, error first derivative, i=1,2,3,4,5,6, sign () are sign function, and p, q is just Odd number, and 1<p/q<2;
    Step 3, the dynamic system based on four rotor wing unmanned aerial vehicles, according to non-singular terminal sliding formwork, controller is designed, process is such as Under:
    3.1 are based on formula (8), and non-singular terminal sliding mode controller is designed to:
    U=Ueq+Ure (14)
    <mrow> <msub> <mi>U</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mi>B</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> <mfrac> <mi>q</mi> <mi>p</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mn>2</mn> <mo>-</mo> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>U</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mi>B</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mo>+</mo> <mi>&amp;eta;</mi> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, constant η>0,3.2 design Lee Ya Punuofu functions
    <mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>S</mi> <mi>T</mi> </msup> <mi>S</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
    Derivation is carried out to formula (13) to obtain
    <mrow> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>B</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mi>U</mi> <mo>+</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
    Wherein
    Formula (14)~(16) are substituted into formula (18) and obtained
    <mrow> <mover> <mi>S</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
    Derivation is carried out to formula (17) to obtain
    <mrow> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mi>S</mi> <mi>T</mi> </msup> <mi>S</mi> <mo>=</mo> <msup> <mi>S</mi> <mi>T</mi> </msup> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
    Obtained by formula (20)
    <mrow> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>&amp;le;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&amp;lsqb;</mo> <mo>|</mo> <mo>|</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mi>&amp;rho;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
    Formula (9) is substituted into formula (21) to obtain
    <mrow> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>&amp;le;</mo> <mo>-</mo> <mi>&amp;eta;</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
    Wherein η>0, β is positive definite matrix, and p, q are positive odd number,It is then obviousTherefore, it is determined thatSystem is stable;
    Step 4, optimal controller, mistake uncertain using interference present in self-adaptation control method processing system and inertia Journey is as follows:
    4.1 are assumed on external disturbance D (t) boundary again:
    <mrow> <mo>|</mo> <mo>|</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>&amp;le;</mo> <mi>c</mi> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mo>|</mo> <mo>|</mo> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>|</mo> <mo>|</mo> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>|</mo> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, c, k1、k2It is unknown border, is not easy to obtain due to probabilistic labyrinth in actual control system;
    4.2 are revised as control law based on formula (14)~(16):
    U1=Ueq1+Ure1 (24)
    <mrow> <msub> <mi>U</mi> <mrow> <mi>e</mi> <mi>q</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> <mfrac> <mi>q</mi> <mi>p</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mn>2</mn> <mo>-</mo> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>U</mi> <mrow> <mi>r</mi> <mi>e</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mo>+</mo> <mi>&amp;eta;</mi> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mo>=</mo> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mo>|</mo> <mo>|</mo> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>|</mo> <mo>|</mo> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>|</mo> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, It is γ estimation;It is c, k respectively1、k2, ρ estimation;
    Design estimates that the more new law of parameter is respectively:
    <mrow> <mover> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mi>S</mi> <mi>T</mi> </msup> <msup> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mn>3</mn> </msup> <mo>{</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>{</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>{</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mo>|</mo> <mo>|</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>{</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>|</mo> <mo>|</mo> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>|</mo> <mo>|</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, p0> 0, p1> 0, p2> 0, ε0> 0, ε1> 0, ε2> 0 is design parameter;
    4.3 design liapunov functions
    <mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&amp;lsqb;</mo> <msup> <mi>S</mi> <mi>T</mi> </msup> <mi>S</mi> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>0</mn> </msub> </mfrac> <msup> <mover> <mi>c</mi> <mo>~</mo> </mover> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>1</mn> </msub> </mfrac> <msup> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>2</mn> </msub> </mfrac> <msup> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow>
    Wherein
    Derivation is carried out to formula (32), then substitutes into formula (18) and obtains
    <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>S</mi> <mi>T</mi> </msup> <mo>{</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>B</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mi>U</mi> <mo>+</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>0</mn> </msub> </mfrac> <mover> <mi>c</mi> <mo>~</mo> </mover> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>1</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mi>2</mi> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <msup> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mover> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow>
    (24)~(26) are substituted into formula (33) to obtain
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>S</mi> <mi>T</mi> </msup> <mo>{</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;gamma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>f</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mo>-</mo> <msup> <mi>&amp;gamma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>0</mn> </msub> </mfrac> <mover> <mi>c</mi> <mo>~</mo> </mover> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>1</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mi>2</mi> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <msup> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mover> <mover> <mi>&amp;gamma;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> </mrow>
    Formula (28) is substituted into formula (34) to obtain
    <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>S</mi> <mi>T</mi> </msup> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>0</mn> </msub> </mfrac> <mover> <mi>c</mi> <mo>~</mo> </mover> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>1</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>2</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow>
    Obtained by formula (35)
    <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> <mo>&amp;le;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&amp;lsqb;</mo> <mo>|</mo> <mo>|</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>+</mo> <mover> <mi>&amp;rho;</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>0</mn> </msub> </mfrac> <mover> <mi>c</mi> <mo>~</mo> </mover> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>1</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>2</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow>
    Formula (27), (29)~(31) are substituted into formula (36) and obtained;
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> <mo>&amp;le;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>&amp;lsqb;</mo> <mo>|</mo> <mo>|</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>-</mo> <mi>&amp;eta;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>|</mo> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>|</mo> <mo>|</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>0</mn> </msub> </mfrac> <mover> <mi>c</mi> <mo>~</mo> </mover> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>1</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mn>2</mn> </msub> </mfrac> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>&amp;lsqb;</mo> <mo>|</mo> <mo>|</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>-</mo> <mi>&amp;eta;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>|</mo> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>|</mo> <mo>|</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mover> <mi>c</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>0</mi> </msub> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>|</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>1</mi> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>|</mo> <mo>|</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>|</mo> <mo>|</mo> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow>
    Formula (23) is substituted into
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>a</mi> </mrow> </msub> <mo>&amp;le;</mo> <mo>-</mo> <mi>&amp;eta;</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mrow> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> <mover> <mi>c</mi> <mo>~</mo> </mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <msub> <mover> <mi>k</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mi>&amp;eta;</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mrow> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> <msup> <mrow> <mo>(</mo> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>c</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> <msup> <msub> <mi>k</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;le;</mo> <mo>-</mo> <mi>&amp;eta;</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <mo>{</mo> <msub> <mrow> <mo>(</mo> <msup> <mi>&amp;beta;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <msup> <mi>sig</mi> <mrow> <mfrac> <mi>p</mi> <mi>q</mi> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>}</mo> <mo>+</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;epsiv;</mi> <mn>0</mn> </msub> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>1</mn> </msub> <msup> <msub> <mi>k</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mn>2</mn> </msub> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>38</mn> <mo>)</mo> </mrow> </mrow>
    To meetThenThen haveWherein δ=ε0c21k1 22k2 2, Expression takes The wherein minterm of element;VsaReduction drive the track of closed-loop system to beTherefore the track of closed-loop system is most It is defined as eventually
CN201710532250.3A 2017-07-03 2017-07-03 A kind of quadrotor drone finite time self-adaptation control method based on non-singular terminal sliding formwork Active CN107479370B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710532250.3A CN107479370B (en) 2017-07-03 2017-07-03 A kind of quadrotor drone finite time self-adaptation control method based on non-singular terminal sliding formwork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710532250.3A CN107479370B (en) 2017-07-03 2017-07-03 A kind of quadrotor drone finite time self-adaptation control method based on non-singular terminal sliding formwork

Publications (2)

Publication Number Publication Date
CN107479370A true CN107479370A (en) 2017-12-15
CN107479370B CN107479370B (en) 2019-11-08

Family

ID=60595306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710532250.3A Active CN107479370B (en) 2017-07-03 2017-07-03 A kind of quadrotor drone finite time self-adaptation control method based on non-singular terminal sliding formwork

Country Status (1)

Country Link
CN (1) CN107479370B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188913A (en) * 2018-10-18 2019-01-11 南京邮电大学 A kind of robust controller of the robust control method of UAV Attitude and realization this method
CN109828470A (en) * 2018-03-15 2019-05-31 浙江工业大学 A kind of quadrotor index tangent output constraint control method
CN109885074A (en) * 2019-02-28 2019-06-14 天津大学 Quadrotor drone finite time convergence control attitude control method
CN110231828A (en) * 2019-05-31 2019-09-13 燕山大学 Quadrotor drone Visual servoing control method based on NFTSM
CN111781828A (en) * 2020-06-17 2020-10-16 中国人民解放军军事科学院国防科技创新研究院 Spacecraft cluster control method based on adaptive nonsingular terminal sliding mode control
CN111856941A (en) * 2020-08-03 2020-10-30 北京工商大学 Adaptive terminal dynamic sliding mode control method based on active disturbance rejection
CN112068594A (en) * 2020-09-14 2020-12-11 江苏信息职业技术学院 JAYA algorithm optimization-based course control method for small unmanned helicopter
CN112068583A (en) * 2020-10-26 2020-12-11 江南大学 Design method of sliding mode controller for unmanned aerial vehicle system
CN112486141A (en) * 2020-11-26 2021-03-12 南京信息工程大学 Unmanned aerial vehicle flight control program modeling and verifying method based on time automaton
CN112947513A (en) * 2021-01-27 2021-06-11 西北工业大学 Four-rotor unmanned aerial vehicle attitude control method based on fault-tolerant and anti-saturation mechanism
CN113009932A (en) * 2021-03-11 2021-06-22 南京邮电大学 Four-rotor unmanned aerial vehicle anti-interference control method based on disturbance observer control
CN113659897A (en) * 2021-08-11 2021-11-16 沈阳工程学院 Sliding mode control method of permanent magnet linear synchronous motor
CN116088548A (en) * 2022-12-30 2023-05-09 西北工业大学 Four-rotor unmanned aerial vehicle attitude control method based on rapid nonsingular terminal sliding mode
CN117891281A (en) * 2024-03-15 2024-04-16 天目山实验室 Second-order nonsingular terminal sliding mode flight control method based on nested double modes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419596A (en) * 2011-11-20 2012-04-18 北京航空航天大学 Vector-field-based small-sized unmanned plane wind-field anti-interference self-adaptive control method
CN102809970A (en) * 2012-07-09 2012-12-05 北京理工大学 Method for controlling attitude of aircraft based on L1 adaptive control
CN105607473A (en) * 2015-11-20 2016-05-25 天津大学 Self-adaptive control method of rapid attitude error convergence for small unmanned helicopter
CN105911866A (en) * 2016-06-15 2016-08-31 浙江工业大学 Finite-time full-order sliding mode control method of quadrotor unmanned aircraft
CN106444799A (en) * 2016-07-15 2017-02-22 浙江工业大学 Quadrotor unmanned plane control method based on fuzzy expansion state observer and adaptive sliding formwork
CN106707754A (en) * 2016-12-23 2017-05-24 哈尔滨工业大学 Switching system-based modeling and adaptive control method for cargo handling unmanned gyroplane
CN106774373A (en) * 2017-01-12 2017-05-31 哈尔滨工业大学 A kind of four rotor wing unmanned aerial vehicle finite time Attitude tracking control methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419596A (en) * 2011-11-20 2012-04-18 北京航空航天大学 Vector-field-based small-sized unmanned plane wind-field anti-interference self-adaptive control method
CN102809970A (en) * 2012-07-09 2012-12-05 北京理工大学 Method for controlling attitude of aircraft based on L1 adaptive control
CN105607473A (en) * 2015-11-20 2016-05-25 天津大学 Self-adaptive control method of rapid attitude error convergence for small unmanned helicopter
CN105911866A (en) * 2016-06-15 2016-08-31 浙江工业大学 Finite-time full-order sliding mode control method of quadrotor unmanned aircraft
CN106444799A (en) * 2016-07-15 2017-02-22 浙江工业大学 Quadrotor unmanned plane control method based on fuzzy expansion state observer and adaptive sliding formwork
CN106707754A (en) * 2016-12-23 2017-05-24 哈尔滨工业大学 Switching system-based modeling and adaptive control method for cargo handling unmanned gyroplane
CN106774373A (en) * 2017-01-12 2017-05-31 哈尔滨工业大学 A kind of four rotor wing unmanned aerial vehicle finite time Attitude tracking control methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱培: "四旋翼空中机器人自适应滑模控制研究", 《信息科技辑》 *
李劲松: "四旋翼小型无人直升机自适应逆控制研究", 《工程科技II辑》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828470A (en) * 2018-03-15 2019-05-31 浙江工业大学 A kind of quadrotor index tangent output constraint control method
CN109188913A (en) * 2018-10-18 2019-01-11 南京邮电大学 A kind of robust controller of the robust control method of UAV Attitude and realization this method
CN109885074A (en) * 2019-02-28 2019-06-14 天津大学 Quadrotor drone finite time convergence control attitude control method
CN109885074B (en) * 2019-02-28 2022-02-15 天津大学 Finite time convergence attitude control method for quad-rotor unmanned aerial vehicle
CN110231828A (en) * 2019-05-31 2019-09-13 燕山大学 Quadrotor drone Visual servoing control method based on NFTSM
CN110231828B (en) * 2019-05-31 2020-07-21 燕山大学 Four-rotor unmanned aerial vehicle visual servo control method based on nonsingular rapid terminal sliding mode
CN111781828A (en) * 2020-06-17 2020-10-16 中国人民解放军军事科学院国防科技创新研究院 Spacecraft cluster control method based on adaptive nonsingular terminal sliding mode control
CN111781828B (en) * 2020-06-17 2022-05-10 中国人民解放军军事科学院国防科技创新研究院 Spacecraft cluster control method based on adaptive nonsingular terminal sliding mode control
CN111856941A (en) * 2020-08-03 2020-10-30 北京工商大学 Adaptive terminal dynamic sliding mode control method based on active disturbance rejection
CN112068594B (en) * 2020-09-14 2022-12-30 江苏信息职业技术学院 JAYA algorithm optimization-based course control method for small unmanned helicopter
CN112068594A (en) * 2020-09-14 2020-12-11 江苏信息职业技术学院 JAYA algorithm optimization-based course control method for small unmanned helicopter
CN112068583A (en) * 2020-10-26 2020-12-11 江南大学 Design method of sliding mode controller for unmanned aerial vehicle system
CN112486141A (en) * 2020-11-26 2021-03-12 南京信息工程大学 Unmanned aerial vehicle flight control program modeling and verifying method based on time automaton
CN112947513A (en) * 2021-01-27 2021-06-11 西北工业大学 Four-rotor unmanned aerial vehicle attitude control method based on fault-tolerant and anti-saturation mechanism
CN112947513B (en) * 2021-01-27 2022-10-21 西北工业大学 Four-rotor unmanned aerial vehicle attitude control method based on fault-tolerant and anti-saturation mechanism
CN113009932B (en) * 2021-03-11 2022-11-08 南京邮电大学 Four-rotor unmanned aerial vehicle anti-interference control method based on disturbance observer control
CN113009932A (en) * 2021-03-11 2021-06-22 南京邮电大学 Four-rotor unmanned aerial vehicle anti-interference control method based on disturbance observer control
CN113659897A (en) * 2021-08-11 2021-11-16 沈阳工程学院 Sliding mode control method of permanent magnet linear synchronous motor
CN113659897B (en) * 2021-08-11 2023-11-03 沈阳工程学院 Sliding mode control method of permanent magnet linear synchronous motor
CN116088548A (en) * 2022-12-30 2023-05-09 西北工业大学 Four-rotor unmanned aerial vehicle attitude control method based on rapid nonsingular terminal sliding mode
CN116088548B (en) * 2022-12-30 2023-09-29 西北工业大学 Four-rotor unmanned aerial vehicle attitude control method based on rapid nonsingular terminal sliding mode
CN117891281A (en) * 2024-03-15 2024-04-16 天目山实验室 Second-order nonsingular terminal sliding mode flight control method based on nested double modes

Also Published As

Publication number Publication date
CN107479370B (en) 2019-11-08

Similar Documents

Publication Publication Date Title
CN107479370B (en) A kind of quadrotor drone finite time self-adaptation control method based on non-singular terminal sliding formwork
CN107479371B (en) A kind of quadrotor drone finite time self-adaptation control method based on quick non-singular terminal sliding formwork
CN107688295A (en) A kind of quadrotor finite time self-adaptation control method based on fast terminal sliding formwork
CN105911866B (en) The finite time full-order sliding mode control method of quadrotor unmanned vehicle
CN107479567B (en) The unknown quadrotor drone attitude controller of dynamic characteristic and method
CN106094855B (en) A kind of terminal cooperative control method of quadrotor drone
CN107831670B (en) It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor export limited backstepping control method
CN108037662A (en) A kind of limited backstepping control method of quadrotor output based on Integral Sliding Mode obstacle liapunov function
CN104571120A (en) Posture nonlinear self-adaptive control method of quad-rotor unmanned helicopter
CN105488295A (en) Unmanned aerial vehicle modeling system taking wind field disturbances into consideration
CN107942672B (en) Four-rotor aircraft output limited backstepping control method based on symmetric time invariant obstacle Lyapunov function
CN110377044A (en) A kind of the finite time height and Attitude tracking control method of unmanned helicopter
CN108563128B (en) Self-adaptive control method of four-rotor aircraft based on exponential enhancement type rapid power approximation law and rapid terminal sliding mode surface
CN108536018B (en) Four-rotor aircraft self-adaptive control method based on inverse proportion function enhanced double-power approach law and fast terminal sliding mode surface
CN108107726B (en) Four-rotor aircraft output limited backstepping control method based on symmetric time-varying obstacle Lyapunov function
CN108646773A (en) Quadrotor self-adaptation control method based on index enhanced double power Reaching Laws and fast terminal sliding-mode surface
CN108388118A (en) The quadrotor total state constrained control method of liapunov function is constrained based on asymmetric time-varying tangential type
CN108563126B (en) Self-adaptive control method of four-rotor aircraft based on hyperbolic sine enhanced power approximation law and fast terminal sliding mode surface
CN108829117B (en) Self-adaptive control method of four-rotor aircraft based on logarithm enhancement type power approach law and fast terminal sliding mode surface
CN108803319B (en) Self-adaptive control method of four-rotor aircraft based on logarithm enhancement type fast power approach law and fast terminal sliding mode surface
CN108549400B (en) Self-adaptive control method of four-rotor aircraft based on logarithm enhanced double-power approach law and fast terminal sliding mode surface
CN108052115B (en) It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor total state be limited backstepping control method
Qu et al. Dynamic Modeling and Control of Small-size Quadrotor Considering Wind Field Disturbance
CN108803638A (en) Quadrotor self-adaptation control method based on tanh enhanced quick power Reaching Law and fast terminal sliding-mode surface
CN109917650A (en) A kind of Spacecraft Attitude Control of asymmetric varying constraint

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171215

Assignee: Foshan chopsticks Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980000084

Denomination of invention: A Finite Time Adaptive Control Method for Quadcopter Unmanned Aerial Vehicle Based on Non singular Terminal Sliding Mode

Granted publication date: 20191108

License type: Common License

Record date: 20240104