CN107479218B - 一种电光双控的红外光开关控制方法及其专用开关 - Google Patents

一种电光双控的红外光开关控制方法及其专用开关 Download PDF

Info

Publication number
CN107479218B
CN107479218B CN201710859595.XA CN201710859595A CN107479218B CN 107479218 B CN107479218 B CN 107479218B CN 201710859595 A CN201710859595 A CN 201710859595A CN 107479218 B CN107479218 B CN 107479218B
Authority
CN
China
Prior art keywords
light
lens
crystal
photorefractive crystal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710859595.XA
Other languages
English (en)
Other versions
CN107479218A (zh
Inventor
苏艳丽
姜其畅
马紫微
李永宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuncheng University
Original Assignee
Yuncheng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuncheng University filed Critical Yuncheng University
Priority to CN201710859595.XA priority Critical patent/CN107479218B/zh
Publication of CN107479218A publication Critical patent/CN107479218A/zh
Application granted granted Critical
Publication of CN107479218B publication Critical patent/CN107479218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0311Structural association of optical elements, e.g. lenses, polarizers, phase plates, with the crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种电光双控的红外光开关控制方法,包括以下步骤:1)设置电光双控的红外光开关系统;2)810nm红外信号光入射光折变晶体中,810nm红外信号光入射方向与晶体光轴垂直;在光折变晶体侧面入射515nm启动光,515nm启动光入射方向也与晶体光轴垂直;沿晶体光轴方向外加正向直流电场,在外加电场的晶体表面镀有电极;3)调节外加电场的大小,或者控制启动光的有无实现对透射信号光强大小的控制;其专用开关包括有光折变晶体,在光折变晶体的左侧依次设有透镜一、透镜二、偏振片、半波片;右侧依次设有透镜三、CCD相机;光折变晶体的前侧与全反镜光线反射侧相配合;全反镜的光线入射侧向外依次设有透镜四、透镜五;实现了电光双控,应用前景好。

Description

一种电光双控的红外光开关控制方法及其专用开关
技术领域
本发明属于光开关控制技术领域,具体涉及一种电光双控的红外光开关控制方法及其专用开关。
背景技术
光开关按其控制机理的不同,可以分为电控光开关和光控光开关。电控光开关包括热光效应光开关、微电机械光开关、旋光液晶光开关、磁光效应光开关、声光效应光开关和电光效应光开关。在诸多电控光开关中基于电光效应的光开关功耗比较低,与偏振无关,开关速度快,体积小,串扰小,重复率高,寿命长。光控光开关技术主要有非线性波导定向耦合器和非线性光纤环路镜。由于产生非线性耦合一般需要较高光功率,目前距离走向实用还有很长一段距离。
基于电光效应的电控光开关主要物理机制是电压控制光折变效应,包括线性电光效应和二次电光效应。在这些电控光开关技术方案中,多是采用绿光作为入射信号光,通过电压控制信号光的强弱和耦合。
发明内容
为克服上述现有技术的不足,本发明的目的是提供一种电光双控的红外光开关控制方法及其专用开关,具有控制灵活、响应快、所需光功率较低的特点。
为实现上述目的,本发明采用的技术方案是:
一种电光双控的红外光开关控制方法,包括以下步骤:
步骤1,设置电光双控的红外光开关系统,在光折变晶体的左侧向左依次设有透镜一、透镜二、偏振片、半波片;右侧向右依次设有透镜三、CCD相机;光折变晶体的前侧与全反镜的光线反射侧相配合;全反镜的光线入射侧向外依次设有透镜四、透镜五;
步骤2,810nm红外信号光聚焦约为光斑后入射稀土掺杂的光折变晶体LiNbO3中,810nm红外信号光入射方向与晶体光轴垂直;同时,在光折变晶体侧面入射515nm启动光,515nm启动光入射方向也与晶体光轴垂直;沿晶体光轴方向外加正向直流电场,范围为104~106V/m,在外加电场的晶体表面镀有电极。
步骤3,调节外加电场的大小,或者控制启动光的有无均可实现对透射信号光强大小的控制即电光双控的红外光开关控制。
一种电光双控的红外光开关,包括有光折变晶体,在光折变晶体的左侧向左依次设有透镜一、透镜二、偏振片、半波片;右侧向右依次设有透镜三、CCD相机;光折变晶体的前侧与全反镜的光线反射侧相配合;全反镜的光线入射侧向外依次设有透镜四、透镜五。
所述的光折变晶体与电流源通过光折变晶体上所镀的电极相连接。
本发明的有益效果是:
在本方法中,主要装置包括稀土掺杂的光折变晶体LiNbO3、提供810nm红外信号光的光源、提供515nm启动光的光源、向光折变晶体提供直流电压的电流源和相应的电极板。
本发明利用光折变晶体的光折变效应,在如上所述的光路配置下,在外加电场处于104~106V/m范围时,如果操控外加电场逐渐增加,810nm红外信号光逐渐形成光折变空间光孤子,在这一过程中,透射信号光的最大强度逐渐变化,获得电控光开关效果。
在上述光路配置条件下,如果控制515nm启动光的有无,可以直接控制光折变空间光孤子的形成,获得光控光开关效果。这一光控作用可以作为光开关的一种保险措施。
与现有技术相比,本发明具有多方面的优越性。本发明利用稀土掺杂光折变晶体LiNbO3中的双光子光折变效应,实现了一种电光双控的红外光开关系统。该光开关既可以利用电压控制信号光的强弱,也可以利用启动光控制信号光的强弱,实现了电光双控的光开关系统。本发明的电光双控技术提高了光开关的可靠性和灵活性,在光控制和光通信方面具有很好的应用前景。
附图说明
图1为本发明具体的开关系统结构图。
图2为本发明的光路、电路配置图。
图3为本发明所用的稀土掺杂光折变晶体LiNbO3中,双光子激发过程的原理图。
具体实施方式
下面结合附图对本发明的结构原理和工作原理作进一步详细说明。
参见图1,一种电光双控的红外光开关控制方法,包括以下步骤:
步骤1,设置电光双控的红外光开关系统,在光折变晶体5的左侧向左依次设有透镜一4、透镜二3、偏振片2、半波片1,右侧向右依次设有透镜三6、CCD相机7;光折变晶体5的前侧与全反镜10光线反射侧相配合;全反镜10的光线入射侧向外依次设有透镜四9、透镜五8;
步骤2,810nm红外信号光聚焦约为光斑后入射稀土掺杂的光折变晶体LiNbO3中,810nm红外信号光入射方向与晶体光轴垂直;同时,在光折变晶体侧面入射515nm启动光,515nm启动光入射方向也与晶体光轴垂直;沿晶体光轴方向外加正向直流电场,范围为104~106V/m,在外加电场的晶体表面镀有电极。
步骤3,调节外加电场的大小,或者控制启动光的有无均可实现对透射信号光强大小的控制即电光双控的红外光开关控制。
一种电光双控的红外光开关,包括有光折变晶体5,在光折变晶体5的左侧向左依次设有透镜一4、透镜二3、偏振片2、半波片1;右侧向右依次设有透镜三6、CCD相机7;光折变晶体5的前侧与全反镜10光线反射侧相配合;全反镜10的光线入射侧向外依次设有透镜四9、透镜五8。
所述的光折变晶体5与电流源通过光折变晶体上所镀的电极相连接。
实现本发明的具体原理如下:
在稀土掺杂的光折变晶体LiNbO3上施加外加正向电场时,入射到晶体的启动光和信号光共同完成双光子激发过程。首先是启动光将电子从晶体的价带激发到中间能级,然后,由信号光将中间能级的电子二次激发到导带,此时,信号光主导的光折变效应非线性地改变了介质的折射率分布,非均匀的折射率变化抵消了光束自然传输的衍射效应,最终信号光形成光折变空间亮孤子。通过操控外加电压的大小,可以控制光孤子的形成过程,即控制透射信号光的最大光强。在光折变孤子形成的过程中,启动光起着预泵浦的作用,使得较低频率的红外信号光可以产生可观的光折变非线性,如果没有启动光,则810nm信号光是无法形成光孤子的,所以启动光的有无也可以直接控制光孤子的形成,即控制透射信号光的最大光强。
图1是比较详细的光开关系统结构图。810nm红外信号光首先经过半波片和偏振片成为非寻常偏振光,然后进入透镜3和4组成的聚焦系统,获得光斑约的入射光;515nm启动光经过透镜8和9构成的扩束系统,展宽后入射光折变晶体的侧面。信号光、启动光和外加电场在图2所示的配置下,逐渐调节外加电场的大小,可以控制透射信号光的最大光强;同样,控制启动光的有无,也可以控制透射信号光的最大光强。透射信号光的最大光强可以在1~35%之间连续变化。透射的信号光利用成像透镜6和CCD相机7观测。
图2是光折变晶体LiNbO3处的光路和电路配置图,这里入射信号光、启动光和外加电场是两两垂直的。其中外加电场方向和晶体光轴方向一致。
图3是光折变晶体LiNbO3中双光子激发过程的原理图。稀土掺杂介质提供了良好的中间能级,启动光的预泵浦作用,使得较低频率的红外信号光也可以诱发可观的光折变非线性,从而保证810nm红外激光形成光折变空间光孤子。

Claims (3)

1.一种电光双控的红外光开关控制方法,其特征在于,包括以下步骤:
步骤1,设置电光双控的红外光开关系统,在光折变晶体(5)的左侧向左依次设有透镜一(4)、透镜二(3)、偏振片(2)、半波片(1),右侧向右依次设有透镜三(6)、CCD相机(7);光折变晶体(5)的前侧与全反镜(10)光线反射侧相配合;全反镜(10)的光线入射侧向外依次设有透镜四(9)、透镜五(8);
步骤2,810nm红外信号光聚焦约为光斑后入射稀土掺杂的光折变晶体LiNbO3中,810nm红外信号光入射方向与晶体光轴垂直;同时,在光折变晶体前侧入射515nm启动光,515nm启动光入射方向也与晶体光轴垂直;沿晶体光轴方向外加正向直流电场,范围为104~106V/m,在外加电场的晶体表面镀有电极;
所述的810nm红外信号光首先经过半波片和偏振片成为非寻常偏振光,然后进入透镜二和透镜一组成的聚焦系统,获得光斑约的入射光从光折变晶体的左侧入射,透射的信号光利用透镜三(6)和CCD相机(7)观测;
所述的515nm启动光经过透镜五(8)和透镜四(9)构成的扩束系统,展宽后由全反镜(10)反射,反射后的光从光折变晶体的前侧入射;
步骤3,调节外加电场的大小,或者控制启动光的有无均可实现对透射信号光强大小的控制即电光双控的红外光开关控制。
2.用于权利要求1所述一种电光双控的红外光开关控制方法的专用开关,其特征在于,包括有光折变晶体(5),在光折变晶体(5)的左侧向左依次设有透镜一(4)、透镜二(3)、偏振片(2)、半波片(1);右侧向右依次设有透镜三(6)、CCD相机(7);光折变晶体(5)的前侧与全反镜(10)的光线反射侧相配合;全反镜(10)的光线入射侧向外依次设有透镜四(9)、透镜五(8)。
3.根据权利要求2所述的一种电光双控的红外光开关控制方法的专用开关,其特征在于,所述的光折变晶体(5)与电流源通过光折变晶体上所镀的电极相连接。
CN201710859595.XA 2017-09-21 2017-09-21 一种电光双控的红外光开关控制方法及其专用开关 Active CN107479218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710859595.XA CN107479218B (zh) 2017-09-21 2017-09-21 一种电光双控的红外光开关控制方法及其专用开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710859595.XA CN107479218B (zh) 2017-09-21 2017-09-21 一种电光双控的红外光开关控制方法及其专用开关

Publications (2)

Publication Number Publication Date
CN107479218A CN107479218A (zh) 2017-12-15
CN107479218B true CN107479218B (zh) 2023-04-28

Family

ID=60585653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710859595.XA Active CN107479218B (zh) 2017-09-21 2017-09-21 一种电光双控的红外光开关控制方法及其专用开关

Country Status (1)

Country Link
CN (1) CN107479218B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221198A (zh) * 2019-11-21 2020-06-02 中国科学院上海光学精密机械研究所 一种新型全光开关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033334A (zh) * 2010-12-14 2011-04-27 江汉大学 一种基于γ51的电光调制器及实现方法
CN103605217A (zh) * 2013-11-29 2014-02-26 哈尔滨工业大学 利用电控二次电光效应实现入射光偏转的光开关方法
CN104238232A (zh) * 2014-09-07 2014-12-24 河北大学 一种光折变空间光孤子的产生方法、装置及其应用
CN105220232A (zh) * 2015-11-02 2016-01-06 山东省科学院新材料研究所 具有梯度折射率效应的二次电光晶体及其制备与应用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045938B2 (ja) * 2002-11-29 2008-02-13 株式会社日立製作所 光スイッチとその素子
CN101681076B (zh) * 2007-06-19 2013-10-30 日本电气株式会社 光开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033334A (zh) * 2010-12-14 2011-04-27 江汉大学 一种基于γ51的电光调制器及实现方法
CN103605217A (zh) * 2013-11-29 2014-02-26 哈尔滨工业大学 利用电控二次电光效应实现入射光偏转的光开关方法
CN104238232A (zh) * 2014-09-07 2014-12-24 河北大学 一种光折变空间光孤子的产生方法、装置及其应用
CN105220232A (zh) * 2015-11-02 2016-01-06 山东省科学院新材料研究所 具有梯度折射率效应的二次电光晶体及其制备与应用方法

Also Published As

Publication number Publication date
CN107479218A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
CN101782693B (zh) 一种多功能集成光学设备
CN102904155B (zh) 一种全固态皮秒激光再生放大器
CN109683422B (zh) 一种液晶透镜及其制备方法
CN102280814B (zh) 基于环形激光器的宽带光混沌信号源芯片结构
CN107479218B (zh) 一种电光双控的红外光开关控制方法及其专用开关
CN100364186C (zh) 外腔式电控激光波长编码输出方法及其双波长激光器模块
CN103166102A (zh) 低电压驱动电光晶体的激光器
CN108767629B (zh) 大能量有源多程啁啾脉冲展宽器
Banerjee et al. Microfabricated low-profile high tunable LC Fresnel lens for smart contacts
CN102053386A (zh) 激光显示技术中激光光源用散斑抑制装置
US6958845B2 (en) Optical control element
CN105790045B (zh) 大能量周期量级超高信噪比飞秒种子脉冲产生装置
CN104659645A (zh) Rtp电光调q气流氟化氢激光器
CN102723661B (zh) 调q方式快速切变的电光、声光双调q脉冲激光器
CN207164392U (zh) 一种电光双控的红外光开关
CN111244743A (zh) 一种基于电光晶体实现中长波红外快速切换输出的双波段激光器
CN107153312B (zh) 一种无源的全光逻辑门及偏振转换器
CN209373317U (zh) 一种空间独立的双色光开关
CN102411985A (zh) 一种光纤双环可擦除光信息存储装置及存储方法
Yamaguchi et al. Low-Loss Ti-diffused LiNbO 3 Modulator Integrated with Electro-Optic Frequency-Domain Equalizer for High Bandwidth Exceeding 110 GHz
CN111711058A (zh) 一种基于Mamyshev振荡器差频的紧凑型可调谐红外激光器
CN103956645A (zh) 一种基于受激布里渊散射的快光可调谐装置
CN202275242U (zh) 3d显示系统
CN101237116A (zh) 一种输出腔镜透过率可调的激光腔
CN112152065A (zh) 激光脉冲的光谱展宽装置及激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Su Yanli

Inventor after: Jiang Qichang

Inventor after: Ma Ziwei

Inventor after: Li Yonghong

Inventor before: Jiang Qichang

Inventor before: Su Yanli

Inventor before: Ma Ziwei

Inventor before: Li Yonghong

GR01 Patent grant
GR01 Patent grant