CN107456225A - A kind of cerebral blood flow (CBF) partial volume effect bearing calibration - Google Patents
A kind of cerebral blood flow (CBF) partial volume effect bearing calibration Download PDFInfo
- Publication number
- CN107456225A CN107456225A CN201710639032.XA CN201710639032A CN107456225A CN 107456225 A CN107456225 A CN 107456225A CN 201710639032 A CN201710639032 A CN 201710639032A CN 107456225 A CN107456225 A CN 107456225A
- Authority
- CN
- China
- Prior art keywords
- value
- cbf
- gray
- matter
- white
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003727 cerebral blood flow Effects 0.000 title claims abstract description 61
- 230000000694 effects Effects 0.000 title claims abstract description 6
- 210000004885 white matter Anatomy 0.000 claims abstract description 37
- 210000004556 brain Anatomy 0.000 claims abstract description 18
- 238000012937 correction Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 11
- 210000004884 grey matter Anatomy 0.000 claims description 37
- 230000002490 cerebral effect Effects 0.000 claims description 5
- 230000008344 brain blood flow Effects 0.000 claims description 4
- 238000002372 labelling Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000003745 diagnosis Methods 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 abstract description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 5
- 208000024806 Brain atrophy Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 1
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 206010062325 Congenital arterial malformation Diseases 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 238000012307 MRI technique Methods 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 230000008084 cerebral blood perfusion Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 1
- 238000012831 peritoneal equilibrium test Methods 0.000 description 1
- 238000012636 positron electron tomography Methods 0.000 description 1
- 238000012877 positron emission topography Methods 0.000 description 1
- 102220092686 rs1662316 Human genes 0.000 description 1
- 102220013118 rs397516477 Human genes 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 210000003478 temporal lobe Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 201000009371 venous hemangioma Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0263—Measuring blood flow using NMR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Signal Processing (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及数据处理领域,具体涉及一种脑血流量部分容积效应校正方法。The invention relates to the field of data processing, in particular to a method for correcting cerebral blood flow partial volume effects.
背景技术Background technique
脑血流量(Cerebral Blood Flow, CBF)是单位时间内流经一定量脑组织血管结构的血流量。定义为每单位时间内对单位质量的人体组织的血液输送量,单位为ml/100g/min。CBF的改变是大脑被激活的早期标志,是评价大脑健康状态的重要标志。它是诊断和治疗阿尔茨海默症、脑梗塞、脑出血、动脉瘤和先天性动脉和静脉血管畸形等脑血管病的主要依据。目前,测量脑血流的方式主要由PET、SPECT、MRI技术等。随着核磁共振成像技术的不断提高,核磁动脉旋标记序列(Artery Spin Label, ASL)技术作为一种完全无创性的新血流灌注技术已经逐渐被用于CBF的测量。在利用磁共振ASL技术获取的CBF值进行阿尔茨海默症(AD)研究时,与认知正常老年人相比,由于AD 病人存在不同程度脑萎缩尤以内侧颞叶萎缩显著,而脑萎缩的程度不同将会影响到图像的配准,由于大部分 ASL 图像的层间距多为3~4mm,存在大量灰质和白质的混合体素。如果对这些体素采用灰质或白质的脑血流计算方法,则必然会造成误差,因此需要对这些区域进行部分容积校正(Partial VolumeCorrection, PVE),从而获得准确的 CBF 值。Cerebral blood flow (CBF) is the blood flow that flows through a certain amount of brain tissue vascular structure per unit time. It is defined as the amount of blood delivered to a unit mass of human tissue per unit time, and the unit is ml/100g/min. The change of CBF is an early sign of brain activation and an important sign to evaluate the health status of the brain. It is the main basis for the diagnosis and treatment of cerebrovascular diseases such as Alzheimer's disease, cerebral infarction, cerebral hemorrhage, aneurysm and congenital arterial and venous malformations. Currently, methods for measuring cerebral blood flow mainly include PET, SPECT, and MRI techniques. With the continuous improvement of nuclear magnetic resonance imaging technology, nuclear magnetic arterial spin labeling sequence (Artery Spin Label, ASL) technology as a completely non-invasive new blood perfusion technology has been gradually used in the measurement of CBF. When using the CBF value obtained by magnetic resonance ASL technology to study Alzheimer's disease (AD), compared with cognitively normal elderly people, AD patients have different degrees of brain atrophy, especially the medial temporal lobe atrophy, while brain atrophy The difference in degree will affect the image registration, because most ASL images have a layer spacing of 3-4mm, and there are a lot of mixed voxels of gray matter and white matter. If the cerebral blood flow calculation method of gray matter or white matter is used for these voxels, it will inevitably cause errors, so it is necessary to perform partial volume correction (Partial VolumeCorrection, PVE) on these regions to obtain accurate CBF values.
发明内容Contents of the invention
本发明的目的就是利用ASL技术中获取的CBF值进行部分容积校正,为明确AD的诊断提供较为准确的算法。将ASL中获取的CBF值和T1值作为输入,通过PVE算法得出全脑脑白质,脑灰质和脑脊液的CBF值。由于CBF值像素低,在全脑灰质白质脑脊液分界的位置上,一个像素值中可能含有脑白质,脑灰质及脑脊液等多种成分,而脑血流量在各个成分中(白质、灰质、脑脊液)的值相差很大,因此进行部分容积校正后,对边界区的CBF值更加精准。主要公式如下:The purpose of the present invention is to use the CBF value obtained in the ASL technique to perform partial volume correction, so as to provide a more accurate algorithm for the diagnosis of AD. The CBF value and T1 value obtained in ASL were used as input, and the CBF value of white matter, gray matter and cerebrospinal fluid of the whole brain was obtained by PVE algorithm. Due to the low pixel value of CBF, at the boundary of gray matter, white matter and cerebrospinal fluid of the whole brain, one pixel value may contain various components such as white matter, gray matter and cerebrospinal fluid, while cerebral blood flow is in each component (white matter, gray matter, cerebrospinal fluid) The value of the difference is very large, so after the partial volume correction, the CBF value of the boundary area is more accurate. The main formula is as follows:
CBFpve= CBF/(PGM*ΔMGM+ PWM*ΔMWM+PCSF*ΔMCSF).CBF pve = CBF/(P GM *ΔM GM + P WM *ΔM WM +P CSF *ΔM CSF ).
上述公式中,CBF是校正前的脑血流灌注值,PGM, PWM 和 PCSF表示脑灰质、脑白质及脑脊液的概率图。ΔMGM, ΔMWM and ΔMCSF分表代表脑灰质、白质及脑脊液的动脉自旋标记灌注加权信号,其中ΔMCSF值为0,因脑脊液的动脉自选标记信号几乎为0。成人的CBFgray值约为WM CBF值的3倍。因此上述等式可以简化为:In the above formula, CBF is the cerebral blood perfusion value before correction, and P GM , P WM and PCSF represent the probability maps of gray matter, white matter and cerebrospinal fluid. ΔM GM , ΔM WM and ΔM CSF represent arterial spin-labeled perfusion-weighted signals of cerebral gray matter, white matter, and cerebrospinal fluid, where the value of ΔM CSF is 0, because the arterial self-selected labeling signal of cerebrospinal fluid is almost 0. The CBF gray value of an adult is about 3 times that of the WM CBF . So the above equation can be simplified to:
CBFpve= CBF/ (PGM*3+ PWM).CBF pve = CBF/ (P GM *3+ P WM ).
用这个简化后的公式对ASL数据进行PVE校正。Use this simplified formula to perform PVE correction on ASL data.
本发明是通过如下技术方案实现的:The present invention is achieved through the following technical solutions:
一种脑血流量部分容积效应校正方法,其特征在于,包括如下步骤:A method for correcting partial volume effect of cerebral blood flow, characterized in that it comprises the following steps:
步骤一)通过核磁动脉自旋标记序列的检测结果获取全脑的脑血流量值以及脑灰质数值和脑白质数值;Step 1) Obtain the cerebral blood flow value, cerebral gray matter value and cerebral white matter value of the whole brain through the detection results of the NMR arterial spin labeling sequence;
步骤二)将脑灰质数值小于或等于0.25的区域的脑灰质值设为0,得到的脑灰质值不为0的区域为GM;将脑白质数值小于或等于0.25的区域的脑白质值设为0,得到的脑白质值不为0的区域为WM;Step 2) Set the gray matter value of the area whose gray matter value is less than or equal to 0.25 to 0, and the obtained area whose gray matter value is not 0 is GM; set the white matter value of the area whose white matter value is less than or equal to 0.25 to 0, the area where the obtained white matter value is not 0 is WM;
步骤三)对于区域GM中的每个数值点,按如下公式进行校正Step 3) For each value point in the area GM, correct it according to the following formula
CBFgray=CBF/(GMgray+0.33*GMwhite)CBF gray =CBF/(GM gray +0.33*GM white )
其中CBFgray为该点的脑灰质中的脑血流量值的校正结果,CBF为该点的脑血流量值,GMgray为该点的脑灰质数值,GMwhite为该点的脑白质数值;Among them, CBF gray is the correction result of cerebral blood flow value in the gray matter of the point, CBF is the value of cerebral blood flow in the point, GM gray is the value of gray matter in the point, and GM white is the value of white matter in the point ;
对于区域WM中的每个数值点,按如下公式进行校正For each value point in the area WM, the correction is performed according to the following formula
CBFwhite=CBF/(WMwhite+3*WMgray)CBF white =CBF/(WM white +3*WM gray )
其中CBFwhite为该点的脑白质中的脑血流量值的校正结果,CBF为该点的脑血流量值,WMwhite为该点的脑白质数值,WMgray为该点的脑灰质数值;Among them, CBF white is the correction result of the cerebral blood flow value in the white matter of the point, CBF is the value of cerebral blood flow in the point, WM white is the value of the white matter of the point, and WM gray is the value of the gray matter of the point ;
步骤四)根据CBFgray的数值制做出脑灰质脑血流量图,根据CBFwhite的数值制做出脑白质脑血流量图。Step 4) According to the value of CBF gray , the brain gray matter brain blood flow map is made, and the white matter brain blood flow map is made according to the value of CBF white .
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
按照本方法进行PVE校正后的CBF值被分成脑白质、脑灰质两组像素值。与全脑CBF值相比,计算结果更加准确,有利于临床的诊断和分析。According to this method, the CBF value after PVE correction is divided into two groups of pixel values of brain white matter and brain gray matter. Compared with the whole brain CBF value, the calculation result is more accurate, which is beneficial to clinical diagnosis and analysis.
附图说明Description of drawings
图1为全脑CBF图;Figure 1 is a CBF map of the whole brain;
图2为矫正后的灰质CBF图。Figure 2 is the corrected gray matter CBF map.
具体实施方式detailed description
实施例1Example 1
本方法可以采用matlab编程实现,matlab程序如下:This method can be realized by matlab programming, and the matlab program is as follows:
function FG_PVE_correction_for_perfusiondata(Imgs,Grays,Whites,smooth_kernel)function FG_PVE_correction_for_perfusiondata(Imgs, Grays, Whites, smooth_kernel)
定义一个PVE函数,函数变量有四个,(全脑,白质,灰质,平滑核参数)Define a PVE function with four function variables (whole brain, white matter, gray matter, smooth kernel parameters)
sub=[1,2,3,4,5,6,7,….,n] (一个一个读取图像序号,n为进入程序的数据编号)sub=[1,2,3,4,5,6,7,….,n] (read image serial numbers one by one, n is the data number entering the program)
for k=1:x(x 表示进入程序的数据个数)for k=1:x (x represents the number of data entering the program)
n=sub(k) (n 表示数据的编号) n=sub(k) (n represents the number of the data)
S=num2str(n); (由字符变量改为数字变量) S=num2str(n); (change from character variable to numeric variable)
Imgs=strcat('本地路径\','means',S,'.img') 获取全脑像素值 Imgs=strcat('local path\','means',S,'.img') Get the whole brain pixel value
Grays=strcat('本地路径'\','c1s',S,'.img') 获取脑灰质像素值 Grays=strcat('local path'\','c1s',S,'.img') Get gray matter pixel values
Whites=strcat('本地路径\','c2s',S,'.img') 获取脑白质像素值 Whites=strcat('local path\','c2s',S,'.img') Get white matter pixel values
smooth_kernel=[2 2 2]; 定义平滑核数是2 smooth_kernel=[2 2 2]; Define smooth kernel number is 2
for i=1:size(Grays,1) 读脑数据for i=1:size(Grays,1) read brain data
Vmat=spm_vol(Imgs(i,:)); 把全脑像素值赋给Vmat变量 Vmat=spm_vol(Imgs(i,:)); Assign the whole brain pixel value to the Vmat variable
V=spm_read_vols(Vmat); 把Vmat变量读到V变量里 V=spm_read_vols(Vmat); Read the Vmat variable into the V variable
GM=spm_read_vols(spm_vol(Grays (i,:))); 灰质数据赋给GM GM=spm_read_vols(spm_vol(Grays (i,:))); Gray matter data is assigned to GM
WM=spm_read_vols(spm_vol(Whites(i,:)));白质数据赋给WM WM=spm_read_vols(spm_vol(Whites(i,:))); White matter data is assigned to WM
GM(find(GM<=0.25))=0; 灰质数值小于等于0.25的将灰质设为0 GM(find(GM<=0.25))=0; If the gray matter value is less than or equal to 0.25, set the gray matter to 0
WM(find(WM<=0.25))=0; 白质数值小于等于0.25的将白质设为0 WM(find(WM<=0.25))=0; If the white matter value is less than or equal to 0.25, set the white matter to 0
V21=zeros(size(V)); 定义V21变量空间大小等于V(脑空间大小),赋值0 V21=zeros(size(V)); Define the V21 variable space size equal to V (brain space size), assign 0
V22=zeros(size(V)); 定义V22变量空间大小等于V(脑空间大小),赋值0 V22=zeros(size(V)); Define the V22 variable space size equal to V (brain space size), assign 0
V21(find(GM))=V(find(GM))./(GM(find(GM))+0.4*WM(find(GM)));V21(find(GM))=V(find(GM))./(GM(find(GM))+0.4*WM(find(GM)));
V21(灰质)=灰质/(灰质+0.33*白质)V21 (gray matter)=gray matter/(gray matter+0.33*white matter)
V22(find(WM))=V(find(WM))./(WM(find(WM))+2.5*GM(find(WM))); V22(白质)=白质/(白质+3*灰质) V22(find(WM))=V(find(WM))./(WM(find(WM))+2.5*GM(find(WM))); V22(white matter)=white matter/(white matter+3*gray matter )
Vmat.fname=deblank(PVE_gray_imgs(i,:)); Vmat.fname=deblank(PVE_gray_imgs(i,:));
spm_write_vol(Vmat,V21); spm_write_vol(Vmat,V21);
把V21的数值赋给PVE_gray_imgsAssign the value of V21 to PVE_gray_imgs
Vmat.fname=deblank(PVE_white_imgs(i,:));Vmat.fname=deblank(PVE_white_imgs(i,:));
spm_write_vol(Vmat,V22); spm_write_vol(Vmat,V22);
把V22的数值赋给PVE_ white _imgsAssign the value of V22 to PVE_ white _imgs
endend
fprintf ('\n-----PVE correction is done!......\n') fprintf ('\n-----PVE correction is done!......\n')
GUI界面提示PVE校准已做完The GUI interface prompts that the PVE calibration has been completed
endend
图1和图2表明了本方法的校正效果,按照本方法进行PVE校正后的CBF值被分成脑白质、脑灰质两组脑血流量图像。图2为校正后的灰质脑血流量图,与全脑CBF值相比,计算结果更加准确,有利于临床的诊断和分析。Figures 1 and 2 show the correction effect of this method. The CBF values after PVE correction according to this method are divided into two groups of cerebral blood flow images: white matter and gray matter. Figure 2 is the corrected gray matter cerebral blood flow map. Compared with the whole brain CBF value, the calculation result is more accurate, which is beneficial to clinical diagnosis and analysis.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710639032.XA CN107456225B (en) | 2017-07-31 | 2017-07-31 | A method for correcting partial volume effect of cerebral blood flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710639032.XA CN107456225B (en) | 2017-07-31 | 2017-07-31 | A method for correcting partial volume effect of cerebral blood flow |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107456225A true CN107456225A (en) | 2017-12-12 |
CN107456225B CN107456225B (en) | 2020-06-09 |
Family
ID=60547074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710639032.XA Expired - Fee Related CN107456225B (en) | 2017-07-31 | 2017-07-31 | A method for correcting partial volume effect of cerebral blood flow |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107456225B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116029983A (en) * | 2022-12-05 | 2023-04-28 | 中国科学院心理研究所 | Image quality evaluation method and system for magnetic resonance arterial spin labeling perfusion imaging |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1062649A (en) * | 1991-12-04 | 1992-07-15 | 中国人民解放军海军医学研究所 | Brain map imaging system and method for generating topographic map of cerebral blood flow |
US20100014735A1 (en) * | 2008-07-21 | 2010-01-21 | Siemens Medical Solutions Usa, Inc. | Enhanced Contrast MR System Accommodating Vessel Dynamic Fluid Flow |
WO2015161156A1 (en) * | 2014-04-18 | 2015-10-22 | The General Hospital Corporaton | System and method for correcting intrinsic heterogeneity in magnetic resonance imaging |
CN105654485A (en) * | 2015-12-30 | 2016-06-08 | 中国人民解放军第四军医大学 | Magnetic resonance arterial spin labeling sequence partial volume correction method using spatio-temporal information |
US20160239966A1 (en) * | 2008-05-28 | 2016-08-18 | The Trustees Of Columbia University In The City Of New York | Voxel-based methods for assessing subjects using molecular magnetic resonance imaging |
CN106127792A (en) * | 2016-07-22 | 2016-11-16 | 杭州师范大学 | Magnetic resonance arterial spin labeling brain perfusion imaging data artefact figure minimizing technology |
-
2017
- 2017-07-31 CN CN201710639032.XA patent/CN107456225B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1062649A (en) * | 1991-12-04 | 1992-07-15 | 中国人民解放军海军医学研究所 | Brain map imaging system and method for generating topographic map of cerebral blood flow |
US20160239966A1 (en) * | 2008-05-28 | 2016-08-18 | The Trustees Of Columbia University In The City Of New York | Voxel-based methods for assessing subjects using molecular magnetic resonance imaging |
US20100014735A1 (en) * | 2008-07-21 | 2010-01-21 | Siemens Medical Solutions Usa, Inc. | Enhanced Contrast MR System Accommodating Vessel Dynamic Fluid Flow |
WO2015161156A1 (en) * | 2014-04-18 | 2015-10-22 | The General Hospital Corporaton | System and method for correcting intrinsic heterogeneity in magnetic resonance imaging |
CN105654485A (en) * | 2015-12-30 | 2016-06-08 | 中国人民解放军第四军医大学 | Magnetic resonance arterial spin labeling sequence partial volume correction method using spatio-temporal information |
CN106127792A (en) * | 2016-07-22 | 2016-11-16 | 杭州师范大学 | Magnetic resonance arterial spin labeling brain perfusion imaging data artefact figure minimizing technology |
Non-Patent Citations (4)
Title |
---|
HENRI J.M.M. MUTSAERTS ET AL: "Gray matter contamination in arterial spin labeling white matter perfusion measurements in patients with dementia", 《NEUROIMAGE: CLINICAL》 * |
JESSICA E SIMON ET AL: "A novel method to derive separate gray and white matter cerebral blood flow measures from MR imaging of acute ischemic stroke patients", 《JOURNAL OF CEREBRAL BLOOD FLOW & METABOLISM》 * |
WEN-CHAU WU ET AL: "Measurement of Cerebral White Matter Perfusion Using Pseudocontinuous Arterial Spin Labeling 3T Magnetic Resonance Imaging – an Experimental and Theoretical Investigation of Feasibility", 《PLOS ONE》 * |
XIAOYUN LIANG ET AL: "Improved Partial Volume Correction for Single Inversion Time Arterial Spin Labeling Data", 《MAGNETIC RESONANCE IN MEDICINE》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116029983A (en) * | 2022-12-05 | 2023-04-28 | 中国科学院心理研究所 | Image quality evaluation method and system for magnetic resonance arterial spin labeling perfusion imaging |
Also Published As
Publication number | Publication date |
---|---|
CN107456225B (en) | 2020-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Courchesne et al. | Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers | |
Fonov et al. | Unbiased average age-appropriate atlases for pediatric studies | |
Bammer et al. | Time‐resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5 T and 3.0 T in combination with parallel imaging | |
Metzler-Baddeley et al. | How and how not to correct for CSF-contamination in diffusion MRI | |
Lin et al. | Cingulum correlates of cognitive functions in patients with mild cognitive impairment and early Alzheimer’s disease: a diffusion spectrum imaging study | |
US11087465B2 (en) | Medical image processing apparatus, medical image processing method, and medical image processing program | |
Shi et al. | Diffusion tensor imaging–based characterization of brain neurodevelopment in primates | |
US11615535B2 (en) | Systems and methods for image processing | |
CN112263225B (en) | Collateral blood vessel and tissue function evaluation device based on cerebral blood flow | |
Ferradal et al. | System-specific patterns of thalamocortical connectivity in early brain development as revealed by structural and functional MRI | |
Boubela et al. | Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential | |
JP2015208679A (en) | Magnetic resonance imaging apparatus, method, and program | |
Khanal et al. | Repeatability of arterial spin labeling MRI in measuring blood perfusion in the human eye | |
Bauer et al. | Motor fatigue is associated with asymmetric connectivity properties of the corticospinal tract in multiple sclerosis | |
Nguyen et al. | Ocular structures segmentation from multi-sequences MRI using 3D Unet with fully connected CRFs | |
Adanyeguh et al. | Brain MRI detects early-stage alterations and disease progression in Friedreich ataxia | |
CN107456225B (en) | A method for correcting partial volume effect of cerebral blood flow | |
Zeinali et al. | Brain volume estimation enhancement by morphological image processing tools | |
CN104510469A (en) | Method and device for determining cerebral ischemia characteristic based on magnetic resonance diffusion-weighted image | |
Huang et al. | Abnormal intrinsic functional network hubs and connectivity following peripheral visual loss because of inherited retinal degeneration | |
Shyna et al. | A mixed loss joint approach-based deep learning strategy to enhance SNR and resolution of arterial spin labelling MRI | |
KR20150073519A (en) | Method of classifying cerebral infarction region | |
Pham et al. | A Comprehensive Framework for Automated Segmentation of Perivascular Spaces in Brain MRI with the nnU-Net | |
Juttukonda et al. | Quantitation of arterial spin labeling MRI labeling efficiency in high cervical velocity conditions using phase contrast angiography | |
Mitev et al. | DYNAMIC FOLLOW-UP AND PROVING THROUGH COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING OF CHANGES IN SECONDARY MENINGOENCEPHALITIS FROM SUPPURATIVE LEFT MAXILLARY SINUSITIS. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200609 |