CN1074548C - 制造具有最佳光效率的致动反射镜阵列的方法 - Google Patents

制造具有最佳光效率的致动反射镜阵列的方法

Info

Publication number
CN1074548C
CN1074548C CN96114065.8A CN96114065A CN1074548C CN 1074548 C CN1074548 C CN 1074548C CN 96114065 A CN96114065 A CN 96114065A CN 1074548 C CN1074548 C CN 1074548C
Authority
CN
China
Prior art keywords
film
layer
actuating mechanism
array
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96114065.8A
Other languages
English (en)
Other versions
CN1157420A (zh
Inventor
金钟三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwoo Electronics Co., Ltd.
Original Assignee
Daewoo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daewoo Electronics Co Ltd filed Critical Daewoo Electronics Co Ltd
Publication of CN1157420A publication Critical patent/CN1157420A/zh
Application granted granted Critical
Publication of CN1074548C publication Critical patent/CN1074548C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means

Abstract

用于制造薄膜致动反射镜阵列的方法,包括有步骤:在一有源矩阵的顶上形成一薄膜待除层;在该薄膜待除层的顶上形成一M×N半成品的致动机构阵列,各半成品的致动机构具有一薄膜电致位移构件、一第二薄膜电极及一弹性构件;在各半成品的致动机构的侧表面上形成一聚合物层;在各半成品的致动机构的顶上淀积第一薄膜层;去除该聚合物层,从而形成一M×N致动机构阵列;及去除该薄膜待除层,从而形成该M×N薄膜致动反射镜阵列。

Description

制造具有最佳光效率的致动反射镜阵列的方法
本发明涉及一种光学投影系统;且更具体地,涉及一种制造用于该系统中具有最佳光效率的M×N薄膜致动反射镜阵列的改造的方法。
在现有技术中可用的各种视频显示系统中,已知一种光学投影系统能够提供大尺度的高质量显示。在该光学投影系统中,来自一灯的光线被均匀地照射到一例如M×N致动反射镜的阵列上,其中各反射镜与各致动器相连。这些致动器可由响应施加于其的电场而变形的例如压电或电致伸缩材料的电致位移材料制成。
来自各反射镜的反射光束被入射到例如一光反射体的孔上。通过对各致动器施加一电信号,各反射镜对于入射光束的相对位置被改变,从而致使来自各反射镜的反射光束的光路发生偏差。当各反射光束的光路被改变时,通过该孔的来自各反射镜的反射光量被改变,从而调制光束的密度。通过该孔的被调制的光束经一适当的光学装置,例如一投影透镜被发送到一投影屏幕上,从而在其上显示图象。
在图1A至1F中,示出了在制造M×N薄膜致动反射镜101的阵列100中所包括的制造步骤,其中M及N为整数,该制造方法被公开在题为“制造一薄膜致动反射镜阵列的方法”,美国序列号为08/598,478的共有未决申请中。
该制造阵列100的过程开始于准备一有源矩阵10,该有源矩阵10包括,基底12,其上带有一M×N连接端子14阵列及一M×N晶体管阵列(未示出)的基底12,其中各连接端子14电连接至晶体管阵列中相应的晶体管。
在接着的步骤中,在有源矩阵10的顶上淀积一薄膜待除层20,该薄膜待除层20具有0.2-2μm的厚度并由金属,例如铜(Cu)或镍(Ni)、磷一硅玻璃(PSG)或多晶硅制成。如果该薄膜待除层20由金属制成,其通过采用一溅射法或蒸镀法淀积成,如果该薄膜待除层20由PSG制成,其通过采用化学汽相淀积(CVD)法或旋转涂覆法淀积成,如果该薄膜待除层20由多晶硅制成,其通过采用CVD法淀积成。
然后,通过采用蚀刻法在该薄膜待除层上形成一M×N对空腔阵列(未示出),如图1A所示。各对中的一个空腔包围一连接端子14。
接着,通过采用CVD法在包括这些空腔的薄膜待除层的顶上淀积一由绝缘材料制成且具有0.1-2μm厚度的弹性层30。
在下一步骤中,通过采用蚀刻法在弹性层30上形成一M×N接触孔37的阵列,其中各接触孔37暴露出连接端子14的一顶部且具有内表面(未示出),如图1B所示。
然后,通过采用溅射法或真空蒸镀法在弹性层30的顶上包括各接触孔37的内表面上淀积由导电材料制成且具有0.1-2μm厚度的第二薄膜层40。
接着,通过采用CVD法、蒸镀法、Sol-Gel法或溅射法在第二薄膜层40的顶上淀积一由压电材料或电致伸缩材料制成且具有0.1-2μm厚度的薄膜电致位移层50。然后对该薄膜电致位移层50进行热处理以使发生相变。如图1C所示。
在下一步骤中,通过采用溅射或真空蒸镀法在薄膜电致位移层50的顶上淀积一由导电且反光材料制成,且具有0.1-2μm厚度的第一薄膜层60,如图1D所示。
在以上步骤后,通过使用蚀刻法,例如光刻法或激光修剪法分别构型第一薄膜层60、薄膜电致位移层50、第二薄膜层40及弹性层30直至薄膜待除层20的顶部被暴露出,从而形成M×N致动机构90的阵列,各致动机构90具有第一薄膜电极65、薄膜电致位移构件55、第二薄膜电极45及弹性构件35,如图1E所示。各第二薄膜电极45被电连接至一相应的连接端子14,从而在各致动机构90上起到信号电极的作用。各第一薄膜电极65被电连接至地,从而在各致动机构90中既起到反射镜又起到公共偏置电极的作用。
由于各薄膜电致位移构件55非常地薄,如果它由压电材料制成则不需极化(pole)它:因为在薄膜致动反射镜101的工作期间它由施加信号所极化。
在上述步骤后,接着以一薄膜保护层(未示出)完全覆盖各致动机构90。
然后通过使用蚀刻法去除薄膜待除层20。最后,去除薄膜保护层,从而形成M×N薄膜致动反射镜101的阵列100,如图1F所示。
上述制造M×N薄膜致动反射镜101的阵列100的方法有许多缺点。其中一个缺点是这样构成的阵列100的整体光效率不够高。由于在淀积及构型第一薄膜层60以形成第一薄膜电极65后,跟着通过采用蚀刻法构型薄膜电致位移层50、第二薄膜层40及弹性层30,各致动机构90中的位于顶层并也起到反射镜作用的第一薄膜电极65在其构型期间受到化学地或物理地影响,从而可能不利地影响薄膜致动反射镜101的阵列100的光效率。
因此,本发明的主要目的是提供一种制造用于光学投影系统中的M×N薄膜致动反射镜阵列的方法,该方法能确保该阵列中最佳光效率。
根据本发明的一方面,提供有一种制造用于光学投影系统中的M×N薄膜致动反射镜阵列的方法,其中M及N为整数,该方法包括有以下步骤:在一有源矩阵的顶上形成一薄膜待除层;在该薄膜待除层的顶上形成一M×N半成品的致动机构阵列,各半成品的致动机构通过其间的暴露出的薄膜待除层的部分被规则地间隔开,各半成品的致动机构具有一薄膜电致位移构件、一第二薄膜电极及一弹性构件;在包括薄膜待除层的暴露部分的各半成品的致动机构的侧表面上形成一聚合物层;在各半成品的致动机构的顶上淀积第一薄膜层;去除该聚合物层,从而形成一M×N致动机构的阵列,其中各致动机构包括形成在各半成品的致动机构的顶上的第一薄膜电极;及去除该薄膜待除层,从而形成该M×N薄膜致动反射镜列。
通过以下结合附图对优选实施例的描述,本发明的上述及其它目的和特征将变得显然,附图中:
图1A至1F示出了说明先前公开的制造M×N薄膜致动反射镜阵列的方法的概略性截面视图;及
图2A至2F给出一上述根据本发明的制造M×N薄膜致动反射镜阵列的方法的概略性截面视图。
图2A至2F给出了上述一种根据本发明的制造用于光学投影系统的M×N薄膜致动反射镜301的阵列的300的方法,其中M及N为整数。应当注意到图2A至2F中出现的相同部件相同的参考数字表示。
制造阵列300的过程起始于准备一包括有一基底212,形成在该基底212顶上的一M×N连接端子214的阵列及一M×N晶体管阵列(未示出),其中各连接端子214被电连接至该晶体管阵列中一相应的晶体管。
在接着的步骤中,在有源矩阵210的顶上淀积一由金属,例如铜(Cu)或镍(Ni),磷-硅玻璃(PSG)或多晶硅制成,具有0.1-2μm厚度的薄膜待除层220。如果该薄膜待除层220由金属制成,采用溅射法或蒸镀法淀积而成,如果该薄膜待除层220由PSG制成,采用化学汽相淀积(CVD)法或旋转涂覆法淀积而成,如果该薄膜待除层由多晶硅制成,则采用CVD法淀积而成。
然后,通过采用蚀刻法在薄膜待除层220的上面形成一M×N对空腔阵列(未示出),如图2A所示,各对中的各空腔包围一个连接端子214。
接着,通过采用化学汽相淀积(CVD)法在薄膜待除层220的顶上淀积一由绝缘材料,例如氮化硅制成且具有0.1-2μm厚度的弹性层230。
在接着的步骤中,通过采用蚀刻法在弹性层230上形成一M×N接触孔237的阵列,如图2B所示,其中各接触孔暴露出一个连接端子214。
然后,通过采用溅射法或真空蒸镀法在弹性层230的顶上包括各接触孔237的内表面上淀积一由导电材料,例如Pt/Ta制成且具有0.1-2μm厚度的第二薄膜层240。
接着,通过采用CVD法,蒸镀法、Sol-Gel法或溅射法在第二薄膜层240的顶上淀积一由压电材料,例如PZT或电致伸缩材料,例如PMN制成且具有0.1-2μm厚度的薄膜电致位移层250。然后对该薄膜电致位移层250进行热处理以发生相变,如图2C所示。
在接着的步骤中,通过采用蚀刻法,例如光刻法或激光修剪法,分别构型成薄膜电致位移层250、第二薄膜层240及弹性层230直止暴露出薄膜待除层220的顶部,从而形成一半成品的致动机构201的阵列,其中各半成品的致动机构201有一薄膜电致位移构件255、一第二薄膜电极245和一弹性构件,如图2D所示。
由于各薄膜电致位移构件255非常地薄,因此如果它由压电材料制成则不需对它进行极化:因为在薄膜致动反射镜301的工作期间它可被施加的电信号所极化。
在接着的步骤中,通过采用搬移(lift-off)法在各半成品的致动机构201的顶上形成第一薄膜电极265,用于形成该第一薄膜电极265的搬移法包括有以下步骤:在各半成品的致动机构201的侧表面上包括薄膜待除层220的暴露出的顶部上形成一由光阻材料制成的聚合物层270;通过使用溅射法或真空蒸镀法在各半成品的致动机构201的顶上包括聚合物层270的顶部上淀积一由导电且反光材料,例如铝(Al)或银(Ag)制成的且具有0.1-2μm厚度的第一薄膜层260,如图2E所示;及通过采用蚀刻法去除包括淀积在其顶部上的第一薄膜层260部分的聚合物层270,从而形成M×N致动机构200的阵列。各致动机构200包括第一薄膜电极265、薄膜电致位移构件255、第二薄膜电极245及弹性构件235。各第二薄膜电极245被电连接至一相应的连接端子214,从而在各致动机构200中起到信号电极的作用,各第一薄膜电极265被电连接至地,从而在各致动机构200中起到反射镜及公共偏置电极的作用。
最后,去除薄膜待除层220,从而形成M×N薄膜致动反射镜301的阵列300,如图2F所示。
与先前公开的制造M×N薄膜致动反射镜101的阵列100的方法(其中在第一薄膜层60的淀积及构型之后跟着构型薄膜电致位移层50、第二薄膜层40和弹性层30)相比,在本发明方法中,由于在薄膜电致位移层250、第二薄膜层240和弹性层230的构型之后跟着形成第一薄膜电极265,从而可能防止又起到反射镜作用的第一薄膜电极265在构型期间受到化学地或物理地损坏,因此确保了M×N薄膜致动反射镜301的阵列300中的光效率。
虽然仅相对某些优选实施例对本发明进行了描述,但不脱离由所附权利要求限定的本发明的范围仍可做出其它的改型和变化。

Claims (4)

1、一种用于制造薄膜致动反射镜阵列的方法,该方法包括有以下步骤:
在一有源矩阵的顶上形成一薄膜待除层;
在该薄膜待除层的顶上形成一M×N半成品的致动机构阵列,各半成品的致动机构由其间薄膜待除层的暴露部分所规则的间隔开,各半成品的致动机构具有一薄膜电致位移构件、一第二薄膜电极及一弹性构件;
在包括薄膜待除层的暴露部分的各半成品的致动机构的侧表面上形成一聚合物层;
在各半成品的致动机构的顶上淀积第一薄膜层;
去除该聚合物层,从而形成一M×N致动机构阵列,其中各致动机构包括一形成在各半成品的致动机构的顶上的第一薄膜电极;及
去除该薄膜待除层,从而形成该M×N薄膜致动反射镜阵列。
2、根据权利要求1所述的方法,其中该聚合物层由光阻材料制成。
3、根据权利要求1所述的方法,其中在包括该聚合物顶部的各半成品的致动机构的顶上淀积第一薄膜层。
4、根据权利要求3所述的方法,其中淀积在该聚合物层顶上的第一薄膜层部分连同该聚合物层一起被去除。
CN96114065.8A 1995-12-19 1996-12-19 制造具有最佳光效率的致动反射镜阵列的方法 Expired - Fee Related CN1074548C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019950052085A KR100207410B1 (ko) 1995-12-19 1995-12-19 광로 조절 장치의 제조방법
KR52085/95 1995-12-19
KR52085/1995 1995-12-19

Publications (2)

Publication Number Publication Date
CN1157420A CN1157420A (zh) 1997-08-20
CN1074548C true CN1074548C (zh) 2001-11-07

Family

ID=19441473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96114065.8A Expired - Fee Related CN1074548C (zh) 1995-12-19 1996-12-19 制造具有最佳光效率的致动反射镜阵列的方法

Country Status (5)

Country Link
US (1) US5920422A (zh)
JP (1) JP3872150B2 (zh)
KR (1) KR100207410B1 (zh)
CN (1) CN1074548C (zh)
GB (1) GB2308460B (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969635B2 (en) * 2000-12-07 2005-11-29 Reflectivity, Inc. Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US5991064A (en) * 1996-06-29 1999-11-23 Daewoo Electronics Co., Ltd. Thin film actuated mirror array and a method for the manufacture thereof
US6136390A (en) * 1996-12-11 2000-10-24 Daewoo Electronics Co., Ltd. Method for manufacturing a thin film actuatable mirror array having an enhanced structural integrity
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7214540B2 (en) 1999-04-06 2007-05-08 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US7244402B2 (en) 2001-04-06 2007-07-17 California Institute Of Technology Microfluidic protein crystallography
US7052545B2 (en) 2001-04-06 2006-05-30 California Institute Of Technology High throughput screening of crystallization of materials
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6929030B2 (en) 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7459022B2 (en) 2001-04-06 2008-12-02 California Institute Of Technology Microfluidic protein crystallography
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
US7144616B1 (en) 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7195670B2 (en) 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
CA2721172C (en) * 1999-06-28 2012-04-10 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8550119B2 (en) 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7217321B2 (en) 2001-04-06 2007-05-15 California Institute Of Technology Microfluidic protein crystallography techniques
US8052792B2 (en) 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
US7501245B2 (en) 1999-06-28 2009-03-10 Helicos Biosciences Corp. Methods and apparatuses for analyzing polynucleotide sequences
US7306672B2 (en) 2001-04-06 2007-12-11 California Institute Of Technology Microfluidic free interface diffusion techniques
US7867763B2 (en) 2004-01-25 2011-01-11 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US20050118073A1 (en) 2003-11-26 2005-06-02 Fluidigm Corporation Devices and methods for holding microfluidic devices
US7351376B1 (en) 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
GB2369436A (en) * 2000-07-28 2002-05-29 Marconi Applied Techn Ltd Chemical sensing micro-mechanical cantilever
EP1334347A1 (en) 2000-09-15 2003-08-13 California Institute Of Technology Microfabricated crossflow devices and methods
US7678547B2 (en) 2000-10-03 2010-03-16 California Institute Of Technology Velocity independent analyte characterization
US7097809B2 (en) 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
US7258774B2 (en) 2000-10-03 2007-08-21 California Institute Of Technology Microfluidic devices and methods of use
WO2002065005A1 (en) 2000-11-06 2002-08-22 California Institute Of Technology Electrostatic valves for microfluidic devices
EP1343973B2 (en) 2000-11-16 2020-09-16 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
AU2002248149A1 (en) 2000-11-16 2002-08-12 Fluidigm Corporation Microfluidic devices for introducing and dispensing fluids from microfluidic systems
US20020074897A1 (en) * 2000-12-15 2002-06-20 Qing Ma Micro-electromechanical structure resonator frequency adjustment using radient energy trimming and laser/focused ion beam assisted deposition
US7670429B2 (en) 2001-04-05 2010-03-02 The California Institute Of Technology High throughput screening of crystallization of materials
US6752922B2 (en) 2001-04-06 2004-06-22 Fluidigm Corporation Microfluidic chromatography
DE60239328D1 (de) 2001-04-06 2011-04-14 Fluidigm Corp Polymeroberflächenmodifikation
AU2002307152A1 (en) 2001-04-06 2002-10-21 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
US7075162B2 (en) 2001-08-30 2006-07-11 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
US7192629B2 (en) 2001-10-11 2007-03-20 California Institute Of Technology Devices utilizing self-assembled gel and method of manufacture
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
EP1463796B1 (en) 2001-11-30 2013-01-09 Fluidigm Corporation Microfluidic device and methods of using same
EP1499706A4 (en) 2002-04-01 2010-11-03 Fluidigm Corp MICROFLUIDIC PARTICLE ANALYSIS SYSTEMS
EP1551753A2 (en) 2002-09-25 2005-07-13 California Institute Of Technology Microfluidic large scale integration
US8220494B2 (en) 2002-09-25 2012-07-17 California Institute Of Technology Microfluidic large scale integration
JP5695287B2 (ja) 2002-10-02 2015-04-01 カリフォルニア インスティテュート オブ テクノロジー 微小流体の核酸解析
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US7476363B2 (en) 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US7666361B2 (en) 2003-04-03 2010-02-23 Fluidigm Corporation Microfluidic devices and methods of using same
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
WO2004094020A2 (en) 2003-04-17 2004-11-04 Fluidigm Corporation Crystal growth devices and systems, and methods for using same
CA2526368A1 (en) 2003-05-20 2004-12-02 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
SG145697A1 (en) 2003-07-28 2008-09-29 Fluidigm Corp Image processing method and system for microfluidic devices
US7413712B2 (en) 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US6947201B2 (en) * 2003-12-08 2005-09-20 Xinetics, Inc. Transverse electrodisplacive actuator array
US7407799B2 (en) 2004-01-16 2008-08-05 California Institute Of Technology Microfluidic chemostat
WO2005072353A2 (en) 2004-01-25 2005-08-11 Fluidigm Corporation Crystal forming devices and systems and methods for making and using the same
EP2248911A1 (en) 2004-02-19 2010-11-10 Helicos Biosciences Corporation Methods and kits for analyzing polynucleotide sequences
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US7732991B2 (en) * 2007-09-28 2010-06-08 Freescale Semiconductor, Inc. Self-poling piezoelectric MEMs device

Also Published As

Publication number Publication date
JPH09179042A (ja) 1997-07-11
GB2308460A (en) 1997-06-25
KR100207410B1 (ko) 1999-07-15
CN1157420A (zh) 1997-08-20
GB2308460B (en) 1999-08-18
GB9626371D0 (en) 1997-02-05
JP3872150B2 (ja) 2007-01-24
US5920422A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
CN1074548C (zh) 制造具有最佳光效率的致动反射镜阵列的方法
CN1082770C (zh) 用在光学投影系统中的薄膜致动反射镜阵列
CN1047903C (zh) 用于一光学投影系统中的薄膜致动反射镜阵列及其制造方法
CN1065967C (zh) 制造薄膜可驱动反射镜阵列的方法
CN1047056C (zh) 薄膜致动反射镜阵列及其制造方法
CN1064135C (zh) 薄膜可驱动反射镜阵列
CN1061203C (zh) 薄膜致动反射镜阵列及其制造方法
CN1074226C (zh) 用于光学投影系统中的薄膜致动反射镜阵列及其制造方法
CN1062664C (zh) 改进的制造薄膜可致动反射镜阵列的方法
CN1057392C (zh) 制造薄膜可驱动反射镜阵列的改进方法
US5637517A (en) Method for forming array of thin film actuated mirrors
CN1065966C (zh) 用在光学投影系统中的薄膜驱动反射镜阵列
CN1156831A (zh) 制造解除短路的致动反射镜阵列的方法
CN1135610A (zh) 制造薄膜可驱动反射镜阵列的方法
CN1191447A (zh) 具有一调平元件的薄膜致动反射镜阵列
CN1184950A (zh) 制造具有增强的结构完整性的薄膜致动反射镜阵列的方法
CN1164663A (zh) 在薄膜致动反射镜中形成连接孔的方法
JP3523881B2 (ja) 低温度形成の薄膜アクチュエーテッドミラーアレイ及びその製造方法
CN1166610A (zh) 薄膜致动反射镜阵列的形成方法
CN1177110A (zh) 薄膜致动反射镜阵列及其制造方法
US5701192A (en) Thin film actuated mirror array and method of manufacturing the same
CN1220068A (zh) 薄膜致动反射镜阵列及其制造方法
CN1153311A (zh) 构成薄膜致动的反射镜阵列的方法
CN1161462A (zh) 带有温度补偿层的薄膜致动的反射镜阵列
CN1164042A (zh) 具有一平的反光表面的薄膜致动反射镜的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20030919

Patentee after: Daiwoo Electronics Co., Ltd.

Patentee before: Daewoo Electronics Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20011107

Termination date: 20141219

EXPY Termination of patent right or utility model